-
authors: Sneha Kudugunta, Emilio Ferrara
-
file structure:
└── train.py # train model on every dataset
- implement details: “Favorite count” is discarded since required information is not included in datasets.
-
train random forest model by and specify the dataset by running:
python train.py --datasets ${dataset} > result.txt
the final result will be saved into result.txt
random seed: 100, 200, 300, 400, 500
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
cresci-2015 | mean | 0.7533 | 1.0000 | 0.6095 | 0.7574 |
Cresci-2015 | std | 0.0013 | 0.0000 | 0.0021 | 0.0016 |
Twibot-20 | mean | 0.5959 | 0.8040 | 0.3347 | 0.4726 |
Twibot-20 | std | 0.0065 | 0.0060 | 0.0130 | 0.0135 |
Twibot-22 | mean | 0.6587 | 0.4431 | 0.6198 | 0.5167 |
Twibot-22 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
cresci-2017 | mean | 0.8832 | 0.9853 | 0.8588 | 0.9174 |
cresci-2017 | std | 0.0021 | 0.0019 | 0.0037 | 0.0017 |
cr-2019 | mean | 0.6294 | 0.6609 | 0.5067 | 0.4922 |
cr-2019 | std | 0.0081 | 0.0235 | 0.0121 | 0.0128 |
bf-2019 | mean | 0.7396 | 0.5667 | 0.4533 | 0.4961 |
bf-2019 | std | 0.0470 | 0.1077 | 0.0869 | 0.0820 |
cs-2018 | mean | 0.7753 | 0.5487 | 0.4754 | 0.5094 |
cs-2018 | std | 0.0014 | 0.0047 | 0.0060 | 0.0038 |
midterm-2018 | mean | 0.9109 | 0.9906 | 0.9024 | 0.9445 |
midterm-2018 | std | 0.0049 | 0.0016 | 0.0066 | 0.0032 |
gilani-2017 | mean | 0.7004 | 0.8544 | 0.3514 | 0.4975 |
gilani-2017 | std | 0.0105 | 0.0242 | 0.0170 | 0.0210 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
Kudugunta et al. | 0.6587 | 0.5167 | F | SMOTENN, random forest |