-
authors: Qinglang Guo, Haiyong Xie, Yangyang Li, Wen Ma, Chao Zhang
-
file structure:
├── run.py # train model
├── model
├── utils
├── preprocess.py # load dataset and generate training data
├── result # store the result file
├── data # store the training data
└── Twibot-22 # store the training data
├── data # store the training data
├── model
└── run.py # train model
- implement details:
- The original model use GatConv module from dgl, using ELU as the activate function of gat.
- Due to memory limitation, we set the batch size as 32.
- Due to memory limitation, the graph of Twibot-20 and midterm-2018 only consist of 3000 word(Top 3000 in order of word frequncy)
- In the implementation of Twibot-22, we use pytorch geometric neighbor loader to sample graph data.
-
preprocess the the dataset by running
python preprocess.py --source_path ${dataset}
this command will create related features in corresponding directory.
-
train the model by running:
python run.py --dataset ${dataset}
the final result will be saved into ${dataset}.txt
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Twibot-22 | mean | 0.7188 | 0.2255 | 0.1990 | 0.2114 |
Twibot-22 | std | 0.0182 | 0.3088 | 0.2724 | 0.2895 |
Twibot-20 | mean | 0.6636 | 0.6764 | 0.7319 | 0.7005 |
Twibot-20 | std | 0.0100 | 0.0226 | 0.0749 | 0.0260 |
botometer-feedback-2019 | mean | 0.5962 | 0.2750 | 0.0857 | 0.1303 |
botometer-feedback-2019 | std | 0.0316 | 0.2820 | 0.0852 | 0.1301 |
cresci-rtbust-2019 | mean | 0.5000 | 0.5813 | 0.3514 | 0.4108 |
cresci-rtbust-2019 | std | 0.0488 | 0.1112 | 0.2058 | 0.1300 |
cresci-stock-2018 | mean | 0.5074 | 0.5278 | 0.7040 | 0.5818 |
cresci-stock-2018 | std | 0.0134 | 0.0075 | 0.2614 | 0.1205 |
midterm-2018 | mean | 0.8287 | 0.8440 | 0.9766 | 0.9050 |
midterm-2018 | std | 0.0148 | 0.0093 | 0.0366 | 0.0109 |
cresci-2017 | mean | 0.7585 | 0.7585 | 1.0000 | 0.8627 |
cresci-2017 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gilani-2017 | mean | 0.4847 | 0.2543 | 0.6000 | 0.3572 |
gilani-2017 | std | 0.0834 | 0.2321 | 0.5477 | 0.3261 |
cresci-2015 | mean | 0.8778 | 0.8652 | 0.9556 | 0.9080 |
cresci-2015 | std | 0.0063 | 0.0064 | 0.0202 | 0.0060 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
Guo et al | 0.7188 | 0.2114 | F | BERT GAT |