-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMeasures.py
267 lines (203 loc) · 8.85 KB
/
Measures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import numpy
import tensorflow as tf
from sklearn.metrics import confusion_matrix, average_precision_score
import Constants
from Log import log
def create_confusion_matrix(pred, targets, n_classes):
result = None
targets = targets.reshape((targets.shape[0], -1))
pred = pred.reshape((pred.shape[0], -1))
for i in range(pred.shape[0]):
conf_matrix = confusion_matrix(targets[i],
pred[i],
range(0, n_classes))
conf_matrix = conf_matrix[numpy.newaxis, :, :]
if result is None:
result = conf_matrix
else:
result = numpy.append(result, conf_matrix, axis=0)
return result
def get_average_precision(targets, outputs, conf_matrix):
targets = targets.reshape(targets.shape[0], -1)
outputs = outputs[:, :, :, :, 1]
outputs = outputs.reshape(outputs.shape[1], -1)
ap = numpy.empty(outputs.shape[0], numpy.float64)
# ap_interpolated = numpy.empty(outputs.shape[0], numpy.float64)
for i in range(outputs.shape[0]):
# precision, recall, thresholds = precision_recall_curve(targets[i], outputs[i])
ap[i] = average_precision_score(targets[i].flatten(), outputs[i].flatten())
# result = eng.get_ap(matlab.double(outputs[i].tolist()), matlab.double(targets[i].tolist()))
# ap_interpolated[i] = result
ap = numpy.nan_to_num(ap)
# ap_interpolated = numpy.nan_to_num(ap_interpolated)
return ap
def compute_binary_ious_tf(targets, outputs):
binary_ious = [compute_iou_for_binary_segmentation(target, output) for target, output in
zip(targets, outputs)]
return numpy.sum(binary_ious, dtype="float32")
def compute_iou_for_binary_segmentation(y_argmax, target):
I = numpy.logical_and(y_argmax == 1, target == 1).sum()
U = numpy.logical_or(y_argmax == 1, target == 1).sum()
if U == 0:
IOU = 1.0
else:
IOU = float(I) / U
return IOU
def compute_measures_for_binary_segmentation(prediction, target):
T = target.sum()
P = prediction.sum()
I = numpy.logical_and(prediction == 1, target == 1).sum()
U = numpy.logical_or(prediction == 1, target == 1).sum()
if U == 0:
recall = 1.0
precision = 1.0
iou = 1.0
else:
if T == 0:
recall = 1.0
else:
recall = float(I) / T
if P == 0:
precision = 1.0
else:
precision = float(I) / P
iou = float(I) / U
measures = {"recall": recall, "precision": precision, "iou": iou}
return measures
def average_measures(measures_dicts):
keys = measures_dicts[0].keys()
averaged_measures = {}
for k in keys:
vals = [m[k] for m in measures_dicts]
val = numpy.mean(vals)
averaged_measures[k] = val
return averaged_measures
def compute_iou_from_logits(preds, labels, num_labels):
"""
Computes the intersection over union (IoU) score for given logit tensor and target labels
:param logits: 4D tensor of shape [batch_size, height, width, num_classes]
:param labels: 3D tensor of shape [batch_size, height, width] and type int32 or int64
:param num_labels: tensor with the number of labels
:return: 1D tensor of shape [num_classes] with intersection over union for each class, averaged over batch
"""
with tf.variable_scope("IoU"):
# compute predictions
# probs = softmax(logits, axis=-1)
# preds = tf.arg_max(probs, dimension=3)
# num_labels = preds.get_shape().as_list()[-1];
IoUs = []
for label in range(num_labels):
# find pixels with given label
P = tf.equal(preds, label)
L = tf.equal(labels, label)
# Union
U = tf.logical_or(P, L)
U = tf.reduce_sum(tf.cast(U, tf.float32))
# intersection
I = tf.logical_and(P, L)
I = tf.reduce_sum(tf.cast(I, tf.float32))
IOU = tf.cast(I, tf.float32) / tf.cast(U, tf.float32)
# U might be 0!
IOU = tf.where(tf.equal(U, 0), 1, IOU)
IOU = tf.Print(IOU, [IOU], "iou" + `label`)
IoUs.append(IOU)
return tf.reshape(tf.stack(IoUs), (num_labels,))
def calc_measures_avg(measures, n_imgs, ignore_classes):
measures_result = {}
if Constants.ERRORS in measures:
measures_result[Constants.ERRORS] = measures[Constants.ERRORS] / n_imgs
if Constants.IOU in measures:
measures_result[Constants.IOU] = measures[Constants.IOU] / n_imgs
if Constants.AP in measures:
measures_result[Constants.AP] = numpy.sum(measures[Constants.AP]) / n_imgs
if Constants.AP_INTERPOLATED in measures:
measures_result[Constants.AP_INTERPOLATED] = numpy.sum(measures[Constants.AP_INTERPOLATED]) / n_imgs
if Constants.BINARY_IOU in measures:
measures_result[Constants.BINARY_IOU] = numpy.sum(measures[Constants.BINARY_IOU]) / n_imgs
# TODO: This has to be added as IOU instead of conf matrix.
if Constants.CONFUSION_MATRIX in measures:
measures_result[Constants.IOU] = calc_iou(measures, n_imgs, ignore_classes)
if Constants.CLICKS in measures:
clicks = [int(x.rsplit(':', 1)[-1]) for x in measures[Constants.CLICKS]]
measures_result[Constants.CLICKS] = float(numpy.sum(clicks)) / n_imgs
return measures_result
def calc_iou(measures, n_imgs, ignore_classes):
assert Constants.CONFUSION_MATRIX in measures
conf_matrix = measures[Constants.CONFUSION_MATRIX]
assert conf_matrix.shape[0] == n_imgs # not sure, if/why we need these n_imgs
I = (numpy.diagonal(conf_matrix, axis1=1, axis2=2)).astype("float32")
sum_predictions = numpy.sum(conf_matrix, axis=1)
sum_labels = numpy.sum(conf_matrix, axis=2)
U = sum_predictions + sum_labels - I
n_classes = conf_matrix.shape[-1]
class_mask = numpy.ones((n_classes,))
# Temporary fix to avoid index out of bounds when there is a void label in the list of classes to be ignored.
ignore_classes = numpy.array(ignore_classes)
ignore_classes = ignore_classes[numpy.where(ignore_classes<=n_classes)]
class_mask[ignore_classes] = 0
ious = []
for i, u in zip(I, U):
mask = numpy.logical_and(class_mask, u != 0)
if mask.any():
iou = (i[mask] / u[mask]).mean()
else:
print >> log.v5, "warning, mask only consists of ignore_classes"
iou = 1.0
ious.append(iou)
IOU_avg = numpy.mean(ious)
return IOU_avg
def calc_measures_sum(measures1, measures2):
measures_result = {}
if not measures1:
return measures2
if not measures2:
return measures1
if Constants.ERRORS in measures1 and Constants.ERRORS in measures2:
measures_result[Constants.ERRORS] = measures1[Constants.ERRORS] + measures2[Constants.ERRORS]
if Constants.IOU in measures1 and Constants.IOU in measures2:
measures_result[Constants.IOU] = measures1[Constants.IOU] + measures2[Constants.IOU]
if Constants.BINARY_IOU in measures1 and Constants.BINARY_IOU in measures2:
measures_result[Constants.BINARY_IOU] = measures1[Constants.BINARY_IOU] + measures2[Constants.BINARY_IOU]
if Constants.CONFUSION_MATRIX in measures1 and Constants.CONFUSION_MATRIX in measures2:
conf_matrix1 = measures1[Constants.CONFUSION_MATRIX]
conf_matrix2 = measures2[Constants.CONFUSION_MATRIX]
measures_result[Constants.CONFUSION_MATRIX] = numpy.append(conf_matrix2, conf_matrix1, axis=0)
if Constants.AP in measures1 and Constants.AP in measures2:
measures_result[Constants.AP] = measures1[Constants.AP] + measures2[Constants.AP]
if Constants.AP_INTERPOLATED in measures1 and Constants.AP_INTERPOLATED in measures2:
measures_result[Constants.AP_INTERPOLATED] = measures1[Constants.AP_INTERPOLATED] + measures2[
Constants.AP_INTERPOLATED]
if Constants.CLICKS in measures1 and Constants.CLICKS in measures2:
measures_result[Constants.CLICKS] = numpy.append(measures1[Constants.CLICKS], measures2[Constants.CLICKS])
return measures_result
def get_error_string(measures, task):
result_string = ""
if task == "train":
result_string += "train_err:"
else:
result_string += "valid_err:"
if Constants.ERRORS in measures:
result_string += " %4f" % measures[Constants.ERRORS]
if Constants.IOU in measures:
result_string += "(IOU) %4f" % measures[Constants.IOU]
if Constants.BINARY_IOU in measures:
result_string += "(binary IOU) %4f" % measures[Constants.BINARY_IOU]
if Constants.CONFUSION_MATRIX in measures:
result_string += "(IOU) %4f" % measures[Constants.CONFUSION_MATRIX]
if Constants.AP in measures:
result_string += " (mAP) %4f" % measures[Constants.AP]
if Constants.AP_INTERPOLATED in measures:
result_string += " (mAP-intepolated) %4f" % measures[Constants.AP_INTERPOLATED]
if Constants.RANKS in measures:
result_string += " " + measures[Constants.RANKS]
if Constants.CLICKS in measures:
# clicks = [x.rsplit(':', 1)[-1] for x in measures[Constants.TAGS]]
result_string += " (Avg Clicks): %4f" %measures[Constants.CLICKS]
return result_string
def calc_ap_from_cm(conf_matrix):
tp = conf_matrix[1][1]
fp = conf_matrix[0][1]
fn = conf_matrix[1][0]
precision = tp.astype(float) / (tp + fp).astype(float)
recall = tp.astype(float) / (tp + fn).astype(float)
return precision, recall