-
authors: Efthimion et al.
-
link: https://scholar.smu.edu/datasciencereview/vol1/iss2/5/
-
file structure:
└── feature.py
- implement details: We abdicate the Levenshtein distance for time consumption problem.
-
run
python feature.py
different datasets are optional in the code.
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Botometer-feedback-2019 | mean | 0.6981 | 0.0000 | 0.0000 | 0.0000 |
Botometer-feedback-2019 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-2015 | mean | 0.9252 | 0.9382 | 0.9438 | 0.9410 |
Cresci-2015 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-2017 | mean | 0.8796 | 0.9458 | 0.8923 | 0.9183 |
Cresci-2017 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-rtbust-2019 | mean | 0.6765 | 0.6829 | 0.7568 | 0.7179 |
Cresci-rtbust-2019 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-stock-2018 | mean | 0.7076 | 0.8275 | 0.5802 | 0.6821 |
Cresci-stock-2018 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
gilani-2017 | mean | 0.5551 | 0.3750 | 0.0280 | 0.0522 |
gilani-2017 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
midterm-2018 | mean | 0.9339 | 0.9801 | 0.9404 | 0.9598 |
midterm-2018 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Twibot-20 | mean | 0.6281 | 0.6420 | 0.7063 | 0.6726 |
Twibot-20 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Twibot-22 | mean | 0.7408 | 0.7778 | 0.1676 | 0.2758 |
Twibot-22 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
efthimion | 0.7408 | 0.2758 | F T | efthimion |