-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmarks.json
55 lines (55 loc) · 5.64 KB
/
benchmarks.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
{
"henselizations.Rational.time_create": {
"code": "def time_create(self):\n r\"\"\"\n TESTS::\n\n sage: import henselization\n sage: from henselization.benchmarks.henselizations import Rational\n sage: Rational().time_create()\n\n \"\"\"\n QQ.henselization(2)\n",
"goal_time": 2.0,
"name": "henselizations.Rational.time_create",
"number": 0,
"param_names": [],
"params": [],
"pretty_name": "henselizations.Rational.time_create",
"repeat": 0,
"timeout": 60.0,
"type": "time",
"unit": "seconds"
},
"splitting_fields.SplittingField.time_10_": {
"code": "def time_10_(self):\n r\"\"\"\n TESTS::\n\n sage: import henselization\n sage: from henselization.benchmarks.splitting_fields import SplittingField\n sage: SplittingField().time_6_8()\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 1\u2026\n \u2026factors with degrees [4, 1, 1]\n Found totally ramified part of degree 4\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 4\u2026\n \u2026factors with degrees [2, 1, 1, 1, 1]\n Found totally ramified part of degree 2\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 8\u2026\n \u2026factors with degrees [1, 1, 1, 1, 1, 1]\n\n \"\"\"\n K = QQ.henselization(2)\n R = PolynomialRing(K, 'T')\n T = R.gen()\n f = T**10 + T**6 + 168*T**5 - 209*T**4 + 52*T**3 + 26*T**2 + 8*T - 14\n splitting_field(f)\n",
"goal_time": 2.0,
"name": "splitting_fields.SplittingField.time_10_",
"number": 0,
"param_names": [],
"params": [],
"pretty_name": "splitting_fields.SplittingField.time_10_",
"repeat": 0,
"timeout": 1800,
"type": "time",
"unit": "seconds"
},
"splitting_fields.SplittingField.time_12_384": {
"code": "def time_12_384(self):\n r\"\"\"\n TESTS::\n\n sage: import henselization\n sage: from henselization.benchmarks.splitting_fields import SplittingField\n sage: SplittingField().time_12_384() # long time\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 1 * 1\u2026\n \u2026factors with degrees [12]\n Found totally ramified part of degree 12\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 1 * 12\u2026\n \u2026factors with degrees [8, 2, 1, 1]\n Found unramified part of degree 2\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 2 * 1\u2026\n \u2026factors with degrees [12]\n Found totally ramified part of degree 12\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 2 * 12\u2026\n \u2026factors with degrees [4, 4, 1, 1, 1, 1]\n Found totally ramified part of degree 4\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 2 * 48\u2026\n \u2026factors with degrees [4, 1, 1, 1, 1, 1, 1, 1, 1]\n Found totally ramified part of degree 4\n Factoring T^12 - 4*T^11 + 2*T^10 + 13*T^8 - 16*T^7 - 36*T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 13 over a field of degree 2 * 192\u2026\n \u2026factors with degrees [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]\n\n \"\"\"\n K = QQ.henselization(2)\n R = PolynomialRing(K, 'T')\n T = R.gen()\n f = T**12 - 4*T**11 + 2*T**10 + 13*T**8 - 16*T**7 - 36*T**6 + 168*T**5 - 209*T**4 + 52*T**3 + 26*T**2 + 8*T - 13\n splitting_field(f)\n",
"goal_time": 2.0,
"name": "splitting_fields.SplittingField.time_12_384",
"number": 0,
"param_names": [],
"params": [],
"pretty_name": "splitting_fields.SplittingField.time_12_384",
"repeat": 0,
"timeout": 1800,
"type": "time",
"unit": "seconds"
},
"splitting_fields.SplittingField.time_6_8": {
"code": "def time_6_8(self):\n r\"\"\"\n TESTS::\n\n sage: import henselization\n sage: from henselization.benchmarks.splitting_fields import SplittingField\n sage: SplittingField().time_6_8()\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 1\u2026\n \u2026factors with degrees [4, 1, 1]\n Found totally ramified part of degree 4\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 4\u2026\n \u2026factors with degrees [2, 1, 1, 1, 1]\n Found totally ramified part of degree 2\n Factoring T^6 + 168*T^5 - 209*T^4 + 52*T^3 + 26*T^2 + 8*T - 14 over a field of degree 1 * 8\u2026\n \u2026factors with degrees [1, 1, 1, 1, 1, 1]\n\n \"\"\"\n K = QQ.henselization(2)\n R = PolynomialRing(K, 'T')\n T = R.gen()\n f = T**6 + 168*T**5 - 209*T**4 + 52*T**3 + 26*T**2 + 8*T - 14\n splitting_field(f)\n",
"goal_time": 2.0,
"name": "splitting_fields.SplittingField.time_6_8",
"number": 0,
"param_names": [],
"params": [],
"pretty_name": "splitting_fields.SplittingField.time_6_8",
"repeat": 0,
"timeout": 1800,
"type": "time",
"unit": "seconds"
},
"version": 1
}