-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain.py
269 lines (220 loc) · 11.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
from tensorflow.python.framework.errors_impl import InvalidArgumentError
from dataset_definitions import get_dataset
from model import generator, discriminator
from parallel_map import parallel_map_as_tf_dataset
from losses import get_feature_loss, init_perception_model, get_pose_loss, init_pose_model
import tensorflow as tf
from utils import initialize_uninitialized, format_time, ssim, make_pretrained_weight_loader
from io import BytesIO
import matplotlib.pyplot as plt
import time
from parameters import params
import numpy as np
tfgan = tf.contrib.gan
backend = tf.keras.backend
def save_checkpoint(sess, step):
print('Saving checkpoint')
start = time.time()
saver.save(sess, params['check_dir'] + 'model.ckpt', step)
print('Saved checkpoint', time.time() - start)
if __name__ == '__main__':
print('Hyperparams:')
for name, val in params.items():
print('{}:\t{}'.format(name, val))
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
backend.set_session(sess)
init_perception_model()
# TRAIN GRAPH
print('build train graph')
print('- dataset')
train_dataset = get_dataset(params['dataset'])
train_dataset = parallel_map_as_tf_dataset(None, train_dataset.next_train_sample(), n_workers=params['data_workers'])
train_dataset = train_dataset.batch(params['batch_size'], drop_remainder=True)
train_iterator = train_dataset.make_one_shot_iterator()
(train_img_from, train_img_to, train_mask_from, train_transform_params, train_3d_input_pose,
train_3d_target_pose) = train_iterator.get_next()
print('- GAN')
with tf.variable_scope('GAN', reuse=False):
pose_gan = tfgan.gan_model(
generator,
discriminator,
real_data=train_img_to,
generator_inputs=[train_img_from, train_mask_from, train_transform_params, train_3d_input_pose,
train_3d_target_pose],
check_shapes=False
)
net = pose_gan.generated_data[1]
print('- losses')
gan_loss = tfgan.gan_loss(pose_gan, generator_loss_fn=tfgan.losses.modified_generator_loss,
discriminator_loss_fn=tfgan.losses.modified_discriminator_loss)
featperc_loss = get_feature_loss(train_img_to, pose_gan.generated_data[0])
other_loss = params['feature_loss_weight'] * featperc_loss
loss = tfgan.losses.combine_adversarial_loss(gan_loss, pose_gan, other_loss, weight_factor=1.,
gradient_summaries=False)
print('- optimizers')
generator_optimizer = tf.train.AdamOptimizer(params['alpha'], beta1=params['beta1'], beta2=params['beta2'])
discriminator_optimizer = tf.train.AdamOptimizer(params['alpha'], beta1=params['beta1'], beta2=params['beta2'])
loss = tfgan.GANLoss(loss[0], loss[1])
gan_train_ops = tfgan.gan_train_ops(pose_gan, loss, generator_optimizer, discriminator_optimizer)
train_step_fn = tfgan.get_sequential_train_steps(tfgan.GANTrainSteps(1, 1))
# TRAIN SUMMARIES
print('- summaries')
with tf.name_scope('train'):
combined = tf.concat(
[train_img_from[:, :, :, :3], train_img_to, pose_gan.generated_data[0]],
axis=2)
tf.summary.image('combined', combined, collections=['train_images'])
with tf.name_scope('train_additional'):
if 'foreground_mask' in net:
tf.summary.image('bg_mask', net['foreground_mask'], collections=['train_images'])
if 'background' in net:
tf.summary.image('bg', net['background'], collections=['train_images'])
with tf.name_scope('train_losses'):
tf.summary.scalar('featperc', featperc_loss, collections=['summaries'])
# VALIDATION GRAPH
print('build validation graph')
# the validation dataset consists of the same samples every time, so results are comparable
valid_count = params['valid_count']
valid_dataset = get_dataset(params['dataset'], deterministic=True, with_to_masks=True)
valid_data = []
if params['with_valid']: # if we train with valid, we use the test set instead of the valid set for validation
for valid_sample in valid_dataset.next_test_sample():
valid_data.append(valid_sample)
if len(valid_data) == valid_count:
break
else:
for valid_sample in valid_dataset.next_valid_sample():
valid_data.append(valid_sample)
if len(valid_data) == valid_count:
break
def valid_gen():
while True:
for sample in valid_data:
yield sample
valid_dataset = parallel_map_as_tf_dataset(None, valid_gen(), n_workers=1, deterministic=True)
valid_dataset = valid_dataset.batch(1, drop_remainder=True)
valid_iterator = valid_dataset.make_one_shot_iterator()
(valid_img_from, valid_img_to, valid_mask_from, valid_mask_to, valid_transform_params, valid_3d_input_pose,
valid_3d_target_pose) = valid_iterator.get_next()
# 2D mask for target pose to compute foreground SSIM
if params['2d_3d_warp']:
valid_fg_mask = valid_mask_to
else:
valid_fg_mask = tf.reduce_max(valid_mask_to, axis=3)
valid_fg_mask = valid_fg_mask[:, :-1, :-1]
valid_fg_mask = tf.image.resize_images(valid_fg_mask, (params['image_size'], params['image_size']),
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
valid_fg_mask = tf.reduce_max(valid_fg_mask, axis=3)
with tf.variable_scope('GAN/Generator', reuse=True):
valid_model = pose_gan.generator_fn(
[valid_img_from, valid_mask_from, valid_transform_params, valid_3d_input_pose, valid_3d_target_pose])
valid_pose_loss = get_pose_loss(valid_img_to, valid_model[0])
# COLLECT SUMMARIES
hyperparameters = [tf.convert_to_tensor([k, str(v)]) for k, v in params.items()]
tf.summary.text('hyperparameters', tf.stack(hyperparameters), collections=['hyperparams'])
hyperparams_summaries = tf.summary.merge_all(key='hyperparams')
scalar_summaries = tf.summary.merge_all('summaries')
image_summaries = tf.summary.merge_all('train_images')
if not os.path.exists(params['check_dir']):
os.makedirs(params['check_dir'])
saver = tf.train.Saver(max_to_keep=3, keep_checkpoint_every_n_hours=3)
# TRAINING INITIALIZATION
print('initialize training')
init_pose_model(sess, 'pose3d_minimal/checkpoint/model.ckpt-160684')
start = time.time()
checkpoint = tf.train.latest_checkpoint(params['check_dir'])
summary_writer = tf.summary.FileWriter(params['tb_dir'])
if checkpoint is not None:
start_step = int(checkpoint.split('-')[-1])
init_fn = make_pretrained_weight_loader(checkpoint, 'GAN', 'GAN', ['Adam', 'Momentum'], [])
init_fn(sess)
global_step = tf.Variable(start_step, trainable=False, name='global_step')
initialize_uninitialized(sess)
print(f'Loaded checkpoint from step {start_step}:', time.time() - start)
else:
start = time.time()
start_step = 0
global_step = tf.Variable(0, trainable=False, name='global_step')
initialize_uninitialized(sess)
summary = sess.run(hyperparams_summaries)
summary_writer.add_summary(summary, 0)
print('No checkpoint found, initialized variables:', time.time() - start)
# TRAINING
start_time = time.time()
print('start training')
for i in range(start_step + 1, params['batches']):
start = time.time()
try:
train_step_fn(sess, gan_train_ops, global_step, train_step_kwargs={})
except InvalidArgumentError as e:
print(e)
dt = time.time() - start
remaining = (time.time() - start_time) / (i - start_step) * (params['batches'] - i)
print(f'batch: {i}, time for batch: {format_time(dt)}, remaining time: {format_time(remaining)}')
if i % params['steps_per_scalar_summary'] == 0:
start = time.time()
summary_writer.add_summary(sess.run(scalar_summaries), i)
print('Created scalar summaries', time.time() - start)
if i % params['steps_per_image_summary'] == 0:
start = time.time()
summary_writer.add_summary(sess.run(image_summaries), i)
print('Created image summaries', time.time() - start)
if i % params['steps_per_checkpoint'] == 0:
save_checkpoint(sess, i)
if i % params['steps_per_validation'] == 0:
print('Performing validation')
val_start = time.time()
v_inp = []
v_tar = []
v_gen = []
v_pl = []
v_bg = []
v_bg_mask = []
v_fg = []
v_fg_m = []
valid_generated = tf.clip_by_value(valid_model[0], -1, 1)
print('- generating images')
for _ in range(valid_count):
inp, tar, gen, pl, bg, bg_mask, fg, fg_m = sess.run(
[valid_img_from, valid_img_to, valid_generated, valid_pose_loss, valid_model[1]['background'],
valid_model[1]['foreground_mask'], valid_model[1]['foreground'], valid_fg_mask])
v_inp.append(inp[0, :256, :256] / 2 + .5)
v_tar.append(tar[0, :256, :256] / 2 + .5)
v_gen.append(gen[0, :256, :256] / 2 + .5)
v_pl += [pl]
v_bg.append(bg[0, :256, :256] / 2 + .5)
v_bg_mask.append(np.tile(bg_mask[0, :256, :256], [1, 1, 3]))
v_fg.append(fg[0, :256, :256] / 2 + .5)
v_fg_m.append(fg_m[0, ..., np.newaxis])
prefix = 'test' if params['with_valid'] else 'val'
print('- computing SSIM scores')
ssim_score, ssim_fg, ssim_bg = ssim(v_tar, v_gen, masks=v_fg_m)
summary = tf.Summary(value=[tf.Summary.Value(tag=f'{prefix}_metrics/ssim', simple_value=ssim_score)])
summary_writer.add_summary(summary, i)
summary = tf.Summary(value=[tf.Summary.Value(tag=f'{prefix}_metrics/ssim_fg', simple_value=ssim_fg)])
summary_writer.add_summary(summary, i)
summary = tf.Summary(value=[tf.Summary.Value(tag=f'{prefix}_metrics/ssim_bg', simple_value=ssim_bg)])
summary_writer.add_summary(summary, i)
print('- computing pose score')
pl = np.mean(v_pl)
summary = tf.Summary(value=[tf.Summary.Value(tag=f'{prefix}_metrics/pose_loss', simple_value=pl)])
summary_writer.add_summary(summary, i)
print('- creating images for tensorboard')
v_inp = np.concatenate(v_inp[:16], axis=0)
v_tar = np.concatenate(v_tar[:16], axis=0)
v_gen = np.concatenate(v_gen[:16], axis=0)
v_bg = np.concatenate(v_bg[:16], axis=0)
v_bg_mask = np.concatenate(v_bg_mask[:16], axis=0)
v_fg = np.concatenate(v_fg[:16], axis=0)
res = np.concatenate([v_inp, v_tar, v_gen, v_bg, v_bg_mask, v_fg], axis=1)
s = BytesIO()
plt.imsave(s, res, format='png')
res = tf.Summary.Image(encoded_image_string=s.getvalue(), height=res.shape[0], width=res.shape[1])
summary = tf.Summary(value=[tf.Summary.Value(tag=f'{prefix}_img', image=res)])
summary_writer.add_summary(summary, i)
summary_writer.flush()
print('Performed validation:', time.time() - val_start)
save_checkpoint(sess, params['batches'] - 1)