-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathexec.py
344 lines (298 loc) · 18.3 KB
/
exec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#!/usr/bin/env python
# Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
""" execution script. this where all routines come together and the only script you need to call.
refer to parse args below to see options for execution.
"""
import plotting as plg
import os
import warnings
import argparse
import time
import torch
import utils.exp_utils as utils
from evaluator import Evaluator
from predictor import Predictor
for msg in ["Attempting to set identical bottom==top results",
"This figure includes Axes that are not compatible with tight_layout",
"Data has no positive values, and therefore cannot be log-scaled.",
".*invalid value encountered in true_divide.*"]:
warnings.filterwarnings("ignore", msg)
def train(cf, logger):
"""
performs the training routine for a given fold. saves plots and selected parameters to the experiment dir
specified in the configs. logs to file and tensorboard.
"""
logger.info('performing training in {}D over fold {} on experiment {} with model {}'.format(
cf.dim, cf.fold, cf.exp_dir, cf.model))
logger.time("train_val")
# -------------- inits and settings -----------------
net = model.net(cf, logger).cuda()
if cf.optimizer == "ADAMW":
optimizer = torch.optim.AdamW(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay,
exclude_from_wd=cf.exclude_from_wd),
lr=cf.learning_rate[0])
elif cf.optimizer == "SGD":
optimizer = torch.optim.SGD(utils.parse_params_for_optim(net, weight_decay=cf.weight_decay),
lr=cf.learning_rate[0], momentum=0.3)
if cf.dynamic_lr_scheduling:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=cf.scheduling_mode, factor=cf.lr_decay_factor,
patience=cf.scheduling_patience)
model_selector = utils.ModelSelector(cf, logger)
starting_epoch = 1
if cf.resume:
checkpoint_path = os.path.join(cf.fold_dir, "last_state.pth")
starting_epoch, net, optimizer, model_selector = \
utils.load_checkpoint(checkpoint_path, net, optimizer, model_selector)
logger.info('resumed from checkpoint {} to epoch {}'.format(checkpoint_path, starting_epoch))
# prepare monitoring
monitor_metrics = utils.prepare_monitoring(cf)
logger.info('loading dataset and initializing batch generators...')
batch_gen = data_loader.get_train_generators(cf, logger)
# -------------- training -----------------
for epoch in range(starting_epoch, cf.num_epochs + 1):
logger.info('starting training epoch {}/{}'.format(epoch, cf.num_epochs))
logger.time("train_epoch")
net.train()
train_results_list = []
train_evaluator = Evaluator(cf, logger, mode='train')
for i in range(cf.num_train_batches):
logger.time("train_batch_loadfw")
batch = next(batch_gen['train'])
batch_gen['train'].generator.stats['roi_counts'] += batch['roi_counts']
batch_gen['train'].generator.stats['empty_counts'] += batch['empty_counts']
logger.time("train_batch_loadfw")
logger.time("train_batch_netfw")
results_dict = net.train_forward(batch)
logger.time("train_batch_netfw")
logger.time("train_batch_bw")
optimizer.zero_grad()
results_dict['torch_loss'].backward()
if cf.clip_norm:
torch.nn.utils.clip_grad_norm_(net.parameters(), cf.clip_norm, norm_type=2) # gradient clipping
optimizer.step()
train_results_list.append(({k:v for k,v in results_dict.items() if k != "seg_preds"}, batch["pid"])) # slim res dict
if not cf.server_env:
print("\rFinished training batch " +
"{}/{} in {:.1f}s ({:.2f}/{:.2f} forw load/net, {:.2f} backw).".format(i+1, cf.num_train_batches,
logger.get_time("train_batch_loadfw")+
logger.get_time("train_batch_netfw")
+logger.time("train_batch_bw"),
logger.get_time("train_batch_loadfw",reset=True),
logger.get_time("train_batch_netfw", reset=True),
logger.get_time("train_batch_bw", reset=True)), end="", flush=True)
print()
#--------------- train eval ----------------
if (epoch-1)%cf.plot_frequency==0:
# view an example batch
utils.split_off_process(plg.view_batch, cf, batch, results_dict, has_colorchannels=cf.has_colorchannels,
show_gt_labels=True, get_time="train-example plot",
out_file=os.path.join(cf.plot_dir, 'batch_example_train_{}.png'.format(cf.fold)))
logger.time("evals")
_, monitor_metrics['train'] = train_evaluator.evaluate_predictions(train_results_list, monitor_metrics['train'])
logger.time("evals")
logger.time("train_epoch", toggle=False)
del train_results_list
#----------- validation ------------
logger.info('starting validation in mode {}.'.format(cf.val_mode))
logger.time("val_epoch")
with torch.no_grad():
net.eval()
val_results_list = []
val_evaluator = Evaluator(cf, logger, mode=cf.val_mode)
val_predictor = Predictor(cf, net, logger, mode='val')
for i in range(batch_gen['n_val']):
logger.time("val_batch")
batch = next(batch_gen[cf.val_mode])
if cf.val_mode == 'val_patient':
results_dict = val_predictor.predict_patient(batch)
elif cf.val_mode == 'val_sampling':
results_dict = net.train_forward(batch, is_validation=True)
val_results_list.append([results_dict, batch["pid"]])
if not cf.server_env:
print("\rFinished validation {} {}/{} in {:.1f}s.".format('patient' if cf.val_mode=='val_patient' else 'batch',
i + 1, batch_gen['n_val'],
logger.time("val_batch")), end="", flush=True)
print()
#------------ val eval -------------
if (epoch - 1) % cf.plot_frequency == 0:
utils.split_off_process(plg.view_batch, cf, batch, results_dict, has_colorchannels=cf.has_colorchannels,
show_gt_labels=True, get_time="val-example plot",
out_file=os.path.join(cf.plot_dir, 'batch_example_val_{}.png'.format(cf.fold)))
logger.time("evals")
_, monitor_metrics['val'] = val_evaluator.evaluate_predictions(val_results_list, monitor_metrics['val'])
model_selector.run_model_selection(net, optimizer, monitor_metrics, epoch)
del val_results_list
#----------- monitoring -------------
monitor_metrics.update({"lr":
{str(g) : group['lr'] for (g, group) in enumerate(optimizer.param_groups)}})
logger.metrics2tboard(monitor_metrics, global_step=epoch)
logger.time("evals")
logger.info('finished epoch {}/{}, took {:.2f}s. train total: {:.2f}s, average: {:.2f}s. val total: {:.2f}s, average: {:.2f}s.'.format(
epoch, cf.num_epochs, logger.get_time("train_epoch")+logger.time("val_epoch"), logger.get_time("train_epoch"),
logger.get_time("train_epoch", reset=True)/cf.num_train_batches, logger.get_time("val_epoch"),
logger.get_time("val_epoch", reset=True)/batch_gen["n_val"]))
logger.info("time for evals: {:.2f}s".format(logger.get_time("evals", reset=True)))
#-------------- scheduling -----------------
if cf.dynamic_lr_scheduling:
scheduler.step(monitor_metrics["val"][cf.scheduling_criterion][-1])
else:
for param_group in optimizer.param_groups:
param_group['lr'] = cf.learning_rate[epoch-1]
logger.time("train_val")
logger.info("Training and validating over {} epochs took {}".format(cf.num_epochs, logger.get_time("train_val", format="hms", reset=True)))
batch_gen['train'].generator.print_stats(logger, plot=True)
def test(cf, logger, max_fold=None):
"""performs testing for a given fold (or held out set). saves stats in evaluator.
"""
logger.time("test_fold")
logger.info('starting testing model of fold {} in exp {}'.format(cf.fold, cf.exp_dir))
net = model.net(cf, logger).cuda()
batch_gen = data_loader.get_test_generator(cf, logger)
test_predictor = Predictor(cf, net, logger, mode='test')
test_results_list = test_predictor.predict_test_set(batch_gen, return_results = not hasattr(
cf, "eval_test_separately") or not cf.eval_test_separately)
if test_results_list is not None:
test_evaluator = Evaluator(cf, logger, mode='test')
test_evaluator.evaluate_predictions(test_results_list)
test_evaluator.score_test_df(max_fold=max_fold)
logger.info('Testing of fold {} took {}.\n'.format(cf.fold, logger.get_time("test_fold", reset=True, format="hms")))
if __name__ == '__main__':
stime = time.time()
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', type=str, default='toy',
help="path to the dataset-specific code in source_dir/datasets")
parser.add_argument('--exp_dir', type=str, default='/home/gregor/Documents/regrcnn/datasets/toy/experiments/dev',
help='path to experiment dir. will be created if non existent.')
parser.add_argument('-m', '--mode', type=str, default='train_test', help='one out of: create_exp, analysis, train, train_test, or test')
parser.add_argument('-f', '--folds', nargs='+', type=int, default=None, help='None runs over all folds in CV. otherwise specify list of folds.')
parser.add_argument('--server_env', default=False, action='store_true', help='change IO settings to deploy models on a cluster.')
parser.add_argument('--data_dest', type=str, default=None, help="path to final data folder if different from config")
parser.add_argument('--use_stored_settings', default=False, action='store_true',
help='load configs from existing exp_dir instead of source dir. always done for testing, '
'but can be set to true to do the same for training. useful in job scheduler environment, '
'where source code might change before the job actually runs.')
parser.add_argument('--resume', action="store_true", default=False,
help='if given, resume from checkpoint(s) of the specified folds.')
parser.add_argument('-d', '--dev', default=False, action='store_true', help="development mode: shorten everything")
args = parser.parse_args()
args.dataset_name = os.path.join("datasets", args.dataset_name) if not "datasets" in args.dataset_name else args.dataset_name
folds = args.folds
resume = None if args.resume in ['None', 'none'] else args.resume
if args.mode == 'create_exp':
cf = utils.prep_exp(args.dataset_name, args.exp_dir, args.server_env, use_stored_settings=False)
logger = utils.get_logger(cf.exp_dir, cf.server_env, -1)
logger.info('created experiment directory at {}'.format(args.exp_dir))
elif args.mode == 'train' or args.mode == 'train_test':
cf = utils.prep_exp(args.dataset_name, args.exp_dir, args.server_env, args.use_stored_settings)
if args.dev:
folds = [0,1]
cf.batch_size, cf.num_epochs, cf.min_save_thresh, cf.save_n_models = 3 if cf.dim==2 else 1, 2, 0, 2
cf.num_train_batches, cf.num_val_batches, cf.max_val_patients = 5, 1, 1
cf.test_n_epochs, cf.max_test_patients = cf.save_n_models, 2
torch.backends.cudnn.benchmark = cf.dim==3
else:
torch.backends.cudnn.benchmark = cf.cuda_benchmark
if args.data_dest is not None:
cf.data_dest = args.data_dest
logger = utils.get_logger(cf.exp_dir, cf.server_env, cf.sysmetrics_interval)
data_loader = utils.import_module('data_loader', os.path.join(args.dataset_name, 'data_loader.py'))
model = utils.import_module('model', cf.model_path)
logger.info("loaded model from {}".format(cf.model_path))
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
"""k-fold cross-validation: the dataset is split into k equally-sized folds, one used for validation,
one for testing, the rest for training. This loop iterates k-times over the dataset, cyclically moving the
splits. k==folds, fold in [0,folds) says which split is used for testing.
"""
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold)); cf.fold = fold
logger.set_logfile(fold=fold)
cf.resume = resume
if not os.path.exists(cf.fold_dir):
os.mkdir(cf.fold_dir)
train(cf, logger)
cf.resume = None
if args.mode == 'train_test':
test(cf, logger)
elif args.mode == 'test':
cf = utils.prep_exp(args.dataset_name, args.exp_dir, args.server_env, use_stored_settings=True, is_training=False)
if args.data_dest is not None:
cf.data_dest = args.data_dest
logger = utils.get_logger(cf.exp_dir, cf.server_env, cf.sysmetrics_interval)
data_loader = utils.import_module('data_loader', os.path.join(args.dataset_name, 'data_loader.py'))
model = utils.import_module('model', cf.model_path)
logger.info("loaded model from {}".format(cf.model_path))
fold_dirs = sorted([os.path.join(cf.exp_dir, f) for f in os.listdir(cf.exp_dir) if
os.path.isdir(os.path.join(cf.exp_dir, f)) and f.startswith("fold")])
if folds is None:
folds = range(cf.n_cv_splits)
if args.dev:
folds = folds[:2]
cf.max_test_patients, cf.test_n_epochs = 2, 2
else:
torch.backends.cudnn.benchmark = cf.cuda_benchmark
for fold in folds:
cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(fold)); cf.fold = fold
logger.set_logfile(fold=fold)
if cf.fold_dir in fold_dirs:
test(cf, logger, max_fold=max([int(f[-1]) for f in fold_dirs]))
else:
logger.info("Skipping fold {} since no model parameters found.".format(fold))
# load raw predictions saved by predictor during testing, run aggregation algorithms and evaluation.
elif args.mode == 'analysis':
""" analyse already saved predictions.
"""
cf = utils.prep_exp(args.dataset_name, args.exp_dir, args.server_env, use_stored_settings=True, is_training=False)
logger = utils.get_logger(cf.exp_dir, cf.server_env, cf.sysmetrics_interval)
if cf.hold_out_test_set and cf.ensemble_folds:
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions()
logger.info('starting evaluation...')
cf.fold = "overall"
evaluator = Evaluator(cf, logger, mode='test')
evaluator.evaluate_predictions(results_list)
evaluator.score_test_df(max_fold=cf.fold)
else:
fold_dirs = sorted([os.path.join(cf.exp_dir, f) for f in os.listdir(cf.exp_dir) if
os.path.isdir(os.path.join(cf.exp_dir, f)) and f.startswith("fold")])
if args.dev:
cf.test_n_epochs = 2
fold_dirs = fold_dirs[:1]
if folds is None:
folds = range(cf.n_cv_splits)
for fold in folds:
cf.fold = fold; cf.fold_dir = os.path.join(cf.exp_dir, 'fold_{}'.format(cf.fold))
logger.set_logfile(fold=fold)
if cf.fold_dir in fold_dirs:
predictor = Predictor(cf, net=None, logger=logger, mode='analysis')
results_list = predictor.load_saved_predictions()
# results_list[x][1] is pid, results_list[x][0] is list of len samples-per-patient, each entry hlds
# list of boxes per that sample, i.e., len(results_list[x][y][0]) would be nr of boxes in sample y of patient x
logger.info('starting evaluation...')
evaluator = Evaluator(cf, logger, mode='test')
evaluator.evaluate_predictions(results_list)
max_fold = max([int(f[-1]) for f in fold_dirs])
evaluator.score_test_df(max_fold=max_fold)
else:
logger.info("Skipping fold {} since no model parameters found.".format(fold))
else:
raise ValueError('mode "{}" specified in args is not implemented.'.format(args.mode))
mins, secs = divmod((time.time() - stime), 60)
h, mins = divmod(mins, 60)
t = "{:d}h:{:02d}m:{:02d}s".format(int(h), int(mins), int(secs))
logger.info("{} total runtime: {}".format(os.path.split(__file__)[1], t))
del logger
torch.cuda.empty_cache()