-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCMAC.py
550 lines (509 loc) · 22.8 KB
/
MCMAC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
'''
Version 0.0
- The initial version of the old TSM_v11 that is now being tracked in Git.
'''
from __future__ import division
import numpy
import scipy.integrate
import pickle
import profiles
import time
import sys
import cosmo
# Constants and conversions
G = 4.3*10**(-9) #newton's constant in units of Mpc*(km/s)**2 / M_sun
c = 3e5 #speed of light km/s
sinGyr = 31556926.*10**9 # s in a Giga-year
kginMsun = 1.98892*10**30 # kg in a solar mass
kminMpc = 3.08568025*10**19 # km in a Megaparsec
minMpc = 3.08568025*10**22 # m in a Megaparsec
r2d = 180/numpy.pi # radians to degrees conversion factor
def randdraw(A,index=None):
'''
This function randomly draws a variable from either and input gaussian
distribution or an array of random draws from a parent distribution function
(e.g. bootstrap sampling).
Input:
A = [(float, float) or (1D array of floats)] If (float, float) is input then
it is interpreted as (mu, sigma) of a Gaussian distribution. If (1D
array of floats with length > 2) then it is interpreted as a random
sample from a parent distribution.
index = [int] rather than drawing a random value from the array the value
Output:
a = [float] a random draw from either the Gaussian or sample distribution.
'''
N_A = numpy.size(A)
if N_A == 2: #then assumed (mu, sigma) format
a = A[0]+A[1]*numpy.random.randn()
elif N_A > 2: #Then assume distribution array format
if index == None:
index = numpy.random.randint(N_A)
a = A[index]
elif N_A <2:
print 'MCMAC.randdraw: Error, parameter input array is not a valid size, exiting'
sys.exit()
return a, index
def vrad(z1,z2):
'''
Given the redshifts of the two subclusters this function calculates their
relative line-of-sight velocity (km/s).
Input:
z1 = [float] redshift of subcluster 1
z2 = [float] redshift of subcluster 2
Output:
v_los = [float; units:km/s] line-of-sight relative velocity of the two
subclusters
'''
v1 = ((1+z1)**2-1)/((1+z1)**2+1)*c
v2 = ((1+z2)**2-1)/((1+z2)**2+1)*c
return numpy.abs(v1-v2)/(1-v1*v2/c**2)
def f(x,a,b):
'''
This is the functional form of the time since merger integral for two point
masses.
'''
return 1/numpy.sqrt(a+b/x)
def TSMptpt(m_1,m_2,r_200_1,r_200_2,d_end,E):
'''
This function calculates the time it takes for the system to go from a
separation of r_200_1+r_200_2 to d_end. It is based on the equations of
motion of two point masses, which is valid in the regime where the
subclusters no longer overlap.
Input:
m_1 = [float; units: M_sun] mass of subcluster 1
m_2 = [float; units: M_sun] mass of subcluster 2
r_200_1 = [float; units: Mpc] NFW r_200 radius of subcluster 1
r_200_2 = [float; units: Mpc] NFW r_200 radius of subcluster 2
d_end = [float; units: Mpc] the final separation of interest
E = [float; units: (km/s)^2*M_sun] the total energy (PE+KE) of the two subcluster system
Output:
t = [float; units: Gyr] the time it takes for the system to go from a
separation of r_200_1+r_200_2 to d_end
'''
d_start = r_200_1+r_200_2
C = G*m_1*m_2
mu = m_1*m_2/(m_1+m_2)
if E < 0:
integral = scipy.integrate.quad(lambda x: f(x,E,C),d_start,d_end)[0]
t = numpy.sqrt(mu/2)*integral/sinGyr*kminMpc
else:
print 'TSMptpt: error total energy should not be > 0, exiting'
sys.exit()
if t < 0:
print 'TSM < 0 encountered'
return t
def PEnfwnfw(d,m_1,rho_s_1,r_s_1,r_200_1,m_2,rho_s_2,r_s_2,r_200_2,N=100):
'''
This function calculates the potential energy of two truncated NFW halos.
Input:
d = [float; units:Mpc] center to center 3D separation of the subclusters
m_1 = [float; units:M_sun] mass of subcluster 1 out to r_200
rho_s_1 = [float; units:M_sun/Mpc^3] NFW scale density of subcluster 1
r_s_1 = [float; units:Mpc] NFW scale radius of subcluster 1
r_200_1 = [float; units:Mpc] r_200 of subcluster 1
m_2 = [float; units:M_sun] mass of subcluster 2 out to r_200
rho_s_2 = [float; units:M_sun/Mpc^3] NFW scale density of subcluster 2
r_s_2 = [float; units:Mpc] NFW scale radius of subcluster 2
r_200_2 = [float; units:Mpc] r_200 of subcluster 2
N = [int] number of mass elements along one coordinate axis for numerical
integration approximation
Output:
V_total = [float; units:(km/s)^2*M_sun] total potential energy of the two
subcluster system
'''
if d >= r_200_1+r_200_2:
V_total = -G*m_1*m_2/d
else:
# mass element sizes
dr = r_200_2/N
dt = numpy.pi/N
i,j = numpy.meshgrid(numpy.arange(N),numpy.arange(N))
# distance of 2nd NFW halo mass element from center of 1st NFW halo
r = numpy.sqrt(((2*i+1)*dr/2*numpy.sin((2*j+1)*dt/2))**2+
(d+(2*i+1)*dr/2*numpy.cos((2*j+1)*dt/2))**2)
#mass elements of 2nd NFW halo
m = 2*numpy.pi*rho_s_2*r_s_2**3*(numpy.cos(j*dt)-numpy.cos((j+1)*dt))*(1/(1+(i+1)*dr/r_s_2)-1/(1+i*dr/r_s_2)+numpy.log(((i+1)*dr+r_s_2)/(i*dr+r_s_2)))
#determine if 2nd halo mass element is inside or outside of 1st halo
mask_gt = r>=r_200_1
mask_lt = r<r_200_1
# potential energy of each mass element (km/s)^2 * M_sun
# NFW PE
V_nfw = numpy.sum(-4*numpy.pi*G*rho_s_1*r_s_1**3/(r[mask_lt]+dr)*(numpy.log(1+(r[mask_lt]+dr)/r_s_1)-(r[mask_lt]+dr)/(r_s_1+r_200_1))*m[mask_lt])
# Point mass PE
V_pt = numpy.sum(-G*m_1*m[mask_gt]/r[mask_gt])
V_total = V_nfw+V_pt
return V_total
def NFWprop(M_200,z,c):
'''
Determines the NFW halo related properties. Added this for the case of user
specified concentration.
Input:
M_200 = [float; units:M_sun] mass of the halo. Assumes M_200 with
respect to the critical density at the halo redshift.
z = [float; unitless] redshift of the halo.
c = [float; unitless] concentration of the NFW halo.
'''
# CONSTANTS
rho_cr = cosmo.rhoCrit(z)/kginMsun*minMpc**3
#calculate the r_200 radius
r_200 = (M_200*3/(4*numpy.pi*200*rho_cr))**(1/3.)
del_c = 200/3.*c**3/(numpy.log(1+c)-c/(1+c))
r_s = r_200/c
rho_s = del_c*rho_cr
return del_c, r_s, r_200, c, rho_s
def MCengine(N_mc,M1,M2,Z1,Z2,D_proj,prefix,C1=None,C2=None,del_mesh=100,TSM_mesh=200):
'''
This is the Monte Carlo engine that draws random parameters from the
measured distributions and then calculates the kenematic parameters of the
merger.
Input:
N_mc = [int] number of successful Monte Carlo samplings to perform
M1 = [(float, float) or (1D array of floats); units:M_sun] M_200 of
subcluster 1. If (float, float) is input then it is interpreted as
(mu, sigma) of a Gaussian distribution. If (1D array of floats with
length > 2) then it is interpreted as a random sample from a parent
distribution.
M2 = [(float, float) or (1D array of floats); units:M_sun] M_200 of
subcluster 2. Must have same format as M1.
Z1 = [(float, float) or (1D array of floats)] redshift of subcluster 1.
Similar input format to M1.
Z2 = [(float, float) or (1D array of floats)] redshift of subcluster 2.
Similar input format to M1.
D_proj = [(float, float, float) or (1D array of floats); units:Mpc]
projected separation of the two subclusters. If (float, float, float)
is input then it is interpreted as (d_proj, c1_sigma, c2_sigma), where
d_proj is the projected distance of the two halos and c1_sigma and
c2_sigma are the centroid errors of each halo. If (1D array of floats
with length > 3) then it is interpreted as a random sample from the
parent distribution of d_proj.
prefix = [string] prefix to attach to all output
C1 = [(float, float) or (1D array of floats); unitless] NFW concentration of
subcluster 1. If (float, float) is input then it is interpreted as
(mu, sigma) of a Gaussian distribution. If (1D array of floats with
length > 2) then it is interpreted as a random sample from a parent
distribution. If None then Duffey et al. (2008) scaling relation is used
to determine the concentration based on M1 value. Must have same format
as M1.
C2 = [(float, float) or (1D array of floats); unitless] NFW concentration of
subcluster 2. Must have same format as M2.
del_mesh = [int] number of mass elements along one coordinate axis for
numerical integration approximation of potential energy
TSM_mesh = [int] number of elements along the separation axis when
performing the numerical integration appoximation of the TSM
Output:
In general the 1D arrays of floats are output for each of the following
parameters. The Nth element of each array corresponds to the system
properties of the Nth viable solution.
m_1_out = [units: M_sun] M_200 of halo 1
m_2_out = [units: M_sun] M_200 of halo 1
z_1_out = redshift of halo 1
z_2_out = redshift of halo 2
alpha_out = [units: degrees] merger axis angle with respect to the plane of
the sky. 0 corresponds to in the plane of the sky, 90 corresponds to
along the line-of-sight.
d_proj_out = [units: Mpc] projected center to center separation of the
halos in observed state
d_3d_out = [units: Mpc] 3D center to center separation of the halos in
observed state
d_max_out = [units: Mpc] 3D maximum center to center separation of the two
halo at the apoapsis
v_rad_obs_out = [units: km/s] relative line-of-sight velocity of the two
halos at the observed time
v_3d_obs_out = [units: km/s] relative 3D velocity of the two halos at the
observed time
v_3d_col_out = [units: km/s] relative 3D velocity of the two halos at the
collision time
TSM_0_out = [units: Gyr] time it took the system to reach the observed state
from the collision state. Assuming the system has not reached its
apoapsis since colliding.
TSM_1_out = [units: Gyr] time it took the system to reach the observed state
from the collision state. Assuming the system has passed throught the
apoapsis once since colliding.
T_out = [units: Gyr] period of the system
prob_out = This is the probability of observing the system with the randomly
drawn paramers. This accounts for the fact that it is more likely to
observe the system near the apoapsis rather than with zero separation,
due to the system spending more of its time at large separation. Simply
an effect of the velocity of the system.
'''
# Verify user input
# Check to make sure mass inputs for each halo are the same
N_M1 = numpy.size(M1)
N_M2 = numpy.size(M2)
if N_M1 != N_M2:
print 'MCMAC.MCengine: Error, the mass inputs for the two halos must \
be the same type and size. For example, you cannot mix input \
format (mu, sigma) for halo1 with (1D array of floats) format \
for halo 2. Nor can the size of the (1D array of floats) input \
be different. This is to facilitate correct covariance handeling. \
Exiting.'
sys.exit()
if C1 != None or C2 != None:
N_C1 = numpy.size(C1)
N_C2 = numpy.size(C2)
if N_C1 != N_M1 or N_C2 != N_M2:
print 'MCMAC.MCengine: Error, the concentration inputs for the two \
halos must be the same type and size as the mass inputs. For \
example, you cannot mix input format (mu, sigma) for M1 with \
(1D array of floats) format for C1, or vise versa. Nor can the size\
of the (1D array of floats) input be different. This is to \
facilitate correct covariance handeling. Exiting.'
sys.exit()
elif N_M1 > 2:
print 'MCMAC.MCengine: Assuming that the order and values of the \
C1 and C2 (1D array of floats) are correlated with the order and \
values of the M1 and M2 (1D array of floats). This is meant to \
maintain proper covariance.'
N_D_proj = numpy.size(D_proj)
if N_D_proj == N_M1:
print 'MCMAC.MCengine: Assuming that the order and values of the \
D_proj (1D array of floats) are correlated with the order and values of\
the M1 and M2 (1D array of floats). This is meant to maintain proper\
covariance.'
N_Z1 = numpy.size(Z1)
if N_Z1 == N_D_proj:
print 'MCMAC.MCengine: Warning. It is currently assumed that the halo\
redshifts and projected separation estimates are uncorrelated. \
Covariance will not be handled correctly.'
if N_Z1 >2 and N_Z1 == N_M1:
print 'MCMAC,MCengine: Warning. It is currently assumed that the halo \
redshifts and mass estimates are uncorrelated. Covariance will not be \
handled correctly.'
i = 0
# Create the output arrays
m_1_out = numpy.zeros(N_mc)
m_2_out = numpy.zeros(N_mc)
z_1_out = numpy.zeros(N_mc)
z_2_out = numpy.zeros(N_mc)
d_proj_out = numpy.zeros(N_mc)
v_rad_obs_out = numpy.zeros(N_mc)
alpha_out = numpy.zeros(N_mc)
v_3d_obs_out = numpy.zeros(N_mc)
d_3d_out = numpy.zeros(N_mc)
v_3d_col_out = numpy.zeros(N_mc)
d_max_out = numpy.zeros(N_mc)
TSM_0_out = numpy.zeros(N_mc)
TSM_1_out = numpy.zeros(N_mc)
T_out = numpy.zeros(N_mc)
prob_out = numpy.zeros(N_mc)
N_d = numpy.size(D_proj)
t_start = time.time()
while i < N_mc:
# Draw random mass and redshift parameters
m_1, index = randdraw(M1)
m_2, index = randdraw(M2,index)
if m_1 <= 0 or m_2 <=0:
# Discard these unphysical draws, this can happen if a Gaussian
# distribution is speficied since at least part of the tail will be
# in the negative mass range.
continue
z_1, temp = randdraw(Z1)
z_2, temp = randdraw(Z2)
# Draw random projected separation
if N_d == 3: #then assumed (D_proj, c1_sigma, c2_sigma)
#draw del_r1, del_r2, phi1 and phi2, where phi is the
del_r_1 = D_proj[1] * numpy.random.randn()
del_r_2 = D_proj[2] * numpy.random.randn()
phi_1 = numpy.random.rand()*2*numpy.pi
phi_2 = numpy.random.rand()*2*numpy.pi
#calculate the projected separation based on drawn centers
d_proj = numpy.sqrt((D_proj[0]-del_r_1*numpy.cos(phi_1)+del_r_2*numpy.cos(phi_2))**2+(del_r_1*numpy.sin(phi_1)+del_r_2*numpy.sin(phi_2))**2)
elif N_d > 3: #then assume distribution array format
if N_D_proj == N_M1:
# assume D_proj array values and order correlated with M1 and M2
# array values and order.
d_proj, index = randdraw(D_proj,index)
else:
# assume D_proj is uncorrelated with M1 and M2
d_proj = D_proj[numpy.random.randint(N_d)]
elif N_d < 3:
print 'MCMAC.MCengine: Error, D_proj parameter input array is not a valid size, exiting'
sys.exit()
d_proj = abs(d_proj)
# Define NFW halo properties
if C1 == None:
# Then use scaling relation to determine concentration
del_c_1, r_s_1, r_200_1, c_1, rho_s_1 = profiles.nfwparam_extended(m_1/1e14,z_1)
else:
# Then user specified concentration
# Draw random concentration parameter
c_1, index = randdraw(C1,index)
del_c_1, r_s_1, r_200_1, c_1, rho_s_1 = NFWprop(m_1,z_1,c_1)
if C2 == None:
del_c_2, r_s_2, r_200_2, c_2, rho_s_2 = profiles.nfwparam_extended(m_2/1e14,z_2)
else:
c_2, index = randdraw(C2,index)
del_c_2, r_s_2, r_200_2, c_2, rho_s_2 = NFWprop(m_2,z_2,c_2)
# Reduced mass
mu = m_1*m_2/(m_1+m_2)
# Calculate potential energy at time of collision
PE_col = PEnfwnfw(0,m_1,rho_s_1,r_s_1,r_200_1,m_2,rho_s_2,r_s_2,r_200_2,N=del_mesh)
# Calculate maximum 3D free-fall velocity
# Note that this assumes that the clusters begin with infinite
# separation and their observed mass. It also guarntees that all
# solutions will be for a bound system.
v_3d_max = numpy.sqrt(-2/mu*PE_col)
# Calculate observed radial velocity
v_rad_obs = vrad(z_1,z_2)
# Draw a random alpha, merger axis angles with respect to the sky
ALPHA = numpy.random.rand()*numpy.pi/2
#Since not all alpha are equally likely.
alpha = (1-numpy.cos(ALPHA))*numpy.pi/2
# Calculate the 3D velocity at observed time
v_3d_obs = v_rad_obs/numpy.sin(alpha)
if v_3d_obs > v_3d_max:
# then the randomly chosen alpha is not valid
continue
# Calculate the 3D separation
d_3d = d_proj/numpy.cos(alpha)
# Calculate the potential energy at observed time
PE_obs = PEnfwnfw(d_3d,m_1,rho_s_1,r_s_1,r_200_1,m_2,rho_s_2,r_s_2,r_200_2,N=del_mesh)
# Calculate the 3D velocity at collision time
v_3d_col = numpy.sqrt(v_3d_obs**2+2/mu*(PE_obs-PE_col))
if v_3d_col > v_3d_max:
# then the randomly chosen alpha is not valid
continue
# Total Energy
E = PE_obs+mu/2*v_3d_obs**2
# Calculate PE from d = 0 to r_200_1+r_200_2
del_TSM_mesh = (r_200_1+r_200_2)/(TSM_mesh-1)
d = numpy.arange(0.00001,(r_200_1+r_200_2)+del_TSM_mesh,del_TSM_mesh)
PE_array = numpy.zeros(TSM_mesh)
for j in numpy.arange(TSM_mesh):
PE_array[j] = PEnfwnfw(d[j],m_1,rho_s_1,r_s_1,r_200_1,m_2,rho_s_2,r_s_2,r_200_2,N=del_mesh)
# Calculate d_max
if E >= -G*m_1*m_2/(r_200_1+r_200_2):
# then d_max > r_200_1+r_200_2
d_max = -G*m_1*m_2/E
else:
# d_max <= r_200_1+r_200_2
## find closet d value less than d_max
#idx=(numpy.abs(PE_array-E)).argmin()
#d_max = d[idx]
# determine d_max, ensuring that E is always > PE
mask_tmp = E >= PE_array
d_max = d[mask_tmp][-1]
# Calculate TSM_0
if d_3d >= r_200_1+r_200_2:
# then halos no longer overlap
# calculate the time it takes to go from d=0 to r_200_1+r_200_2
TSM_0a = numpy.sum(del_TSM_mesh/numpy.sqrt(2/mu*(E-PE_array))*kminMpc/sinGyr)
# calculate th time it takes to go from d = r_200_1+r_200_2 tp d_3d
TSM_0b = TSMptpt(m_1,m_2,r_200_1,r_200_2,d_3d,E)
TSM_0 = TSM_0a+TSM_0b
else:
# then d_3d < r_200_1+r_200_2, halos always overlap
# calculate the time it takes to go from d=0 to d_3d
mask = d <= d_3d
TSM_0 = numpy.sum(del_TSM_mesh/numpy.sqrt(2/mu*(E-PE_array[mask]))*kminMpc/sinGyr)
# Check that TSM_0 < Age of Universe at (z_1+z_2)/2
age = cosmo.age((z_1+z_2)/2)
if TSM_0 > age:
# unlikely that this system could occur
continue
# Calculate period
if E >= -G*m_1*m_2/(r_200_1+r_200_2):
# then d_max > r_200_1+r_200_2
# calculate th time it takes to go from d = r_200_1+r_200_2 to d_max
if d_3d < r_200_1+r_200_2:
#then TSM_0a has not been previously defined
TSM_0a = numpy.sum(del_TSM_mesh/numpy.sqrt(2/mu*(E-PE_array))*kminMpc/sinGyr)
TSM_0b = TSMptpt(m_1,m_2,r_200_1,r_200_2,d_max,E)
T = 2*(TSM_0a+TSM_0b)
else:
# then d_max < r_200_1+r_200_2
# calculate the time it takes to go from d=0 to d_max
mask = d <= d_max
T = 2*numpy.sum(del_TSM_mesh/numpy.sqrt(2/mu*(E-PE_array[mask]))*kminMpc/sinGyr)
# Calculate probability of d_3d
prob = TSM_0/(T/2)
# Calculate TSM_1
TSM_1 = T-TSM_0
if TSM_0 < 0:
print 'TSM < 0 encountered'
# Write calculated merger parameters
m_1_out[i] = m_1
m_2_out[i] = m_2
z_1_out[i] = z_1
z_2_out[i] = z_2
d_proj_out[i] = d_proj
v_rad_obs_out[i] = v_rad_obs
alpha_out[i] = alpha*180/numpy.pi
v_3d_obs_out[i] = v_3d_obs
d_3d_out[i] = d_3d
v_3d_col_out[i] = v_3d_col
d_max_out[i] = d_max
TSM_0_out[i] = TSM_0
TSM_1_out[i] = TSM_1
T_out[i] = T
prob_out[i] = prob
i+=1
# Estimate calculation time
if i== 10 or i == 100 or i%1000 == 0:
del_t = time.time()-t_start
t_total = N_mc*del_t/i
eta = (t_total-del_t)/60
print 'Completed Monte Carlo iteration {0} of {1}.'.format(i,N_mc)
print '~{0:0.0f} minutes remaining'.format(eta)
# Pickle the results of the MC analysis
filename = prefix+'_m_1.pickle'
F = open(filename,'w')
pickle.dump(m_1_out,F)
F.close()
filename = prefix+'_m_2.pickle'
F = open(filename,'w')
pickle.dump(m_2_out,F)
F.close()
filename = prefix+'_z_1.pickle'
F = open(filename,'w')
pickle.dump(z_1_out,F)
F.close()
filename = prefix+'_z_2.pickle'
F = open(filename,'w')
pickle.dump(z_2_out,F)
F.close()
filename = prefix+'_d_proj.pickle'
F = open(filename,'w')
pickle.dump(d_proj_out,F)
F.close()
filename = prefix+'_v_rad_obs.pickle'
F = open(filename,'w')
pickle.dump(v_rad_obs_out,F)
F.close()
filename = prefix+'_alpha.pickle'
F = open(filename,'w')
pickle.dump(alpha_out,F)
F.close()
filename = prefix+'_v_3d_obs.pickle'
F = open(filename,'w')
pickle.dump(v_3d_obs_out,F)
F.close()
filename = prefix+'_d_3d.pickle'
F = open(filename,'w')
pickle.dump(d_3d_out,F)
F.close()
filename = prefix+'_v_3d_col.pickle'
F = open(filename,'w')
pickle.dump(v_3d_col_out,F)
F.close()
filename = prefix+'_d_max.pickle'
F = open(filename,'w')
pickle.dump(d_max_out,F)
F.close()
filename = prefix+'_TSM_0.pickle'
F = open(filename,'w')
pickle.dump(TSM_0_out,F)
F.close()
filename = prefix+'_TSM_1.pickle'
F = open(filename,'w')
pickle.dump(TSM_1_out,F)
F.close()
filename = prefix+'_T.pickle'
F = open(filename,'w')
pickle.dump(T_out,F)
F.close()
filename = prefix+'_prob.pickle'
F = open(filename,'w')
pickle.dump(prob_out,F)
F.close()
return m_1_out,m_2_out,z_1_out,z_2_out,d_proj_out,v_rad_obs_out,alpha_out,v_3d_obs_out,d_3d_out,v_3d_col_out,d_max_out,TSM_0_out,TSM_1_out,T_out,prob_out