-
authors: David M. Beskow, Kathleen M. Carley
-
link: https://link.springer.com/chapter/10.1007/978-3-030-41251-7_3
-
file structure:
├── feature_engineering.py # generate required features
├── feature_twibot22.py # generate required features for Twibot-22 dataset
└── rand_forest.py # train a random forest model on given dataset
- implement details: In all datasets except for Twibot-22, only following relationship is available so only one relationship i.e. following relationship is leveraged to construct ego networks.
-
specify the dataset b y running
dataset=Twibot-20
(Twibot-20 for example) ; -
train random forest model by running:
python rand_forest.py --dataset ${dataset}
random seed: 0, 100, 200, 300, 400
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Cresci-2015 | mean | 0.9686 | 0.9529 | 1.0000 | 0.9758 |
Cresci-2015 | std | 0.0112 | 0.0162 | 0.0000 | 0.0084 |
Cresci-2017 | mean | 0.7804 | 0.7755 | 1.0000 | 0.8735 |
Cresci-2017 | std | 0.0103 | 0.0081 | 0.0000 | 0.0052 |
Twibot-20 | mean | 0.7589 | 0.7264 | 0.8894 | 0.7997 |
Twibot-20 | std | 0.0047 | 0.0052 | 0.0059 | 0.0034 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
FriendBot | / | / | F T G | random forest |