From 368c44699ad0c33303f667b3967988756eabddd2 Mon Sep 17 00:00:00 2001 From: github-action-benchmark Date: Tue, 3 Sep 2024 22:20:20 +0000 Subject: [PATCH] add Benchmark (pytest) benchmark result for c21ae8604891021c4025ae7835b0efb6cc516016 --- dev/bench/data.js | 110 +++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 109 insertions(+), 1 deletion(-) diff --git a/dev/bench/data.js b/dev/bench/data.js index 22dfc45..6926759 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,5 +1,5 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1725400020262, + "lastUpdate": 1725402020391, "repoUrl": "https://github.com/MPACT-ORG/mpact-compiler", "entries": { "Benchmark": [ @@ -1930,6 +1930,114 @@ window.BENCHMARK_DATA = { "extra": "mean: 46.63099949993921 msec\nrounds: 18" } ] + }, + { + "commit": { + "author": { + "email": "ajcbik@google.com", + "name": "Aart Bik", + "username": "aartbik" + }, + "committer": { + "email": "noreply@github.com", + "name": "GitHub", + "username": "web-flow" + }, + "distinct": true, + "id": "c21ae8604891021c4025ae7835b0efb6cc516016", + "message": "[mpact][compiler] re-enable sparse addition tests (#75)\n\nAll PyTorch related fixes are committed to upstream\r\nPyTorch dev branch, so we can run all the tests again", + "timestamp": "2024-09-03T15:16:04-07:00", + "tree_id": "653f90feced3bb5de7e7922b94a49dd16765de37", + "url": "https://github.com/MPACT-ORG/mpact-compiler/commit/c21ae8604891021c4025ae7835b0efb6cc516016" + }, + "date": 1725402020088, + "tool": "pytest", + "benches": [ + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_dense", + "value": 5984.604402864983, + "unit": "iter/sec", + "range": "stddev: 0.000004773741454056456", + "extra": "mean: 167.0954223008081 usec\nrounds: 1982" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_dense", + "value": 34.89539889357125, + "unit": "iter/sec", + "range": "stddev: 0.00046478152323981605", + "extra": "mean: 28.657073187497772 msec\nrounds: 32" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_dense", + "value": 6071.164975976731, + "unit": "iter/sec", + "range": "stddev: 0.000037416318029174416", + "extra": "mean: 164.71303348812717 usec\nrounds: 2150" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_dense", + "value": 5268.847212471226, + "unit": "iter/sec", + "range": "stddev: 0.000034164794229824113", + "extra": "mean: 189.79483740447543 usec\nrounds: 2374" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_dense", + "value": 875386.0539375842, + "unit": "iter/sec", + "range": "stddev: 2.0204369637331367e-7", + "extra": "mean: 1.1423531315148194 usec\nrounds: 144238" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_dense", + "value": 31.391055873061557, + "unit": "iter/sec", + "range": "stddev: 0.00035675118926051014", + "extra": "mean: 31.85620783333244 msec\nrounds: 30" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mv_sparse", + "value": 12574.209947811167, + "unit": "iter/sec", + "range": "stddev: 0.000005106988003315575", + "extra": "mean: 79.52785933672702 usec\nrounds: 3256" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mm_sparse", + "value": 19.93248175538609, + "unit": "iter/sec", + "range": "stddev: 0.001036558393310738", + "extra": "mean: 50.169367380947605 msec\nrounds: 21" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_add_sparse", + "value": 194.33308860500836, + "unit": "iter/sec", + "range": "stddev: 0.0008889728885080983", + "extra": "mean: 5.145804078854269 msec\nrounds: 279" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_mul_sparse", + "value": 187.16066454664005, + "unit": "iter/sec", + "range": "stddev: 0.00020579674692953573", + "extra": "mean: 5.343003041917507 msec\nrounds: 167" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_nop_sparse", + "value": 871690.1013576641, + "unit": "iter/sec", + "range": "stddev: 2.138761759236975e-7", + "extra": "mean: 1.1471966911663816 usec\nrounds: 184843" + }, + { + "name": "benchmark/python/benchmarks/regression_benchmark.py::test_sddmm_sparse", + "value": 21.531835619041946, + "unit": "iter/sec", + "range": "stddev: 0.005220279923927693", + "extra": "mean: 46.44285873683884 msec\nrounds: 19" + } + ] } ] }