Skip to content

Latest commit

 

History

History

Efthimion

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Supervised Machine Learning Bot Detection Techniques to Identify Social Twitter Bots


└── feature.py
  • implement details: We abdicate the Levenshtein distance for time consumption problem.

How to reproduce:

  1. run

    python feature.py

    different datasets are optional in the code.

Result:

dataset acc precison recall f1
Botometer-feedback-2019 mean 0.6981 0.0000 0.0000 0.0000
Botometer-feedback-2019 std 0.0000 0.0000 0.0000 0.0000
Cresci-2015 mean 0.9252 0.9382 0.9438 0.9410
Cresci-2015 std 0.0000 0.0000 0.0000 0.0000
Cresci-2017 mean 0.8796 0.9458 0.8923 0.9183
Cresci-2017 std 0.0000 0.0000 0.0000 0.0000
Cresci-rtbust-2019 mean 0.6765 0.6829 0.7568 0.7179
Cresci-rtbust-2019 std 0.0000 0.0000 0.0000 0.0000
Cresci-stock-2018 mean 0.7076 0.8275 0.5802 0.6821
Cresci-stock-2018 std 0.0000 0.0000 0.0000 0.0000
gilani-2017 mean 0.5551 0.3750 0.0280 0.0522
gilani-2017 std 0.0000 0.0000 0.0000 0.0000
midterm-2018 mean 0.9339 0.9801 0.9404 0.9598
midterm-2018 std 0.0000 0.0000 0.0000 0.0000
Twibot-20 mean 0.6281 0.6420 0.7063 0.6726
Twibot-20 std 0.0000 0.0000 0.0000 0.0000
Twibot-22 mean 0.7408 0.7778 0.1676 0.2758
Twibot-22 std 0.0000 0.0000 0.0000 0.0000
baseline acc on Twibot-22 f1 on Twibot-22 type tags
efthimion 0.7408 0.2758 F T efthimion