-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_nk_taylor_rule_oc.mod
159 lines (131 loc) · 5.25 KB
/
benchmark_nk_taylor_rule_oc.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
//Benchmark 3-equation New Keynesian model: Taylor rules vs optimal commitment
//The basic idea is to simulate both cases using the same set of shocks
//Hence, two different model economies are built within one mod file
//The optimal Taylor rule coefficients on inflation and the output gap are computed using the loops facility in Dynare
// Parameter values are taken from Chapter 5 in Gali(2008)
// Written by Michael Hatcher (Southampton), building on the benchmark code of Ding Liu (SWUFE)
var x //welfare-relevant output gap
pi //inflation
r //nominal interest rate
x_oc //gap under optimal commitment policy
pi_oc //inflation under optimal commitment policy
r_oc //nominal interest rate under optimal commitment policy
r_n //natural rate shock
u; // cost-push shock in (3) p.97
varexo e_rn //innovation of natural rate shock
e_u; // innovation of cost-push shock
parameters
beta //discount factor
alpha //capital share
varphi //Frisch elasticity
theta //Calvo parameter
sigma //Risk aversion
epsilon //Elasticity of substitution
phi_pi //Taylor rule feedback inflation
phi_x //Taylor rule feedback output gap
rho_u //Autocorrelation of cost-push shock
rho //Autocorrelation of natural rate shock
lambda_y //Weight of output gap in the loss function
lambda
kappa; //Slope of NK Phillips curve
beta = 0.99;
alpha = 0;
theta = 0.75;
epsilon = 10;
sigma = 1;
varphi = 1;
lambda = (1-theta)*(1-beta*theta)/theta*(1-alpha)/(1-alpha+alpha*epsilon); // p.47
kappa = lambda*(sigma+(varphi+alpha)/(1-alpha)); // p.49
lambda_y = kappa/epsilon; //p.96
phi_pi = 1.5; // rule coef on inflation
phi_x = 0.5; // rule coef on welfare-relevant output gap
rho_u = 0.5;
rho = 0.5;
model(linear);
//1. IS equation
x = x(+1)-sigma*(r-pi(+1)-r_n);
//2. NK Phillips curve
pi = beta*pi(+1)+kappa*x+u;
//3. Interest rate rule
r = phi_pi*pi + phi_x*x;
//4. cost-push shock
u = rho_u*u(-1)+e_u;
//5. IS equation (optimal commitment)
x_oc = x_oc(+1)-sigma*(r_oc-pi_oc(+1)-r_n);
//6. NK Phillips curve (optimal commitment)
pi_oc = beta*pi_oc(+1)+kappa*x_oc+u;
//7. Optimal commitment policy
pi_oc = -lambda_y/kappa*(x_oc-x_oc(-1));
//8. Natural rate shock
r_n = rho*r_n(-1) + e_rn;
end;
steady_state_model;
x=0;
r=0;
pi=0;
x_oc=0;
r_oc=0;
pi_oc=0;
u=0;
r_n=0;
end;
shocks;
var e_rn; stderr 0.5;
var e_u; stderr 1;
end;
close all;
init_coef_pi = 1.01;
ncoefs_pi = 61; //number of coefficients in inflation direction
ncoefs_x = 61; //number of coefficients in output gap direction
max_pi_coef = 15;
max_x_coef = 10;
welfare_loss = zeros(ncoefs_pi,ncoefs_x);
welfare_loss_oc = zeros(ncoefs_pi,ncoefs_x);
for j=1:ncoefs_pi
for k=1:ncoefs_x
coef(j) = init_coef_pi + (max_pi_coef-init_coef_pi)*(j-1)/ncoefs_pi;
phi_pi = coef(j);
coef1(k) = (k-1)*max_x_coef/ncoefs_x;
phi_x = coef1(k);
options_.qz_criterium = 1+1e-6;
steady;
check;
stoch_simul(order=1, periods=0, irf=0, noprint); //periods=0: theoretical moments option
//stoch_simul(order=1, periods=11100, drop=100, irf=0, noprint); //simulated moments option (takes several hours)
var_x(j,k) = oo_.var(1,1); % output gap variance
var_pi(j,k) = oo_.var(2,2); % inflation variance
welfare_loss(j,k) = -(var_pi(j,k)+lambda_y*var_x(j,k));
var_x_oc(j,k) = oo_.var(4,4); % output gap variance
var_pi_oc(j,k) = oo_.var(5,5); % inflation variance
welfare_loss_oc(j,k) = -(var_pi_oc(j,k)+lambda_y*var_x_oc(j,k));
end;
end;
welfare_loss;
//Optimal output gap coefficient
MN = min(abs(welfare_loss)); //row vector containing min for each column
[MN1, Index_x] = min(MN); //finds which row has lowest loss and records location
//Optimal inflation coefficient
MN2 = min(abs(welfare_loss')); //row vector containing min for each column (note: transposed)
[MN3, Index_pi] = min(MN2); //finds which row has lowest loss and records location (note: tranposed)
Index_x; //Index for optimal coefficient on output gap
Index_pi; //index for optimal coefficient on inflation
Optimal_pi_coef = init_coef_pi + (max_pi_coef-init_coef_pi)*(Index_pi-1)/ncoefs_pi //Loss-minmising inflation coefficient in Taylor rule
Optimal_x_coef = (Index_x-1)*max_x_coef/ncoefs_x //Loss-minmising gap coefficient in Taylor rule
Min_loss_rule = welfare_loss(Index_pi,Index_x)
Loss_oc = welfare_loss_oc(Index_pi,Index_x)
figure(1)
subplot(1,2,1), surf(coef1, coef, welfare_loss), title('Social loss under Taylor rule'),
ylabel('pi coef'), xlabel('x coef')
subplot(1,2,2), surf(coef1, coef, welfare_loss_oc),
ylabel('pi coef'), xlabel('x coef');
title('Social loss under optimal commitment')
figure(2)
subplot(1,2,1), surf(coef1, coef, var_x), title('Output gap variance under Taylor rule'),
ylabel('pi coef'), xlabel('x coef')
subplot(1,2,2),surf(coef1, coef, var_x_oc), title('Output gap variance under optimal commitment'),
ylabel('pi coef'), xlabel('x coef')
figure(3)
subplot(1,2,1), surf(coef1, coef, var_pi), title('Inflation variance under Taylor rule'),
ylabel('pi coef'), xlabel('x coef')
subplot(1,2,2),surf(coef1, coef, var_pi_oc), title('Inflation variance under optimal commitment'),
ylabel('pi coef'), xlabel('x coef')