-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
484 lines (365 loc) · 19.6 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""Author: Fahad Kamran
Creates custom random forest
Options to split by maximizing AUTOC or minimizing MSE
Training splits are done using build DR-proxies, as CATEs are not available in training
Script saves:
1. Learned forests
2. Results across 30 seeds """
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from joblib import Parallel, delayed
from causalml.optimize.policylearner import *
import pickle
import matplotlib.pyplot as plt
from tqdm import tqdm
import sys
from random import seed
from random import randrangf
from math import sqrt
from scipy.stats import rankdata
def bootstrap_sample(X, y, to_choose = 1):
"""Bootstraps data for different samples that will train each treee"""
n_samples = X.shape[0]
to_choose = int(to_choose * n_samples)
idxs = np.random.choice(n_samples, to_choose, replace=True)
return X[idxs], y[idxs]
def gen_data(n, seed = 0):
"""Generates training data based on random seed"""
np.random.seed(seed)
p = 10
X = np.random.multivariate_normal(np.zeros(p), np.eye(p), size = n)
e = 1 / (1 + np.exp(-X[:, 2]))
Z = np.random.binomial(1, 1 / (1 + np.exp(-X[:, 2])))
eps = np.random.normal(size = n)
tau = 1 + 2 * np.abs(X[:,3]) + (X[:, 9]) ** 2
Y = (5 * (2 + 0.5 * np.sin(np.pi * X[:,0]) - 0.25 * X[:, 1] *+ 2 + 0.75 * X[:, 2] * X[:, 8])) + Z * tau + eps
return (X, Y, Z, tau, e)
def gen_data_val(n, seed = 0):
"""Generates validation data based on random seed
Validation data does not need anything beyond covariates and true CATE"""
np.random.seed(seed + 50)
p = 10
X = np.random.multivariate_normal(np.zeros(p), np.eye(p), size = n)
tau = 1 + 2 * np.abs(X[:,3]) + (X[:, 9]) ** 2
return (X, tau)
def gen_data_test(n, seed = 0):
"""Generates test data based on random seed
Test data does not need anything beyond covariates and true CATE"""
np.random.seed(seed + 100)
p = 10
X = np.random.multivariate_normal(np.zeros(p), np.eye(p), size = n)
tau = 1 + 2 * np.abs(X[:,3]) + (X[:, 9]) ** 2
return (X, tau)
def AUTOC(dr_scores, priorities, sample_weights = None, query = 'AUTOC'):
"""Calculate AUTOC for evaluation.
Code is largely adapted from original authors implementation
Break ties using average ordering"""
if not sample_weights:
sample_weights = np.ones(len(dr_scores))
priorities = rankdata(priorities).astype(int)
sort_idx = np.argsort(priorities)[::-1]
num_ties = np.bincount(priorities)
num_ties = num_ties[num_ties != 0]
df = pd.DataFrame(np.array([dr_scores, sample_weights, priorities]).T[sort_idx])
grp_sum = df.groupby(2, sort = False).sum()
dr_avg = grp_sum[0].values / grp_sum[1].values
dr_scores_sorted = np.repeat(dr_avg, num_ties[::-1])
sample_weights = sample_weights[sort_idx]
sample_weights_cumsum = np.cumsum(sample_weights)
sample_weights_sum = sample_weights_cumsum[len(sample_weights) - 1]
ATE = sum(dr_scores_sorted * sample_weights) / sample_weights_sum
TOC = np.cumsum(dr_scores_sorted * sample_weights) / sample_weights_cumsum - ATE
# plt.plot(TOC)
if query == 'AUTOC':
RATE = sum(TOC * sample_weights) / sum(sample_weights)
elif query == 'QINI':
RATE = np.sum(np.cumsum(sample_weights) / sum(sample_weights) * sample_weights * TOC) / sum(sample_weights)
else:
RATE = np.nan
return RATE, TOC
class Node:
"""Data class that specifies the data in current node, used to build up tree"""
def __init__(self, examples, depth, value = 0):
self.depth = depth
self.examples = examples
self.value = value
def update(self, feature=None, threshold=None, left=None, right=None, value=None):
self.feature = feature
self.threshold = threshold
self.left = left
self.right = right
self.value = value
def is_leaf_node(self):
return self.value is not None
class DecisionTreeAUTOC:
"""Custom tree that builds multiple nodes from a root based on method of building"""
def __init__(self, min_samples_split=2, min_samples_leaf=1,
max_depth=np.inf, n_feats=None, method = 0, min_impurity = -1000):
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.max_depth = max_depth
self.n_feats = n_feats
self.root = None
self.all_nodes = []
self.method = method
self.min_impurity = min_impurity
def fit(self, X, y):
self.n_feats = X.shape[1] if not self.n_feats else min(self.n_feats, X.shape[1])
self.root = self._grow_tree(X, y)
def predict(self, X):
#To predict, traverse the tree for every example in the data
return np.array([self._traverse_tree(x, self.root) for x in X])
def _grow_tree(self, X, y, depth=0):
#Root node starts with all examples and a value equal to the average outcome
root = Node(examples = (X, y), depth = 0, value = np.mean(y))
self.all_nodes.append(root)
to_process = [root]
#Process until we are out of nodes to process
while len(to_process) > 0:
currNode = to_process[0]
(feats, outcomes, depth, currVal) = currNode.examples[0], currNode.examples[1], currNode.depth, currNode.value
to_process = to_process[1:]
n_samples, n_features = feats.shape
n_labels = len(np.unique(outcomes))
if (depth >= self.max_depth
or n_labels == 1
or n_samples < self.min_samples_split):
#Do not process this branch any further
leaf_value = np.mean(outcomes)
currNode.update(value=leaf_value)
else:
all_leaves = self._curr_leaves()
if len(all_leaves) == 1:
curr_vals = []
curr_outcomes = []
curr_gain = 0
else:
#Find all the leaves without the current node
all_leaves_wo_curr = [x for x in all_leaves if not ((len(x.examples[0]) == len(feats)) and (x.value == currVal) and (x.depth == depth))]
assert len(all_leaves) == (len(all_leaves_wo_curr) + 1)
curr_vals = np.concatenate([np.ones(len(m.examples[1])) * m.value for m in all_leaves_wo_curr]).ravel()
curr_outcomes = np.concatenate([m.examples[1] for m in all_leaves_wo_curr]).ravel()
#Find all the leaves with the current node
all_leaves_w_curr = [x for x in all_leaves]
w_curr_vals = np.concatenate([np.ones(len(m.examples[1])) * m.value for m in all_leaves_w_curr]).ravel()
w_curr_outcomes = np.concatenate([m.examples[1] for m in all_leaves_w_curr]).ravel()
#Our current AUTOC for a given tree
curr_gain = self._splitting_val(w_curr_outcomes, w_curr_vals, query = 'AUTOC')
feat_idxs = np.random.choice(n_features, self.n_feats, replace=False)
#greedily select the best split according to information gain
best_feat, best_thresh = self._best_criteria(feats, outcomes, feat_idxs, curr_vals, curr_outcomes, curr_gain, depth, self.min_impurity)
if not best_thresh:
#If no improvements over our current tree, we are done.
leaf_value = np.mean(outcomes)
currNode.update(value=leaf_value)
else:
#Grow the children that result from the split
left_idxs, right_idxs = self._split(feats[:, best_feat], best_thresh)
leftNode = Node(examples = (feats[left_idxs, :], outcomes[left_idxs]), depth = depth+1, value = np.mean(outcomes[left_idxs]))
rightNode = Node(examples = (feats[right_idxs, :], outcomes[right_idxs]), depth = depth+1, value = np.mean(outcomes[right_idxs]))
self.all_nodes.append(leftNode)
self.all_nodes.append(rightNode)
#Update current tree for traversal
currNode.update(left = leftNode, right = rightNode, feature = best_feat, threshold = best_thresh)
#Breadth first, rather than depth first
to_process.append(leftNode)
to_process.append(rightNode)
for node in self.all_nodes:
#Remove examples to reduce model size when saving
node.examples = None
return root
def _best_criteria(self, X, y, feat_idxs, curr_vals, curr_outcomes, curr_gain, curr_depth, min_impurity):
"""Calculates the best split id and threshold for a given method of building the tree.
Returns None, None if we can not improve over the current tree (based on min_impurity value)"""
best_gain = (curr_gain + min_impurity)
curr_mse = np.mean(np.square(y - np.mean(y)))
best_gain_mse = curr_mse + min_impurity
split_idx, split_thresh = None, None
for feat_idx in feat_idxs:
X_column = X[:, feat_idx]
thresholds = np.unique(X_column)
for threshold in thresholds:
if self.method == 1:
gain = self._information_gain(y, X_column, threshold, curr_vals, curr_outcomes)
if gain > (best_gain):
best_gain = gain
split_idx = feat_idx
split_thresh = threshold
else:
gain = self._information_gain_mse(y, X_column, threshold)
if gain < best_gain_mse:
best_gain_mse = gain
split_idx = feat_idx
split_thresh = threshold
return split_idx, split_thresh
def _information_gain(self, y, X_column, split_thresh, curr_vals, curr_outcomes):
#generate split using AUTOC
left_idxs, right_idxs = self._split(X_column, split_thresh)
if len(left_idxs) < self.min_samples_leaf or len(right_idxs) < self.min_samples_leaf:
#If we have too little samples in leaf, we do not consider this split
return -np.inf
n = len(y)
n_l, n_r = len(left_idxs), len(right_idxs)
left_outcomes = y[left_idxs]
right_outcomes = y[right_idxs]
left_value = np.mean(left_outcomes)
right_value = np.mean(right_outcomes)
all_outcomes = np.concatenate([curr_outcomes, left_outcomes, right_outcomes]).ravel()
all_vals = np.concatenate((curr_vals, np.ones(len(left_outcomes)) * left_value, np.ones(len(right_outcomes)) * right_value)).ravel()
#Calculate AUTOC given the existing outcomes and values in the trees, and a proposed new split.
ig = self._splitting_val(all_outcomes, all_vals, query = 'AUTOC')
return ig
def _information_gain_mse(self, y, X_column, split_thresh):
#generate split using MSE
left_idxs, right_idxs = self._split(X_column, split_thresh)
if len(left_idxs) < self.min_samples_leaf or len(right_idxs) < self.min_samples_leaf:
#If we have too little samples in leaf, we do not consider this split
return np.inf
#compute the weighted avg. of the loss for the children
n = len(y)
n_l, n_r = len(left_idxs), len(right_idxs)
e_l, e_r = np.mean(np.square(y[left_idxs] - np.mean(y[left_idxs]))), np.mean(np.square(y[right_idxs] - np.mean(y[right_idxs])))
child_var = (n_l / n) * e_l + (n_r / n) * e_r
ig = child_var
return ig
def _splitting_val(self, dr_scores, priorities, sample_weights = None, query = 'AUTOC'):
"""AUTOC calculation, similar to evaluation implementation above, but used to grow tree"""
try:
if not sample_weights:
sample_weights = np.ones(len(dr_scores))
except:
1+1
priorities = rankdata(priorities).astype(int)
sort_idx = np.argsort(priorities)[::-1]
num_ties = np.bincount(priorities)
num_ties = num_ties[num_ties != 0]
df = pd.DataFrame(np.array([dr_scores, sample_weights, priorities]).T[sort_idx])
grp_sum = df.groupby(2, sort = False).sum()
dr_avg = grp_sum[0].values / grp_sum[1].values
dr_scores_sorted = np.repeat(dr_avg, num_ties[::-1])
sample_weights = sample_weights[sort_idx]
sample_weights_cumsum = np.cumsum(sample_weights)
sample_weights_sum = sample_weights_cumsum[len(sample_weights) - 1]
ATE = sum(dr_scores_sorted * sample_weights) / sample_weights_sum
TOC = np.cumsum(dr_scores_sorted * sample_weights) / sample_weights_cumsum - ATE
if query == 'AUTOC':
RATE = sum(TOC * sample_weights) / sum(sample_weights)
elif query == 'QINI':
RATE = np.sum(np.cumsum(sample_weights) / sum(sample_weights) * sample_weights * TOC) / sum(sample_weights)
else:
RATE = np.nan
return RATE
def _curr_leaves(self):
return [n for n in self.all_nodes if n.is_leaf_node()]
def _split(self, X_column, split_thresh):
#Split tree based on feature value to get left and right children
left_idxs = np.argwhere(X_column <= split_thresh).flatten()
right_idxs = np.argwhere(X_column > split_thresh).flatten()
return left_idxs, right_idxs
def _traverse_tree(self, x, node):
#Traverse tree recurisvely to find estimated value of tree
if node.is_leaf_node():
return node.value
if x[node.feature] <= node.threshold:
return self._traverse_tree(x, node.left)
return self._traverse_tree(x, node.right)
class RandomForestAUTOC:
def __init__(self, n_estimators=10, min_samples_split=2, min_samples_leaf=1, max_samples=1,
max_depth=np.inf, n_feats=None, method = 0, seed = 0, n_jobs = 0, min_impurity = -1000):
self.n_trees = n_estimators
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.max_samples = max_samples
self.min_impurity = min_impurity
self.max_depth = max_depth
self.n_feats = n_feats
self.trees = []
self.method = method
self.seed = seed
self.n_jobs = n_jobs
def fit(self, X, y):
np.random.seed(self.seed) #Seed seed for reproducability for fitting
def new_tree():
"""Helper function to build a new tree"""
tree = DecisionTreeAUTOC(min_samples_split=self.min_samples_split,
max_depth=self.max_depth, n_feats=self.n_feats, method=self.method, min_samples_leaf=self.min_samples_leaf, min_impurity = self.min_impurity)
X_samp, y_samp = bootstrap_sample(X, y, to_choose = self.max_samples)
tree.fit(X_samp, y_samp)
return tree
#Either build forest using paralleilization or lazy for loop
if not self.n_jobs:
for i in tqdm(range(self.n_trees)):
self.trees.append(new_tree())
else:
self.trees = Parallel(n_jobs=self.n_jobs)(delayed(new_tree)() for s in range(self.n_trees))
def predict(self, X, n_jobs = 0):
"""Create predictions to be used for evaluation"""
def preds(tree):
return tree.predict(X)
#Either generate predictions using paralleilization or lazy for loop
if not n_jobs:
tree_preds = []
for tree in tqdm(self.trees):
tree_preds.append(preds(tree))
tree_preds = np.array(tree_preds)
else:
tree_preds = np.array(Parallel(n_jobs=n_jobs)(delayed(preds)(tree) for tree in self.trees))
#Estimated value is average across all trees
y_pred = tree_preds.mean(axis = 0)
return np.array(y_pred)
def run(n_estimators = 100, max_samples = 1, min_samples_leaf=1, min_samples_split=2, method = 0, max_depth = np.inf, min_impurity = -100, use_ground_truth_prop = True):
#Can change to any amount of training data
N = 250
dct_val, dct_test = {}, {}
rfs_val = []
rfs_test = []
def train_on_DR(seq, N):
#Generate train, val, or test data
(X, Y, Z, tau, e) = gen_data(n = N, seed = seq)
(Xte, taute) = gen_data_test(n = 5000, seed = seq)
(Xval, tauval) = gen_data_val(n = 1000, seed = seq)
#Create DR estimates to be used only for training, as we do not have access to CATEs in training
#Either use ground-truth training propensity scores or learn them using some model
if use_ground_truth_prop:
pl = PolicyLearner(policy_learner = LogisticRegressionCV(), treatment_learner = LogisticRegressionCV(), random_state = 0).fit(X,Z,Y, p = e)
else:
pl = PolicyLearner(policy_learner = LogisticRegressionCV(), treatment_learner = LogisticRegressionCV(), random_state = 0).fit(X,Z,Y)
y = pl._dr_score
#Initialize and fit random forest
est = RandomForestAUTOC(n_estimators = n_estimators, max_samples = max_samples,
min_samples_leaf = min_samples_leaf, min_samples_split = min_samples_split,
method = method, n_jobs = 100, min_impurity = min_impurity, max_depth = max_depth)
est.fit(X, y)
#Save random forest
with open('models/autoc_forest_{}_{}_{}_{}_{}_{}_{}_{}_{}.pkl'.format(seq, N, n_estimators, max_samples, min_samples_leaf, min_samples_split, min_impurity, max_depth, method), 'wb') as f:
pickle.dump(est, f)
#Generate predictions
curr_est_rf_val = est.predict(Xval, n_jobs = 100)
curr_est_rf = est.predict(Xte, n_jobs = 100)
return [(AUTOC(taute.reshape(-1), res.reshape(-1))) for res in [curr_est_rf_val, curr_est_rf]]
#Across all seeds, train and evaluate
for s in tqdm(range(30)):
rfs_curr_val, rfs_curr_test = train_on_DR(s, N)
rfs_val.append(rfs_curr_val)
rfs_test.append(rfs_curr_test)
#Save out model performance across all seeds
rfs_val = np.array(rfs_val)
rfs_test = np.array(rfs_test)
dct_val[N] = rfs_val
dct_test[N] = rfs_test
with open('val_results/results_{}_{}_{}_{}_{}_{}_{}.pkl'.format(n_estimators, max_samples, min_samples_leaf, min_samples_split, min_impurity, max_depth, method), 'wb') as f:
pickle.dump(dct_val, f)
with open('test_results/results_{}_{}_{}_{}_{}_{}_{}.pkl'.format(n_estimators, max_samples, min_samples_leaf, min_samples_split, min_impurity, max_depth, method), 'wb') as f:
pickle.dump(dct_test, f)
if __name__ == '__main__':
n_estimators = int(sys.argv[1])
max_samples = float(sys.argv[2])
min_samples_leaf = int(sys.argv[3])
min_samples_split = int(sys.argv[4])
method = int(sys.argv[5])
min_impurity = float(sys.argv[6])
max_depth = int(float(sys.argv[7]))
run(n_estimators = n_estimators, max_samples = max_samples, min_samples_leaf=min_samples_leaf, min_samples_split=min_samples_split, method = method, min_impurity = min_impurity, max_depth = max_depth)