diff --git a/CHANGELOG b/CHANGELOG index d833c0e1..49cf6627 100644 --- a/CHANGELOG +++ b/CHANGELOG @@ -6,6 +6,27 @@ All notable changes to this project will be documented in this file. The format is based on `Keep a Changelog `_ and this project adheres to `Semantic Versioning `_ +3.4.4 - 2021-07-01 +------------------ + +Fixed +~~~~~ +- Bug where most recent added estimators were not valid in SimpleWORC. +- SelectorMixin is now imported directly from sklearn.feature_selection, + as sklearn.feature_selection.base is deprecated and will be removed. + +Changed +~~~~~~~ +- Apply variance threshold selection before feature scaling, otherwise + variance is always the same for all features. +- RELIEF, selection using a model, PCA, and univariate testing default + use changed from 0.20 to 0.275. + +Added +~~~~~~~ +- Functionality in plotting images functions. +- Documentation on how to use your own features. + 3.4.3 - 2021-06-02 ------------------ diff --git a/README.md b/README.md index 51654616..4852f7b6 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# WORC v3.4.3 +# WORC v3.4.4 ## Workflow for Optimal Radiomics Classification ## Information diff --git a/README.rst b/README.rst index 5d9a902c..070f0780 100644 --- a/README.rst +++ b/README.rst @@ -1,4 +1,4 @@ -WORC v3.4.3 +WORC v3.4.4 =========== Workflow for Optimal Radiomics Classification diff --git a/WORC/WORC.py b/WORC/WORC.py index aeb33d10..8ddf6688 100644 --- a/WORC/WORC.py +++ b/WORC/WORC.py @@ -355,16 +355,16 @@ def defaultconfig(self): config['Featsel'] = dict() config['Featsel']['Variance'] = '1.0' config['Featsel']['GroupwiseSearch'] = 'True' - config['Featsel']['SelectFromModel'] = '0.2' + config['Featsel']['SelectFromModel'] = '0.275' config['Featsel']['SelectFromModel_estimator'] = 'Lasso, LR, RF' config['Featsel']['SelectFromModel_lasso_alpha'] = '0.1, 1.4' config['Featsel']['SelectFromModel_n_trees'] = '10, 90' - config['Featsel']['UsePCA'] = '0.2' + config['Featsel']['UsePCA'] = '0.275' config['Featsel']['PCAType'] = '95variance, 10, 50, 100' - config['Featsel']['StatisticalTestUse'] = '0.2' + config['Featsel']['StatisticalTestUse'] = '0.275' config['Featsel']['StatisticalTestMetric'] = 'MannWhitneyU' config['Featsel']['StatisticalTestThreshold'] = '-3, 2.5' - config['Featsel']['ReliefUse'] = '0.2' + config['Featsel']['ReliefUse'] = '0.275' config['Featsel']['ReliefNN'] = '2, 4' config['Featsel']['ReliefSampleSize'] = '0.75, 0.2' config['Featsel']['ReliefDistanceP'] = '1, 3' @@ -450,10 +450,11 @@ def defaultconfig(self): # Based on https://towardsdatascience.com/doing-xgboost-hyper-parameter-tuning-the-smart-way-part-1-of-2-f6d255a45dde # and https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ + # and https://medium.com/data-design/xgboost-hi-im-gamma-what-can-i-do-for-you-and-the-tuning-of-regularization-a42ea17e6ab6 config['Classification']['XGB_boosting_rounds'] = config['Classification']['RFn_estimators'] config['Classification']['XGB_max_depth'] = '3, 12' config['Classification']['XGB_learning_rate'] = config['Classification']['AdaBoost_learning_rate'] - config['Classification']['XGB_gamma'] = '0.01, 0.99' + config['Classification']['XGB_gamma'] = '0.01, 9.99' config['Classification']['XGB_min_child_weight'] = '1, 6' config['Classification']['XGB_colsample_bytree'] = '0.3, 0.7' diff --git a/WORC/classification/SearchCV.py b/WORC/classification/SearchCV.py index 47c8c500..42d913b8 100644 --- a/WORC/classification/SearchCV.py +++ b/WORC/classification/SearchCV.py @@ -592,6 +592,9 @@ def preprocess(self, X, y=None, training=False): if self.best_groupsel is not None: X = self.best_groupsel.transform(X) + if self.best_varsel is not None: + X = self.best_varsel.transform(X) + if not training and hasattr(self, 'overfit_scaler') and self.overfit_scaler: # Overfit the feature scaling on the test set # NOTE: Never use this in an actual model, only to assess how @@ -608,9 +611,6 @@ def preprocess(self, X, y=None, training=False): if self.best_scaler is not None: X = self.best_scaler.transform(X) - if self.best_varsel is not None: - X = self.best_varsel.transform(X) - if self.best_reliefsel is not None: X = self.best_reliefsel.transform(X) diff --git a/WORC/classification/construct_classifier.py b/WORC/classification/construct_classifier.py index ab3ddf49..bf74a511 100644 --- a/WORC/classification/construct_classifier.py +++ b/WORC/classification/construct_classifier.py @@ -325,8 +325,8 @@ def create_param_grid(config): scale=config['AdaBoost_n_estimators'][1]) param_grid['AdaBoost_learning_rate'] =\ - scipy.stats.uniform(loc=config['AdaBoost_learning_rate'][0], - scale=config['AdaBoost_learning_rate'][1]) + log_uniform(loc=config['AdaBoost_learning_rate'][0], + scale=config['AdaBoost_learning_rate'][1]) # XGDBoost parameters param_grid['XGB_boosting_rounds'] =\ @@ -338,8 +338,8 @@ def create_param_grid(config): scale=config['XGB_max_depth'][1]) param_grid['XGB_learning_rate'] =\ - scipy.stats.uniform(loc=config['XGB_learning_rate'][0], - scale=config['XGB_learning_rate'][1]) + log_uniform(loc=config['XGB_learning_rate'][0], + scale=config['XGB_learning_rate'][1]) param_grid['XGB_gamma'] =\ scipy.stats.uniform(loc=config['XGB_gamma'][0], diff --git a/WORC/classification/fitandscore.py b/WORC/classification/fitandscore.py index a91cbee8..22cf1f57 100644 --- a/WORC/classification/fitandscore.py +++ b/WORC/classification/fitandscore.py @@ -199,6 +199,7 @@ def fit_and_score(X, y, scoring, print("\n") print('#######################################') print('Starting fit and score of new workflow.') + para_estimator = parameters.copy() estimator = cc.construct_classifier(para_estimator) @@ -406,38 +407,6 @@ def fit_and_score(X, y, scoring, else: return ret - # ------------------------------------------------------------------------ - # Feature scaling - if verbose and para_estimator['FeatureScaling'] != 'None': - print(f'Fitting scaler and transforming features, method ' + - f'{para_estimator["FeatureScaling"]}.') - - scaling_method = para_estimator['FeatureScaling'] - if scaling_method == 'None': - scaler = None - else: - skip_features = para_estimator['FeatureScaling_skip_features'] - n_skip_feat = len([i for i in feature_labels[0] if any(e in i for e in skip_features)]) - if n_skip_feat == len(X_train[0]): - # Don't need to scale any features - if verbose: - print('[WORC Warning] Skipping scaling, only skip features selected.') - scaler = None - else: - scaler = WORCScaler(method=scaling_method, skip_features=skip_features) - scaler.fit(X_train, feature_labels[0]) - - if scaler is not None: - X_train = scaler.transform(X_train) - X_test = scaler.transform(X_test) - - del para_estimator['FeatureScaling'] - del para_estimator['FeatureScaling_skip_features'] - - # Delete the object if we do not need to return it - if not return_all: - del scaler - # -------------------------------------------------------------------- # Feature selection based on variance if para_estimator['Featsel_Variance'] == 'True': @@ -474,6 +443,39 @@ def fit_and_score(X, y, scoring, else: return ret + # ------------------------------------------------------------------------ + # Feature scaling + if verbose and para_estimator['FeatureScaling'] != 'None': + print(f'Fitting scaler and transforming features, method ' + + f'{para_estimator["FeatureScaling"]}.') + + scaling_method = para_estimator['FeatureScaling'] + if scaling_method == 'None': + scaler = None + else: + skip_features = para_estimator['FeatureScaling_skip_features'] + n_skip_feat = len([i for i in feature_labels[0] if any(e in i for e in skip_features)]) + if n_skip_feat == len(X_train[0]): + # Don't need to scale any features + if verbose: + print('[WORC Warning] Skipping scaling, only skip features selected.') + scaler = None + else: + scaler = WORCScaler(method=scaling_method, skip_features=skip_features) + scaler.fit(X_train, feature_labels[0]) + + if scaler is not None: + X_train = scaler.transform(X_train) + X_test = scaler.transform(X_test) + + del para_estimator['FeatureScaling'] + del para_estimator['FeatureScaling_skip_features'] + + # Delete the object if we do not need to return it + if not return_all: + del scaler + + # -------------------------------------------------------------------- # Relief feature selection, possibly multi classself. # Needs to be done after scaling! diff --git a/WORC/doc/_build/doctrees/autogen/WORC.featureprocessing.doctree b/WORC/doc/_build/doctrees/autogen/WORC.featureprocessing.doctree index b25a75e2..3ac12155 100644 Binary files a/WORC/doc/_build/doctrees/autogen/WORC.featureprocessing.doctree and b/WORC/doc/_build/doctrees/autogen/WORC.featureprocessing.doctree differ diff --git a/WORC/doc/_build/doctrees/autogen/WORC.plotting.doctree b/WORC/doc/_build/doctrees/autogen/WORC.plotting.doctree index 232db85f..d0dd481c 100644 Binary files a/WORC/doc/_build/doctrees/autogen/WORC.plotting.doctree and b/WORC/doc/_build/doctrees/autogen/WORC.plotting.doctree differ diff --git a/WORC/doc/_build/doctrees/environment.pickle b/WORC/doc/_build/doctrees/environment.pickle index b108558a..a3b51161 100644 Binary files a/WORC/doc/_build/doctrees/environment.pickle and b/WORC/doc/_build/doctrees/environment.pickle differ diff --git a/WORC/doc/_build/doctrees/static/changelog.doctree b/WORC/doc/_build/doctrees/static/changelog.doctree index aa515e91..c7098123 100644 Binary files a/WORC/doc/_build/doctrees/static/changelog.doctree and b/WORC/doc/_build/doctrees/static/changelog.doctree differ diff --git a/WORC/doc/_build/doctrees/static/configuration.doctree b/WORC/doc/_build/doctrees/static/configuration.doctree index 8043c618..18e8e2fa 100644 Binary files a/WORC/doc/_build/doctrees/static/configuration.doctree and b/WORC/doc/_build/doctrees/static/configuration.doctree differ diff --git a/WORC/doc/_build/doctrees/static/quick_start.doctree b/WORC/doc/_build/doctrees/static/quick_start.doctree index 3495ef58..a520ad0a 100644 Binary files a/WORC/doc/_build/doctrees/static/quick_start.doctree and b/WORC/doc/_build/doctrees/static/quick_start.doctree differ diff --git a/WORC/doc/_build/html/.buildinfo b/WORC/doc/_build/html/.buildinfo index 64323ff1..b14b3fe3 100644 --- a/WORC/doc/_build/html/.buildinfo +++ b/WORC/doc/_build/html/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1a400459aca376ecf872ea4fb53480b0 +config: eb52688555d036dabae0d8acf57cbe18 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/WORC/doc/_build/html/_modules/WORC/IOparser/config_WORC.html b/WORC/doc/_build/html/_modules/WORC/IOparser/config_WORC.html index ce29ce65..329231ad 100644 --- a/WORC/doc/_build/html/_modules/WORC/IOparser/config_WORC.html +++ b/WORC/doc/_build/html/_modules/WORC/IOparser/config_WORC.html @@ -8,7 +8,7 @@ - WORC.IOparser.config_WORC — WORC 3.4.3 documentation + WORC.IOparser.config_WORC — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/IOparser/config_io_classifier.html b/WORC/doc/_build/html/_modules/WORC/IOparser/config_io_classifier.html index ae6979dd..81203631 100644 --- a/WORC/doc/_build/html/_modules/WORC/IOparser/config_io_classifier.html +++ b/WORC/doc/_build/html/_modules/WORC/IOparser/config_io_classifier.html @@ -8,7 +8,7 @@ - WORC.IOparser.config_io_classifier — WORC 3.4.3 documentation + WORC.IOparser.config_io_classifier — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/IOparser/config_preprocessing.html b/WORC/doc/_build/html/_modules/WORC/IOparser/config_preprocessing.html index 4e11b048..2a241f2d 100644 --- a/WORC/doc/_build/html/_modules/WORC/IOparser/config_preprocessing.html +++ b/WORC/doc/_build/html/_modules/WORC/IOparser/config_preprocessing.html @@ -8,7 +8,7 @@ - WORC.IOparser.config_preprocessing — WORC 3.4.3 documentation + WORC.IOparser.config_preprocessing — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/IOparser/config_segmentix.html b/WORC/doc/_build/html/_modules/WORC/IOparser/config_segmentix.html index 7108bf87..ac552d53 100644 --- a/WORC/doc/_build/html/_modules/WORC/IOparser/config_segmentix.html +++ b/WORC/doc/_build/html/_modules/WORC/IOparser/config_segmentix.html @@ -8,7 +8,7 @@ - WORC.IOparser.config_segmentix — WORC 3.4.3 documentation + WORC.IOparser.config_segmentix — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/IOparser/file_io.html b/WORC/doc/_build/html/_modules/WORC/IOparser/file_io.html index 2c0f0ab7..64828d52 100644 --- a/WORC/doc/_build/html/_modules/WORC/IOparser/file_io.html +++ b/WORC/doc/_build/html/_modules/WORC/IOparser/file_io.html @@ -8,7 +8,7 @@ - WORC.IOparser.file_io — WORC 3.4.3 documentation + WORC.IOparser.file_io — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/WORC.html b/WORC/doc/_build/html/_modules/WORC/WORC.html index 9990b420..06970ab8 100644 --- a/WORC/doc/_build/html/_modules/WORC/WORC.html +++ b/WORC/doc/_build/html/_modules/WORC/WORC.html @@ -8,7 +8,7 @@ - WORC.WORC — WORC 3.4.3 documentation + WORC.WORC — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -520,16 +520,16 @@

Source code for WORC.WORC

         config['Featsel'] = dict()
         config['Featsel']['Variance'] = '1.0'
         config['Featsel']['GroupwiseSearch'] = 'True'
-        config['Featsel']['SelectFromModel'] = '0.2'
+        config['Featsel']['SelectFromModel'] = '0.275'
         config['Featsel']['SelectFromModel_estimator'] = 'Lasso, LR, RF'
         config['Featsel']['SelectFromModel_lasso_alpha'] = '0.1, 1.4'
         config['Featsel']['SelectFromModel_n_trees'] = '10, 90'
-        config['Featsel']['UsePCA'] = '0.2'
+        config['Featsel']['UsePCA'] = '0.275'
         config['Featsel']['PCAType'] = '95variance, 10, 50, 100'
-        config['Featsel']['StatisticalTestUse'] = '0.2'
+        config['Featsel']['StatisticalTestUse'] = '0.275'
         config['Featsel']['StatisticalTestMetric'] = 'MannWhitneyU'
         config['Featsel']['StatisticalTestThreshold'] = '-3, 2.5'
-        config['Featsel']['ReliefUse'] = '0.2'
+        config['Featsel']['ReliefUse'] = '0.275'
         config['Featsel']['ReliefNN'] = '2, 4'
         config['Featsel']['ReliefSampleSize'] = '0.75, 0.2'
         config['Featsel']['ReliefDistanceP'] = '1, 3'
@@ -615,10 +615,11 @@ 

Source code for WORC.WORC

 
         # Based on https://towardsdatascience.com/doing-xgboost-hyper-parameter-tuning-the-smart-way-part-1-of-2-f6d255a45dde
         # and https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
+        # and https://medium.com/data-design/xgboost-hi-im-gamma-what-can-i-do-for-you-and-the-tuning-of-regularization-a42ea17e6ab6
         config['Classification']['XGB_boosting_rounds'] = config['Classification']['RFn_estimators']
         config['Classification']['XGB_max_depth'] = '3, 12'
         config['Classification']['XGB_learning_rate'] = config['Classification']['AdaBoost_learning_rate']
-        config['Classification']['XGB_gamma'] = '0.01, 0.99'
+        config['Classification']['XGB_gamma'] = '0.01, 9.99'
         config['Classification']['XGB_min_child_weight'] = '1, 6'
         config['Classification']['XGB_colsample_bytree'] = '0.3, 0.7'
 
diff --git a/WORC/doc/_build/html/_modules/WORC/addexceptions.html b/WORC/doc/_build/html/_modules/WORC/addexceptions.html
index 6ea3064d..e100b436 100644
--- a/WORC/doc/_build/html/_modules/WORC/addexceptions.html
+++ b/WORC/doc/_build/html/_modules/WORC/addexceptions.html
@@ -8,7 +8,7 @@
   
   
   
-  WORC.addexceptions — WORC 3.4.3 documentation
+  WORC.addexceptions — WORC 3.4.4 documentation
   
 
   
@@ -62,7 +62,7 @@
             
             
               
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/AdvancedSampler.html b/WORC/doc/_build/html/_modules/WORC/classification/AdvancedSampler.html index 7408c95f..fb298fa8 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/AdvancedSampler.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/AdvancedSampler.html @@ -8,7 +8,7 @@ - WORC.classification.AdvancedSampler — WORC 3.4.3 documentation + WORC.classification.AdvancedSampler — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/ObjectSampler.html b/WORC/doc/_build/html/_modules/WORC/classification/ObjectSampler.html index fb08b036..099712da 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/ObjectSampler.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/ObjectSampler.html @@ -8,7 +8,7 @@ - WORC.classification.ObjectSampler — WORC 3.4.3 documentation + WORC.classification.ObjectSampler — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/RankedSVM.html b/WORC/doc/_build/html/_modules/WORC/classification/RankedSVM.html index e9a7dae8..0099013a 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/RankedSVM.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/RankedSVM.html @@ -8,7 +8,7 @@ - WORC.classification.RankedSVM — WORC 3.4.3 documentation + WORC.classification.RankedSVM — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/SearchCV.html b/WORC/doc/_build/html/_modules/WORC/classification/SearchCV.html index 9fcd0385..d91951fd 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/SearchCV.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/SearchCV.html @@ -8,7 +8,7 @@ - WORC.classification.SearchCV — WORC 3.4.3 documentation + WORC.classification.SearchCV — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -757,6 +757,9 @@

Source code for WORC.classification.SearchCV

if self.best_groupsel is not None:
             X = self.best_groupsel.transform(X)
 
+        if self.best_varsel is not None:
+            X = self.best_varsel.transform(X)
+
         if not training and hasattr(self, 'overfit_scaler') and self.overfit_scaler:
             # Overfit the feature scaling on the test set
             # NOTE: Never use this in an actual model, only to assess how
@@ -773,9 +776,6 @@ 

Source code for WORC.classification.SearchCV

if self.best_scaler is not None:
                 X = self.best_scaler.transform(X)
 
-        if self.best_varsel is not None:
-            X = self.best_varsel.transform(X)
-
         if self.best_reliefsel is not None:
             X = self.best_reliefsel.transform(X)
 
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/construct_classifier.html b/WORC/doc/_build/html/_modules/WORC/classification/construct_classifier.html
index a6642d40..621f5e83 100644
--- a/WORC/doc/_build/html/_modules/WORC/classification/construct_classifier.html
+++ b/WORC/doc/_build/html/_modules/WORC/classification/construct_classifier.html
@@ -8,7 +8,7 @@
   
   
   
-  WORC.classification.construct_classifier — WORC 3.4.3 documentation
+  WORC.classification.construct_classifier — WORC 3.4.4 documentation
   
 
   
@@ -62,7 +62,7 @@
             
             
               
- 3.4.3 + 3.4.4
@@ -490,8 +490,8 @@

Source code for WORC.classification.construct_classifier

scale=config['AdaBoost_n_estimators'][1]) param_grid['AdaBoost_learning_rate'] =\ - scipy.stats.uniform(loc=config['AdaBoost_learning_rate'][0], - scale=config['AdaBoost_learning_rate'][1]) + log_uniform(loc=config['AdaBoost_learning_rate'][0], + scale=config['AdaBoost_learning_rate'][1]) # XGDBoost parameters param_grid['XGB_boosting_rounds'] =\ @@ -503,8 +503,8 @@

Source code for WORC.classification.construct_classifier

scale=config['XGB_max_depth'][1]) param_grid['XGB_learning_rate'] =\ - scipy.stats.uniform(loc=config['XGB_learning_rate'][0], - scale=config['XGB_learning_rate'][1]) + log_uniform(loc=config['XGB_learning_rate'][0], + scale=config['XGB_learning_rate'][1]) param_grid['XGB_gamma'] =\ scipy.stats.uniform(loc=config['XGB_gamma'][0], diff --git a/WORC/doc/_build/html/_modules/WORC/classification/createfixedsplits.html b/WORC/doc/_build/html/_modules/WORC/classification/createfixedsplits.html index 9d111ccd..db4319fb 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/createfixedsplits.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/createfixedsplits.html @@ -8,7 +8,7 @@ - WORC.classification.createfixedsplits — WORC 3.4.3 documentation + WORC.classification.createfixedsplits — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/crossval.html b/WORC/doc/_build/html/_modules/WORC/classification/crossval.html index 2b0a9074..585b7d70 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/crossval.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/crossval.html @@ -8,7 +8,7 @@ - WORC.classification.crossval — WORC 3.4.3 documentation + WORC.classification.crossval — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/estimators.html b/WORC/doc/_build/html/_modules/WORC/classification/estimators.html index 69f1d45a..8e66ad51 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/estimators.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/estimators.html @@ -8,7 +8,7 @@ - WORC.classification.estimators — WORC 3.4.3 documentation + WORC.classification.estimators — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/fitandscore.html b/WORC/doc/_build/html/_modules/WORC/classification/fitandscore.html index f4d639c4..674682c2 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/fitandscore.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/fitandscore.html @@ -8,7 +8,7 @@ - WORC.classification.fitandscore — WORC 3.4.3 documentation + WORC.classification.fitandscore — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -364,6 +364,7 @@

Source code for WORC.classification.fitandscore

< print("\n") print('#######################################') print('Starting fit and score of new workflow.') + para_estimator = parameters.copy() estimator = cc.construct_classifier(para_estimator) @@ -571,38 +572,6 @@

Source code for WORC.classification.fitandscore

< else: return ret - # ------------------------------------------------------------------------ - # Feature scaling - if verbose and para_estimator['FeatureScaling'] != 'None': - print(f'Fitting scaler and transforming features, method ' + - f'{para_estimator["FeatureScaling"]}.') - - scaling_method = para_estimator['FeatureScaling'] - if scaling_method == 'None': - scaler = None - else: - skip_features = para_estimator['FeatureScaling_skip_features'] - n_skip_feat = len([i for i in feature_labels[0] if any(e in i for e in skip_features)]) - if n_skip_feat == len(X_train[0]): - # Don't need to scale any features - if verbose: - print('[WORC Warning] Skipping scaling, only skip features selected.') - scaler = None - else: - scaler = WORCScaler(method=scaling_method, skip_features=skip_features) - scaler.fit(X_train, feature_labels[0]) - - if scaler is not None: - X_train = scaler.transform(X_train) - X_test = scaler.transform(X_test) - - del para_estimator['FeatureScaling'] - del para_estimator['FeatureScaling_skip_features'] - - # Delete the object if we do not need to return it - if not return_all: - del scaler - # -------------------------------------------------------------------- # Feature selection based on variance if para_estimator['Featsel_Variance'] == 'True': @@ -639,6 +608,39 @@

Source code for WORC.classification.fitandscore

< else: return ret + # ------------------------------------------------------------------------ + # Feature scaling + if verbose and para_estimator['FeatureScaling'] != 'None': + print(f'Fitting scaler and transforming features, method ' + + f'{para_estimator["FeatureScaling"]}.') + + scaling_method = para_estimator['FeatureScaling'] + if scaling_method == 'None': + scaler = None + else: + skip_features = para_estimator['FeatureScaling_skip_features'] + n_skip_feat = len([i for i in feature_labels[0] if any(e in i for e in skip_features)]) + if n_skip_feat == len(X_train[0]): + # Don't need to scale any features + if verbose: + print('[WORC Warning] Skipping scaling, only skip features selected.') + scaler = None + else: + scaler = WORCScaler(method=scaling_method, skip_features=skip_features) + scaler.fit(X_train, feature_labels[0]) + + if scaler is not None: + X_train = scaler.transform(X_train) + X_test = scaler.transform(X_test) + + del para_estimator['FeatureScaling'] + del para_estimator['FeatureScaling_skip_features'] + + # Delete the object if we do not need to return it + if not return_all: + del scaler + + # -------------------------------------------------------------------- # Relief feature selection, possibly multi classself. # Needs to be done after scaling! diff --git a/WORC/doc/_build/html/_modules/WORC/classification/metrics.html b/WORC/doc/_build/html/_modules/WORC/classification/metrics.html index 7f960555..483b60bf 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/metrics.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/metrics.html @@ -8,7 +8,7 @@ - WORC.classification.metrics — WORC 3.4.3 documentation + WORC.classification.metrics — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/parameter_optimization.html b/WORC/doc/_build/html/_modules/WORC/classification/parameter_optimization.html index fb17b7d1..2ffbaf44 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/parameter_optimization.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/parameter_optimization.html @@ -8,7 +8,7 @@ - WORC.classification.parameter_optimization — WORC 3.4.3 documentation + WORC.classification.parameter_optimization — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/classification/trainclassifier.html b/WORC/doc/_build/html/_modules/WORC/classification/trainclassifier.html index bf3adfd2..9f452a13 100644 --- a/WORC/doc/_build/html/_modules/WORC/classification/trainclassifier.html +++ b/WORC/doc/_build/html/_modules/WORC/classification/trainclassifier.html @@ -8,7 +8,7 @@ - WORC.classification.trainclassifier — WORC 3.4.3 documentation + WORC.classification.trainclassifier — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/detectors/detectors.html b/WORC/doc/_build/html/_modules/WORC/detectors/detectors.html index b420e204..2bbe8b34 100644 --- a/WORC/doc/_build/html/_modules/WORC/detectors/detectors.html +++ b/WORC/doc/_build/html/_modules/WORC/detectors/detectors.html @@ -8,7 +8,7 @@ - WORC.detectors.detectors — WORC 3.4.3 documentation + WORC.detectors.detectors — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/exampledata/datadownloader.html b/WORC/doc/_build/html/_modules/WORC/exampledata/datadownloader.html index 5854d271..df78d60e 100644 --- a/WORC/doc/_build/html/_modules/WORC/exampledata/datadownloader.html +++ b/WORC/doc/_build/html/_modules/WORC/exampledata/datadownloader.html @@ -8,7 +8,7 @@ - WORC.exampledata.datadownloader — WORC 3.4.3 documentation + WORC.exampledata.datadownloader — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/Imputer.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/Imputer.html index c4f2363c..a14bcb94 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/Imputer.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/Imputer.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.Imputer — WORC 3.4.3 documentation + WORC.featureprocessing.Imputer — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/Relief.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/Relief.html index 4add0057..82359d8c 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/Relief.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/Relief.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.Relief — WORC 3.4.3 documentation + WORC.featureprocessing.Relief — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -165,7 +165,7 @@

Source code for WORC.featureprocessing.Relief

 #!/usr/bin/env python
 
-# Copyright 2016-2019 Biomedical Imaging Group Rotterdam, Departments of
+# Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of
 # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
@@ -181,7 +181,7 @@ 

Source code for WORC.featureprocessing.Relief

# limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np import sklearn.neighbors as nn # from skrebate import ReliefF diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectGroups.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectGroups.html index e2cfa1e9..ec4ebc55 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectGroups.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectGroups.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.SelectGroups — WORC 3.4.3 documentation + WORC.featureprocessing.SelectGroups — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -165,7 +165,7 @@

Source code for WORC.featureprocessing.SelectGroups

 #!/usr/bin/env python
 
-# Copyright 2016-2020 Biomedical Imaging Group Rotterdam, Departments of
+# Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of
 # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands
 #
 # Licensed under the Apache License, Version 2.0 (the "License");
@@ -181,7 +181,7 @@ 

Source code for WORC.featureprocessing.SelectGroups

# limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np @@ -189,6 +189,29 @@

Source code for WORC.featureprocessing.SelectGroups

''' Object to fit feature selection based on the type group the feature belongs to. The label for the feature is used for this procedure. + + The following groups can be selected, and are detected through looking for + the following substrings in the feature label: + - histogram_features: hf_ + - shape_features: sf_ + - orientation_features: of_ + - semantic_features: semf_ + - dicom_features: df_ + - coliage_features_ cf_ + - phase_features: phasef_ + - vessel_features: vf_ + - texture_Gabor_features: Gabor + - texture_GLCM_features: GLCM_ + - texture_GLCMMS_features: GLCMMS_ + - texture_GLRLM_features: GLRLM_ + - texture_GLSZM_features: GLSZM_ + - texture_GLDZM_features: GLDZM_ + - texture_NGTDM_features: NGTDM_ + - texture_NGLDM_features: NGLDM_ + - texture_LBP_features: LBP_ + - fractal_features: fracf_ + - location_features: locf_ + - RGRD_features: rgrdf_ '''
[docs] def __init__(self, parameters, toolboxes=['PREDICT']): ''' diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectIndividuals.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectIndividuals.html index f428b473..a349a0d0 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectIndividuals.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/SelectIndividuals.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.SelectIndividuals — WORC 3.4.3 documentation + WORC.featureprocessing.SelectIndividuals — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -181,7 +181,7 @@

Source code for WORC.featureprocessing.SelectIndividuals

# limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestFeatures.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestFeatures.html index 26d45990..8b1eac60 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestFeatures.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestFeatures.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.StatisticalTestFeatures — WORC 3.4.3 documentation + WORC.featureprocessing.StatisticalTestFeatures — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestThreshold.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestThreshold.html index 9ad3840e..3d9c32d5 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestThreshold.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/StatisticalTestThreshold.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.StatisticalTestThreshold — WORC 3.4.3 documentation + WORC.featureprocessing.StatisticalTestThreshold — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -181,7 +181,7 @@

Source code for WORC.featureprocessing.StatisticalTestThreshold

# limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np from scipy.stats import ttest_ind, ranksums, mannwhitneyu diff --git a/WORC/doc/_build/html/_modules/WORC/featureprocessing/VarianceThreshold.html b/WORC/doc/_build/html/_modules/WORC/featureprocessing/VarianceThreshold.html index 0ad6b596..557e4e21 100644 --- a/WORC/doc/_build/html/_modules/WORC/featureprocessing/VarianceThreshold.html +++ b/WORC/doc/_build/html/_modules/WORC/featureprocessing/VarianceThreshold.html @@ -8,7 +8,7 @@ - WORC.featureprocessing.VarianceThreshold — WORC 3.4.3 documentation + WORC.featureprocessing.VarianceThreshold — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -182,7 +182,7 @@

Source code for WORC.featureprocessing.VarianceThreshold

from sklearn.feature_selection import VarianceThreshold from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np import WORC.addexceptions as ae diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/compute_CI.html b/WORC/doc/_build/html/_modules/WORC/plotting/compute_CI.html index 1affdc67..8d59232b 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/compute_CI.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/compute_CI.html @@ -8,7 +8,7 @@ - WORC.plotting.compute_CI — WORC 3.4.3 documentation + WORC.plotting.compute_CI — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/linstretch.html b/WORC/doc/_build/html/_modules/WORC/plotting/linstretch.html index 0e20769f..367cf7b0 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/linstretch.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/linstretch.html @@ -8,7 +8,7 @@ - WORC.plotting.linstretch — WORC 3.4.3 documentation + WORC.plotting.linstretch — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/plot_ROC.html b/WORC/doc/_build/html/_modules/WORC/plotting/plot_ROC.html index c32b0b4d..eb3547de 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/plot_ROC.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/plot_ROC.html @@ -8,7 +8,7 @@ - WORC.plotting.plot_ROC — WORC 3.4.3 documentation + WORC.plotting.plot_ROC — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/plot_barchart.html b/WORC/doc/_build/html/_modules/WORC/plotting/plot_barchart.html index 977cbaaf..a6f7fa03 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/plot_barchart.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/plot_barchart.html @@ -8,7 +8,7 @@ - WORC.plotting.plot_barchart — WORC 3.4.3 documentation + WORC.plotting.plot_barchart — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/plot_images.html b/WORC/doc/_build/html/_modules/WORC/plotting/plot_images.html index 0bf577ea..6d868753 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/plot_images.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/plot_images.html @@ -8,7 +8,7 @@ - WORC.plotting.plot_images — WORC 3.4.3 documentation + WORC.plotting.plot_images — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
@@ -217,18 +217,25 @@

Source code for WORC.plotting.plot_images

 
 
[docs]def slicer(image, mask=None, output_name=None, output_name_zoom=None, thresholds=[-240, 160], zoomfactor=4, dpi=500, normalize=False, - expand=False, boundary=False, square=False, flip=True, - alpha=0.40, index=None, color='cyan'): + expand=False, boundary=False, square=False, flip=True, rot90=0, + alpha=0.40, axis='axial', index=None, color='cyan'): """Plot slice of image where mask is largest, with mask as overlay. image and mask should both be arrays """ # Determine figure size by spacing - spacing = float(image.GetSpacing()[0]) - imsize = [float(image.GetSize()[0]), float(image.GetSize()[1])] - figsize = (imsize[0]*spacing/100.0, imsize[1]*spacing/100.0) + spacing = [float(image.GetSpacing()[0]), float(image.GetSpacing()[1]), float(image.GetSpacing()[2])] + imsize = [float(image.GetSize()[0]), float(image.GetSize()[1]), float(image.GetSize()[2])] + + if axis == 'axial': + figsize = (imsize[0]*spacing[0]/100.0, imsize[1]*spacing[1]/100.0) + elif axis == 'coronal': + figsize = (imsize[0]*spacing[0]/100.0, imsize[2]*spacing[2]/100.0) + elif axis == 'transversal': + figsize = (imsize[1]*spacing[1]/100.0, imsize[2]*spacing[2]/100.0) # Convert images to numpy arrays + figsize = (30, 1) image = sitk.GetArrayFromImage(image) if mask is not None: mask = sitk.GetArrayFromImage(mask) @@ -241,18 +248,49 @@

Source code for WORC.plotting.plot_images

         # Determine which axial slice has the largest area
         if index is None:
             if mask is not None:
-                areas = np.sum(mask, axis=1).tolist()
+                if axis == 'axial':
+                    areas = np.sum(mask, axis=2).tolist()
+                elif axis == 'coronal':
+                    areas = np.sum(mask, axis=1).tolist()
+                elif axis == 'transversal':
+                    areas = np.sum(mask, axis=0).tolist()
+
                 index = areas.index(max(areas))
             else:
-                index = int(image.shape[0]/2)
+                if axis == 'axial':
+                    index = int(image.shape[2]/2)
+                elif axis == 'coronal':
+                    index = int(image.shape[1]/2)
+                elif axis == 'transversal':
+                    index = int(image.shape[0]/2)
+
+        if axis == 'axial':
+            imslice = image[index, :, :]
+        elif axis == 'coronal':
+            imslice = image[:, index, :]
+        elif axis == 'transversal':
+            imslice = image[:, :, index]
+        else:
+            raise ValueError(f'{axis} is not a valid value for the axis, should be axial, coronal, or transversal.')
 
-        imslice = image[index, :, :]
         if mask is not None:
-            maskslice = mask[index, :, :]
+            if axis == 'axial':
+                maskslice = mask[index, :, :]
+            elif axis == 'coronal':
+                maskslice = mask[:, index, :]
+            elif axis == 'transversal':
+                maskslice = mask[:, :, index]
+            else:
+                raise ValueError(f'{axis} is not a valid value for the axis, should be axial, coronal, or transversal.')
         else:
             maskslice = None
 
-    # Rotate, as this is not done automatically
+    if rot90 != 0:
+        print(f'\t Rotating {rot90 * 90} degrees.')
+        imslice = np.rot90(imslice, rot90)
+        if mask is not None:
+            maskslice = np.rot90(maskslice, rot90)
+
     if flip:
         print('\t Flipping up-down.')
         imslice = np.flipud(imslice)
@@ -307,9 +345,12 @@ 

Source code for WORC.plotting.plot_images

             maskslice = sitk.Expand(maskslice, newsize)
 
         # Adjust the size
-        spacing = float(imslice.GetSpacing()[0])
-        imsize = [float(imslice.GetSize()[0]), float(imslice.GetSize()[1])]
-        figsize = (imsize[0]*spacing/100.0, imsize[1]*spacing/100.0)
+        if axis == 'axial':
+            figsize = (imsize[0]*spacing[0]/100.0, imsize[1]*spacing[1]/100.0)
+        elif axis == 'coronal':
+            figsize = (imsize[0]*spacing[0]/100.0, imsize[2]*spacing[2]/100.0)
+        elif axis == 'transversal':
+            figsize = (imsize[1]*spacing[1]/100.0, imsize[2]*spacing[2]/100.0)
 
         imslice = sitk.GetArrayFromImage(imslice)
         if mask is not None:
@@ -371,6 +412,10 @@ 

Source code for WORC.plotting.plot_images

     if mask is not None:
         ax.imshow(mask, cmap=cmap, norm=normO, alpha=alpha, interpolation="bilinear")
 
+    # Alter aspect ratio according to figure size
+    aspect = figsize[0]/figsize[1]
+    ax.set_aspect(aspect)
+
     # Set locator to zero to make sure padding is removed upon saving
     ax.xaxis.set_major_locator(NullLocator())
     ax.yaxis.set_major_locator(NullLocator())
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/plot_ranked_scores.html b/WORC/doc/_build/html/_modules/WORC/plotting/plot_ranked_scores.html
index 46eef16b..dee10390 100644
--- a/WORC/doc/_build/html/_modules/WORC/plotting/plot_ranked_scores.html
+++ b/WORC/doc/_build/html/_modules/WORC/plotting/plot_ranked_scores.html
@@ -8,7 +8,7 @@
   
   
   
-  WORC.plotting.plot_ranked_scores — WORC 3.4.3 documentation
+  WORC.plotting.plot_ranked_scores — WORC 3.4.4 documentation
   
 
   
@@ -62,7 +62,7 @@
             
             
               
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/plotting/scatterplot.html b/WORC/doc/_build/html/_modules/WORC/plotting/scatterplot.html index e8c4be28..af8a119f 100644 --- a/WORC/doc/_build/html/_modules/WORC/plotting/scatterplot.html +++ b/WORC/doc/_build/html/_modules/WORC/plotting/scatterplot.html @@ -8,7 +8,7 @@ - WORC.plotting.scatterplot — WORC 3.4.3 documentation + WORC.plotting.scatterplot — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/processing/ExtractNLargestBlobsn.html b/WORC/doc/_build/html/_modules/WORC/processing/ExtractNLargestBlobsn.html index 9e845400..59d5f6ee 100644 --- a/WORC/doc/_build/html/_modules/WORC/processing/ExtractNLargestBlobsn.html +++ b/WORC/doc/_build/html/_modules/WORC/processing/ExtractNLargestBlobsn.html @@ -8,7 +8,7 @@ - WORC.processing.ExtractNLargestBlobsn — WORC 3.4.3 documentation + WORC.processing.ExtractNLargestBlobsn — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/processing/classes.html b/WORC/doc/_build/html/_modules/WORC/processing/classes.html index d5926857..0c1e3808 100644 --- a/WORC/doc/_build/html/_modules/WORC/processing/classes.html +++ b/WORC/doc/_build/html/_modules/WORC/processing/classes.html @@ -8,7 +8,7 @@ - WORC.processing.classes — WORC 3.4.3 documentation + WORC.processing.classes — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/processing/label_processing.html b/WORC/doc/_build/html/_modules/WORC/processing/label_processing.html index b0e6bb8c..21c363cf 100644 --- a/WORC/doc/_build/html/_modules/WORC/processing/label_processing.html +++ b/WORC/doc/_build/html/_modules/WORC/processing/label_processing.html @@ -8,7 +8,7 @@ - WORC.processing.label_processing — WORC 3.4.3 documentation + WORC.processing.label_processing — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/CalcFeatures_test.html b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/CalcFeatures_test.html index 2786ef8d..bbf50684 100644 --- a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/CalcFeatures_test.html +++ b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/CalcFeatures_test.html @@ -8,7 +8,7 @@ - WORC.resources.fastr_tests.CalcFeatures_test — WORC 3.4.3 documentation + WORC.resources.fastr_tests.CalcFeatures_test — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/elastix_test.html b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/elastix_test.html index 83b37df0..19df6606 100644 --- a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/elastix_test.html +++ b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/elastix_test.html @@ -8,7 +8,7 @@ - WORC.resources.fastr_tests.elastix_test — WORC 3.4.3 documentation + WORC.resources.fastr_tests.elastix_test — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/segmentix_test.html b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/segmentix_test.html index 711a6cd1..d7a4f803 100644 --- a/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/segmentix_test.html +++ b/WORC/doc/_build/html/_modules/WORC/resources/fastr_tests/segmentix_test.html @@ -8,7 +8,7 @@ - WORC.resources.fastr_tests.segmentix_test — WORC 3.4.3 documentation + WORC.resources.fastr_tests.segmentix_test — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/tools/Elastix.html b/WORC/doc/_build/html/_modules/WORC/tools/Elastix.html index e7cdbede..fdf6f054 100644 --- a/WORC/doc/_build/html/_modules/WORC/tools/Elastix.html +++ b/WORC/doc/_build/html/_modules/WORC/tools/Elastix.html @@ -8,7 +8,7 @@ - WORC.tools.Elastix — WORC 3.4.3 documentation + WORC.tools.Elastix — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/tools/Evaluate.html b/WORC/doc/_build/html/_modules/WORC/tools/Evaluate.html index c5b8f9a5..0ede8ad4 100644 --- a/WORC/doc/_build/html/_modules/WORC/tools/Evaluate.html +++ b/WORC/doc/_build/html/_modules/WORC/tools/Evaluate.html @@ -8,7 +8,7 @@ - WORC.tools.Evaluate — WORC 3.4.3 documentation + WORC.tools.Evaluate — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/tools/Slicer.html b/WORC/doc/_build/html/_modules/WORC/tools/Slicer.html index 397ffdf4..b6b74165 100644 --- a/WORC/doc/_build/html/_modules/WORC/tools/Slicer.html +++ b/WORC/doc/_build/html/_modules/WORC/tools/Slicer.html @@ -8,7 +8,7 @@ - WORC.tools.Slicer — WORC 3.4.3 documentation + WORC.tools.Slicer — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/tools/Transformix.html b/WORC/doc/_build/html/_modules/WORC/tools/Transformix.html index 20aa2c0a..27627d61 100644 --- a/WORC/doc/_build/html/_modules/WORC/tools/Transformix.html +++ b/WORC/doc/_build/html/_modules/WORC/tools/Transformix.html @@ -8,7 +8,7 @@ - WORC.tools.Transformix — WORC 3.4.3 documentation + WORC.tools.Transformix — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/WORC/tools/createfixedsplits.html b/WORC/doc/_build/html/_modules/WORC/tools/createfixedsplits.html index 54c57e77..85b580b0 100644 --- a/WORC/doc/_build/html/_modules/WORC/tools/createfixedsplits.html +++ b/WORC/doc/_build/html/_modules/WORC/tools/createfixedsplits.html @@ -8,7 +8,7 @@ - WORC.tools.createfixedsplits — WORC 3.4.3 documentation + WORC.tools.createfixedsplits — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_modules/index.html b/WORC/doc/_build/html/_modules/index.html index 205e9050..2f9a19cd 100644 --- a/WORC/doc/_build/html/_modules/index.html +++ b/WORC/doc/_build/html/_modules/index.html @@ -8,7 +8,7 @@ - Overview: module code — WORC 3.4.3 documentation + Overview: module code — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/_sources/static/quick_start.rst.txt b/WORC/doc/_build/html/_sources/static/quick_start.rst.txt index b77c9ab0..a1cca080 100644 --- a/WORC/doc/_build/html/_sources/static/quick_start.rst.txt +++ b/WORC/doc/_build/html/_sources/static/quick_start.rst.txt @@ -1,7 +1,10 @@ +.. _quickstart-chapter: + Quick start guide ================= This manual will show users how to install WORC, configure WORC and construct and run a simple experiment. +It's exactly the same as the `WORC Tutorial `_. .. _installation-chapter: @@ -11,7 +14,6 @@ Installation You can install WORC either using pip, or from the source code. We strongly advice you to install ``WORC`` in a `virtualenv `_. - **Installing via pip** @@ -89,8 +91,9 @@ First, import WORC and some additional python packages. # Define the folder this script is in, so we can easily find the example data script_path = os.path.dirname(os.path.abspath(__file__)) - # Determine whether you would like to use WORC for classification or regression - modus = 'classification' + # Determine whether you would like to use WORC for binary_classification, + # multiclass_classification or regression + modus = 'binary_classification' Input ````` @@ -139,13 +142,17 @@ Identify our data structure: change the fields below accordingly if you use your label_file = os.path.join(data_path, 'Examplefiles', 'pinfo_HN.csv') # Name of the label you want to predict - if modus == 'classification': + if modus == 'binary_classification': # Classification: predict a binary (0 or 1) label - label_name = 'imaginary_label_1' + label_name = ['imaginary_label_1'] elif modus == 'regression': # Regression: predict a continuous label - label_name = 'Age' + label_name = ['Age'] + + elif modus == 'multiclass_classification': + # Multiclass classification: predict several mutually exclusive binaru labels together + label_name = ['imaginary_label_1', 'complement_label_1'] # Determine whether we want to do a coarse quick experiment, or a full lengthy # one. Again, change this accordingly if you use your own data. @@ -174,13 +181,15 @@ After defining the inputs, the following code can be used to run your first expe experiment.segmentations_from_this_directory(imagedatadir, segmentation_file_name=segmentation_file_name) experiment.labels_from_this_file(label_file) - experiment.predict_labels([label_name]) + experiment.predict_labels(label_name) - # Use the standard workflow for binary classification or regression - if modus == 'classification': + # Use the standard workflow for your specific modus + if modus == 'binary_classification': experiment.binary_classification(coarse=coarse) elif modus == 'regression': experiment.regression(coarse=coarse) + elif modus == 'multiclass_classification': + experiment.multiclass_classification(coarse=coarse) # Set the temporary directory experiment.set_tmpdir(tmpdir) @@ -241,6 +250,9 @@ Tips and Tricks For tips and tricks on running a full experiment instead of this simple example, adding more evaluation options, debugging a crashed network etcetera, please go to :ref:`User Manual ` chapter. +We advice you to look at the docstrings of the SimpleWORC functions +introduced in this tutorial, and explore the other SimpleWORC functions, +s SimpleWORC offers much more functionality than presented here. Some things we would advice to always do: diff --git a/WORC/doc/_build/html/_static/documentation_options.js b/WORC/doc/_build/html/_static/documentation_options.js index 79dd7988..f129f9a2 100644 --- a/WORC/doc/_build/html/_static/documentation_options.js +++ b/WORC/doc/_build/html/_static/documentation_options.js @@ -1,6 +1,6 @@ var DOCUMENTATION_OPTIONS = { URL_ROOT: document.getElementById("documentation_options").getAttribute('data-url_root'), - VERSION: '3.4.3', + VERSION: '3.4.4', LANGUAGE: 'None', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', diff --git a/WORC/doc/_build/html/autogen/WORC.IOparser.html b/WORC/doc/_build/html/autogen/WORC.IOparser.html index 817ff1eb..1406b6de 100644 --- a/WORC/doc/_build/html/autogen/WORC.IOparser.html +++ b/WORC/doc/_build/html/autogen/WORC.IOparser.html @@ -8,7 +8,7 @@ - IOparser Package — WORC 3.4.3 documentation + IOparser Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.classification.html b/WORC/doc/_build/html/autogen/WORC.classification.html index be50c4a5..491f88fa 100644 --- a/WORC/doc/_build/html/autogen/WORC.classification.html +++ b/WORC/doc/_build/html/autogen/WORC.classification.html @@ -8,7 +8,7 @@ - classification Package — WORC 3.4.3 documentation + classification Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.config.html b/WORC/doc/_build/html/autogen/WORC.config.html index a1f790a6..4981ba3d 100644 --- a/WORC/doc/_build/html/autogen/WORC.config.html +++ b/WORC/doc/_build/html/autogen/WORC.config.html @@ -8,7 +8,7 @@ - <no title> — WORC 3.4.3 documentation + <no title> — WORC 3.4.4 documentation @@ -62,7 +62,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.detectors.html b/WORC/doc/_build/html/autogen/WORC.detectors.html index 1246e656..9da28409 100644 --- a/WORC/doc/_build/html/autogen/WORC.detectors.html +++ b/WORC/doc/_build/html/autogen/WORC.detectors.html @@ -8,7 +8,7 @@ - detectors Package — WORC 3.4.3 documentation + detectors Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.exampledata.html b/WORC/doc/_build/html/autogen/WORC.exampledata.html index 8b695037..5e8b9a40 100644 --- a/WORC/doc/_build/html/autogen/WORC.exampledata.html +++ b/WORC/doc/_build/html/autogen/WORC.exampledata.html @@ -8,7 +8,7 @@ - exampledata Package — WORC 3.4.3 documentation + exampledata Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.facade.html b/WORC/doc/_build/html/autogen/WORC.facade.html index 86eda425..783b573a 100644 --- a/WORC/doc/_build/html/autogen/WORC.facade.html +++ b/WORC/doc/_build/html/autogen/WORC.facade.html @@ -8,7 +8,7 @@ - facade Package — WORC 3.4.3 documentation + facade Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.featureprocessing.html b/WORC/doc/_build/html/autogen/WORC.featureprocessing.html index 592f20f6..6fe0eb02 100644 --- a/WORC/doc/_build/html/autogen/WORC.featureprocessing.html +++ b/WORC/doc/_build/html/autogen/WORC.featureprocessing.html @@ -8,7 +8,7 @@ - featureprocessing Package — WORC 3.4.3 documentation + featureprocessing Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
@@ -772,6 +772,32 @@

Bases: sklearn.base.BaseEstimator, sklearn.feature_selection._base.SelectorMixin

Object to fit feature selection based on the type group the feature belongs to. The label for the feature is used for this procedure.

+

The following groups can be selected, and are detected through looking for +the following substrings in the feature label:

+
+
    +
  • histogram_features: hf_

  • +
  • shape_features: sf_

  • +
  • orientation_features: of_

  • +
  • semantic_features: semf_

  • +
  • dicom_features: df_

  • +
  • coliage_features_ cf_

  • +
  • phase_features: phasef_

  • +
  • vessel_features: vf_

  • +
  • texture_Gabor_features: Gabor

  • +
  • texture_GLCM_features: GLCM_

  • +
  • texture_GLCMMS_features: GLCMMS_

  • +
  • texture_GLRLM_features: GLRLM_

  • +
  • texture_GLSZM_features: GLSZM_

  • +
  • texture_GLDZM_features: GLDZM_

  • +
  • texture_NGTDM_features: NGTDM_

  • +
  • texture_NGLDM_features: NGLDM_

  • +
  • texture_LBP_features: LBP_

  • +
  • fractal_features: fracf_

  • +
  • location_features: locf_

  • +
  • RGRD_features: rgrdf_

  • +
+
__abstractmethods__ = frozenset({})
diff --git a/WORC/doc/_build/html/autogen/WORC.html b/WORC/doc/_build/html/autogen/WORC.html index 9a2a9060..ab65c93c 100644 --- a/WORC/doc/_build/html/autogen/WORC.html +++ b/WORC/doc/_build/html/autogen/WORC.html @@ -8,7 +8,7 @@ - WORC Package — WORC 3.4.3 documentation + WORC Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.plotting.html b/WORC/doc/_build/html/autogen/WORC.plotting.html index a0420317..aa19b8fd 100644 --- a/WORC/doc/_build/html/autogen/WORC.plotting.html +++ b/WORC/doc/_build/html/autogen/WORC.plotting.html @@ -8,7 +8,7 @@ - plotting Package — WORC 3.4.3 documentation + plotting Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
@@ -539,7 +539,7 @@

-WORC.plotting.plot_images.slicer(image, mask=None, output_name=None, output_name_zoom=None, thresholds=[-240, 160], zoomfactor=4, dpi=500, normalize=False, expand=False, boundary=False, square=False, flip=True, alpha=0.4, index=None, color='cyan')[source]
+WORC.plotting.plot_images.slicer(image, mask=None, output_name=None, output_name_zoom=None, thresholds=[-240, 160], zoomfactor=4, dpi=500, normalize=False, expand=False, boundary=False, square=False, flip=True, rot90=0, alpha=0.4, axis='axial', index=None, color='cyan')[source]

Plot slice of image where mask is largest, with mask as overlay.

image and mask should both be arrays

diff --git a/WORC/doc/_build/html/autogen/WORC.processing.html b/WORC/doc/_build/html/autogen/WORC.processing.html index 88b112f8..0a670a8c 100644 --- a/WORC/doc/_build/html/autogen/WORC.processing.html +++ b/WORC/doc/_build/html/autogen/WORC.processing.html @@ -8,7 +8,7 @@ - processing Package — WORC 3.4.3 documentation + processing Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.resources.fastr_tests.html b/WORC/doc/_build/html/autogen/WORC.resources.fastr_tests.html index 0a4aa4ff..252a7097 100644 --- a/WORC/doc/_build/html/autogen/WORC.resources.fastr_tests.html +++ b/WORC/doc/_build/html/autogen/WORC.resources.fastr_tests.html @@ -8,7 +8,7 @@ - fastr_tests Package — WORC 3.4.3 documentation + fastr_tests Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.resources.fastr_tools.html b/WORC/doc/_build/html/autogen/WORC.resources.fastr_tools.html index 45830455..6ff8f3c4 100644 --- a/WORC/doc/_build/html/autogen/WORC.resources.fastr_tools.html +++ b/WORC/doc/_build/html/autogen/WORC.resources.fastr_tools.html @@ -8,7 +8,7 @@ - fastr_tools Package — WORC 3.4.3 documentation + fastr_tools Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.resources.html b/WORC/doc/_build/html/autogen/WORC.resources.html index ea40d83e..73c7051e 100644 --- a/WORC/doc/_build/html/autogen/WORC.resources.html +++ b/WORC/doc/_build/html/autogen/WORC.resources.html @@ -8,7 +8,7 @@ - resources Package — WORC 3.4.3 documentation + resources Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/autogen/WORC.tools.html b/WORC/doc/_build/html/autogen/WORC.tools.html index 6c1029b4..e1b03c1c 100644 --- a/WORC/doc/_build/html/autogen/WORC.tools.html +++ b/WORC/doc/_build/html/autogen/WORC.tools.html @@ -8,7 +8,7 @@ - tools Package — WORC 3.4.3 documentation + tools Package — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/genindex.html b/WORC/doc/_build/html/genindex.html index deb51e58..11aecd74 100644 --- a/WORC/doc/_build/html/genindex.html +++ b/WORC/doc/_build/html/genindex.html @@ -9,7 +9,7 @@ - Index — WORC 3.4.3 documentation + Index — WORC 3.4.4 documentation @@ -63,7 +63,7 @@
- 3.4.3 + 3.4.4
diff --git a/WORC/doc/_build/html/index.html b/WORC/doc/_build/html/index.html index fec192a9..4062227b 100644 --- a/WORC/doc/_build/html/index.html +++ b/WORC/doc/_build/html/index.html @@ -8,7 +8,7 @@ - WORC: Workflow for Optimal Radiomics Classification — WORC 3.4.3 documentation + WORC: Workflow for Optimal Radiomics Classification — WORC 3.4.4 documentation @@ -63,7 +63,7 @@
- 3.4.3 + 3.4.4
@@ -344,13 +344,18 @@

WORC DocumentationError: ModuleNotFoundError: No module named 'numpy' -
  • Execution
  • Developer documentation
      @@ -361,145 +366,151 @@

      WORC DocumentationResource File Formats
    • Changelog
        -
      • 3.4.3 - 2021-06-02
          +
        • 3.4.4 - 2021-07-01
        • -
        • 3.4.2 - 2021-05-27
            +
          • 3.4.3 - 2021-06-02
          • -
          • 3.4.1 - 2021-05-18
              +
            • 3.4.2 - 2021-05-27
            • -
            • 3.4.0 - 2021-02-02
                +
              • 3.4.1 - 2021-05-18
              • -
              • 3.3.5 - 2020-10-21
                  +
                • 3.4.0 - 2021-02-02
                • -
                • 3.3.4 - 2020-10-06
                    +
                  • 3.3.5 - 2020-10-21
                  • -
                  • 3.3.3 - 2020-09-11
                      +
                    • 3.3.4 - 2020-10-06
                    • -
                    • 3.3.2 - 2020-08-19
                        -
                      • Fixed
                      • -
                      • Added
                      • -
                      • Changed
                      • +
                      • 3.3.3 - 2020-09-11
                      • -
                      • 3.3.1 - 2020-07-31
                          -
                        • Changed
                        • -
                        • Fixed
                        • +
                        • 3.3.2 - 2020-08-19
                        • -
                        • 3.3.0 - 2020-07-28
                            -
                          • Added
                          • +
                          • 3.3.1 - 2020-07-31
                          • -
                          • 3.2.2 - 2020-07-14
                              +
                            • 3.3.0 - 2020-07-28
                            • -
                            • 3.2.1 - 2020-07-02
                                +
                              • 3.2.2 - 2020-07-14
                              • -
                              • 3.2.0 - 2020-06-26
                                  +
                                • 3.2.1 - 2020-07-02
                                • -
                                • 3.1.4 - 2020-05-26
                                    +
                                  • 3.2.0 - 2020-06-26
                                  • -
                                  • 3.1.3 - 2020-01-24
                                      +
                                    • 3.1.4 - 2020-05-26
                                    • -
                                    • 3.1.2 - 2019-12-09
                                        +
                                      • 3.1.3 - 2020-01-24
                                      • -
                                      • 3.1.1 - 2019-11-28
                                          +
                                        • 3.1.2 - 2019-12-09
                                        • -
                                        • 3.1.0 - 2019-10-16
                                            +
                                          • 3.1.1 - 2019-11-28
                                          • -
                                          • 3.0.0 - 2019-05-08
                                              +
                                            • 3.1.0 - 2019-10-16
                                            • -
                                            • 2.1.3 - 2019-04-08
                                                -
                                              • Changed
                                              • +
                                              • 3.0.0 - 2019-05-08
                                              • -
                                              • 2.1.2 - 2019-04-02
                                                  -
                                                • Added
                                                • -
                                                • Changed
                                                • -
                                                • Fixed
                                                • +
                                                • 2.1.3 - 2019-04-08
                                                • -
                                                • 2.1.1 - 2019-02-15
                                                    +
                                                  • 2.1.2 - 2019-04-02
                                                  • -
                                                  • 2.1.0 - 2018-08-09
                                                      +
                                                    • 2.1.1 - 2019-02-15
                                                    • -
                                                    • 2.0.0 - 2018-02-13
                                                    • diff --git a/WORC/doc/_build/html/objects.inv b/WORC/doc/_build/html/objects.inv index d1cd87d5..d69bf8d0 100644 Binary files a/WORC/doc/_build/html/objects.inv and b/WORC/doc/_build/html/objects.inv differ diff --git a/WORC/doc/_build/html/py-modindex.html b/WORC/doc/_build/html/py-modindex.html index 7e9ac6e0..7edf180b 100644 --- a/WORC/doc/_build/html/py-modindex.html +++ b/WORC/doc/_build/html/py-modindex.html @@ -8,7 +8,7 @@ - Python Module Index — WORC 3.4.3 documentation + Python Module Index — WORC 3.4.4 documentation @@ -65,7 +65,7 @@
                                                      - 3.4.3 + 3.4.4
                                                      diff --git a/WORC/doc/_build/html/search.html b/WORC/doc/_build/html/search.html index f71ad058..c4330a40 100644 --- a/WORC/doc/_build/html/search.html +++ b/WORC/doc/_build/html/search.html @@ -8,7 +8,7 @@ - Search — WORC 3.4.3 documentation + Search — WORC 3.4.4 documentation @@ -63,7 +63,7 @@
                                                      - 3.4.3 + 3.4.4
                                                      diff --git a/WORC/doc/_build/html/searchindex.js b/WORC/doc/_build/html/searchindex.js index 74d0c890..370cf0d1 100644 --- a/WORC/doc/_build/html/searchindex.js +++ b/WORC/doc/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["autogen/WORC","autogen/WORC.IOparser","autogen/WORC.classification","autogen/WORC.config","autogen/WORC.detectors","autogen/WORC.exampledata","autogen/WORC.facade","autogen/WORC.facade.helpers","autogen/WORC.fastrconfig","autogen/WORC.featureprocessing","autogen/WORC.plotting","autogen/WORC.processing","autogen/WORC.resources","autogen/WORC.resources.fastr_tests","autogen/WORC.resources.fastr_tools","autogen/WORC.statistics","autogen/WORC.tests","autogen/WORC.tools","autogen/WORC.validators","autogen/config/WORC.config_Bootstrap_defopts","autogen/config/WORC.config_Bootstrap_description","autogen/config/WORC.config_Classification_defopts","autogen/config/WORC.config_Classification_description","autogen/config/WORC.config_ComBat_defopts","autogen/config/WORC.config_ComBat_description","autogen/config/WORC.config_CrossValidation_defopts","autogen/config/WORC.config_CrossValidation_description","autogen/config/WORC.config_Ensemble_defopts","autogen/config/WORC.config_Ensemble_description","autogen/config/WORC.config_Evaluation_defopts","autogen/config/WORC.config_Evaluation_description","autogen/config/WORC.config_FeatPreProcess_defopts","autogen/config/WORC.config_FeatPreProcess_description","autogen/config/WORC.config_Featsel_defopts","autogen/config/WORC.config_Featsel_description","autogen/config/WORC.config_FeatureScaling_defopts","autogen/config/WORC.config_FeatureScaling_description","autogen/config/WORC.config_General_defopts","autogen/config/WORC.config_General_description","autogen/config/WORC.config_HyperOptimization_defopts","autogen/config/WORC.config_HyperOptimization_description","autogen/config/WORC.config_ImageFeatures_defopts","autogen/config/WORC.config_ImageFeatures_description","autogen/config/WORC.config_Imputation_defopts","autogen/config/WORC.config_Imputation_description","autogen/config/WORC.config_Labels_defopts","autogen/config/WORC.config_Labels_description","autogen/config/WORC.config_OneHotEncoding_defopts","autogen/config/WORC.config_OneHotEncoding_description","autogen/config/WORC.config_Preprocessing_defopts","autogen/config/WORC.config_Preprocessing_description","autogen/config/WORC.config_PyRadiomics_defopts","autogen/config/WORC.config_PyRadiomics_description","autogen/config/WORC.config_Resampling_defopts","autogen/config/WORC.config_Resampling_description","autogen/config/WORC.config_Segmentix_defopts","autogen/config/WORC.config_Segmentix_description","autogen/config/WORC.config_SelectFeatGroup_defopts","autogen/config/WORC.config_SelectFeatGroup_description","index","static/additionalfunctionality","static/changelog","static/configuration","static/datamining","static/developerdocumentation","static/faq","static/features","static/file_description","static/introduction","static/quick_start","static/user_manual"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["autogen/WORC.rst","autogen/WORC.IOparser.rst","autogen/WORC.classification.rst","autogen/WORC.config.rst","autogen/WORC.detectors.rst","autogen/WORC.exampledata.rst","autogen/WORC.facade.rst","autogen/WORC.facade.helpers.rst","autogen/WORC.fastrconfig.rst","autogen/WORC.featureprocessing.rst","autogen/WORC.plotting.rst","autogen/WORC.processing.rst","autogen/WORC.resources.rst","autogen/WORC.resources.fastr_tests.rst","autogen/WORC.resources.fastr_tools.rst","autogen/WORC.statistics.rst","autogen/WORC.tests.rst","autogen/WORC.tools.rst","autogen/WORC.validators.rst","autogen/config/WORC.config_Bootstrap_defopts.rst","autogen/config/WORC.config_Bootstrap_description.rst","autogen/config/WORC.config_Classification_defopts.rst","autogen/config/WORC.config_Classification_description.rst","autogen/config/WORC.config_ComBat_defopts.rst","autogen/config/WORC.config_ComBat_description.rst","autogen/config/WORC.config_CrossValidation_defopts.rst","autogen/config/WORC.config_CrossValidation_description.rst","autogen/config/WORC.config_Ensemble_defopts.rst","autogen/config/WORC.config_Ensemble_description.rst","autogen/config/WORC.config_Evaluation_defopts.rst","autogen/config/WORC.config_Evaluation_description.rst","autogen/config/WORC.config_FeatPreProcess_defopts.rst","autogen/config/WORC.config_FeatPreProcess_description.rst","autogen/config/WORC.config_Featsel_defopts.rst","autogen/config/WORC.config_Featsel_description.rst","autogen/config/WORC.config_FeatureScaling_defopts.rst","autogen/config/WORC.config_FeatureScaling_description.rst","autogen/config/WORC.config_General_defopts.rst","autogen/config/WORC.config_General_description.rst","autogen/config/WORC.config_HyperOptimization_defopts.rst","autogen/config/WORC.config_HyperOptimization_description.rst","autogen/config/WORC.config_ImageFeatures_defopts.rst","autogen/config/WORC.config_ImageFeatures_description.rst","autogen/config/WORC.config_Imputation_defopts.rst","autogen/config/WORC.config_Imputation_description.rst","autogen/config/WORC.config_Labels_defopts.rst","autogen/config/WORC.config_Labels_description.rst","autogen/config/WORC.config_OneHotEncoding_defopts.rst","autogen/config/WORC.config_OneHotEncoding_description.rst","autogen/config/WORC.config_Preprocessing_defopts.rst","autogen/config/WORC.config_Preprocessing_description.rst","autogen/config/WORC.config_PyRadiomics_defopts.rst","autogen/config/WORC.config_PyRadiomics_description.rst","autogen/config/WORC.config_Resampling_defopts.rst","autogen/config/WORC.config_Resampling_description.rst","autogen/config/WORC.config_Segmentix_defopts.rst","autogen/config/WORC.config_Segmentix_description.rst","autogen/config/WORC.config_SelectFeatGroup_defopts.rst","autogen/config/WORC.config_SelectFeatGroup_description.rst","index.rst","static/additionalfunctionality.rst","static/changelog.rst","static/configuration.rst","static/datamining.rst","static/developerdocumentation.rst","static/faq.rst","static/features.rst","static/file_description.rst","static/introduction.rst","static/quick_start.rst","static/user_manual.rst"],objects:{"WORC.IOparser":{config_WORC:[1,0,0,"-"],config_io_PyRadiomics:[1,0,0,"-"],config_io_classifier:[1,0,0,"-"],config_io_combat:[1,0,0,"-"],config_preprocessing:[1,0,0,"-"],config_segmentix:[1,0,0,"-"],file_io:[1,0,0,"-"]},"WORC.IOparser.config_WORC":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_PyRadiomics":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_classifier":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_combat":{load_config:[1,1,1,""]},"WORC.IOparser.config_preprocessing":{load_config:[1,1,1,""]},"WORC.IOparser.config_segmentix":{load_config:[1,1,1,""]},"WORC.IOparser.file_io":{convert_config_pyradiomics:[1,1,1,""],load_data:[1,1,1,""],load_features:[1,1,1,""]},"WORC.WORC":{Tools:[0,2,1,""],WORC:[0,2,1,""]},"WORC.WORC.Tools":{__dict__:[0,3,1,""],__init__:[0,4,1,""],__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.WORC.WORC":{__dict__:[0,3,1,""],__init__:[0,4,1,""],__module__:[0,3,1,""],__weakref__:[0,3,1,""],add_ComBat:[0,4,1,""],add_elastix:[0,4,1,""],add_elastix_sourcesandsinks:[0,4,1,""],add_evaluation:[0,4,1,""],add_feature_calculator:[0,4,1,""],add_preprocessing:[0,4,1,""],add_segmentix:[0,4,1,""],add_tools:[0,4,1,""],build:[0,4,1,""],build_training:[0,4,1,""],defaultconfig:[0,4,1,""],execute:[0,4,1,""],save_config:[0,4,1,""],set:[0,4,1,""]},"WORC.addexceptions":{WORCAssertionError:[0,5,1,""],WORCError:[0,5,1,""],WORCIOError:[0,5,1,""],WORCIndexError:[0,5,1,""],WORCKeyError:[0,5,1,""],WORCNotImplementedError:[0,5,1,""],WORCTypeError:[0,5,1,""],WORCValueError:[0,5,1,""]},"WORC.addexceptions.WORCAssertionError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCError":{__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.addexceptions.WORCIOError":{__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.addexceptions.WORCIndexError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCKeyError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCNotImplementedError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCTypeError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCValueError":{__module__:[0,3,1,""]},"WORC.classification":{AdvancedSampler:[2,0,0,"-"],ObjectSampler:[2,0,0,"-"],RankedSVM:[2,0,0,"-"],SearchCV:[2,0,0,"-"],construct_classifier:[2,0,0,"-"],createfixedsplits:[2,0,0,"-"],crossval:[2,0,0,"-"],estimators:[2,0,0,"-"],fitandscore:[2,0,0,"-"],metrics:[2,0,0,"-"],parameter_optimization:[2,0,0,"-"],regressors:[2,0,0,"-"],trainclassifier:[2,0,0,"-"]},"WORC.classification.AdvancedSampler":{AdvancedSampler:[2,2,1,""],boolean_uniform:[2,2,1,""],discrete_uniform:[2,2,1,""],exp_uniform:[2,2,1,""],log_uniform:[2,2,1,""]},"WORC.classification.AdvancedSampler.AdvancedSampler":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__iter__:[2,4,1,""],__len__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""]},"WORC.classification.AdvancedSampler.boolean_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.discrete_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.exp_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.log_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.ObjectSampler":{ObjectSampler:[2,2,1,""]},"WORC.classification.ObjectSampler.ObjectSampler":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],fit:[2,4,1,""],init_ADASYN:[2,4,1,""],init_BorderlineSMOTE:[2,4,1,""],init_NearMiss:[2,4,1,""],init_NeighbourhoodCleaningRule:[2,4,1,""],init_RandomOverSampling:[2,4,1,""],init_RandomUnderSampling:[2,4,1,""],init_SMOTE:[2,4,1,""],init_SMOTEENN:[2,4,1,""],init_SMOTETomek:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.RankedSVM":{RankSVM_test:[2,1,1,""],RankSVM_test_original:[2,1,1,""],RankSVM_train:[2,1,1,""],RankSVM_train_old:[2,1,1,""],is_empty:[2,1,1,""],neg_dual_func:[2,1,1,""]},"WORC.classification.SearchCV":{BaseSearchCV:[2,2,1,""],BaseSearchCVJoblib:[2,2,1,""],BaseSearchCVfastr:[2,2,1,""],Ensemble:[2,2,1,""],GridSearchCVJoblib:[2,2,1,""],GridSearchCVfastr:[2,2,1,""],RandomizedSearchCVJoblib:[2,2,1,""],RandomizedSearchCVfastr:[2,2,1,""],chunks:[2,1,1,""],chunksdict:[2,1,1,""],rms_score:[2,1,1,""],sar_score:[2,1,1,""]},"WORC.classification.SearchCV.BaseSearchCV":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],create_ensemble:[2,4,1,""],decision_function:[2,4,1,""],inverse_transform:[2,4,1,""],predict:[2,4,1,""],predict_log_proba:[2,4,1,""],predict_proba:[2,4,1,""],preprocess:[2,4,1,""],process_fit:[2,4,1,""],refit_and_score:[2,4,1,""],score:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.SearchCV.BaseSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__module__:[2,3,1,""]},"WORC.classification.SearchCV.BaseSearchCVfastr":{__abstractmethods__:[2,3,1,""],__module__:[2,3,1,""]},"WORC.classification.SearchCV.Ensemble":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],decision_function:[2,4,1,""],inverse_transform:[2,4,1,""],predict:[2,4,1,""],predict_log_proba:[2,4,1,""],predict_proba:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.SearchCV.GridSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.GridSearchCVfastr":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.RandomizedSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.RandomizedSearchCVfastr":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.construct_classifier":{construct_SVM:[2,1,1,""],construct_classifier:[2,1,1,""],create_param_grid:[2,1,1,""]},"WORC.classification.createfixedsplits":{createfixedsplits:[2,1,1,""]},"WORC.classification.crossval":{LOO_cross_validation:[2,1,1,""],crossval:[2,1,1,""],nocrossval:[2,1,1,""],random_split_cross_validation:[2,1,1,""],test_RS_Ensemble:[2,1,1,""]},"WORC.classification.estimators":{RankedSVM:[2,2,1,""]},"WORC.classification.estimators.RankedSVM":{__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""],predict:[2,4,1,""],predict_proba:[2,4,1,""]},"WORC.classification.fitandscore":{delete_cc_para:[2,1,1,""],delete_nonestimator_parameters:[2,1,1,""],fit_and_score:[2,1,1,""],replacenan:[2,1,1,""]},"WORC.classification.metrics":{ICC:[2,1,1,""],ICC_anova:[2,1,1,""],check_multimetric_scoring:[2,1,1,""],check_scoring:[2,1,1,""],f1_weighted_predictproba:[2,1,1,""],multi_class_auc:[2,1,1,""],multi_class_auc_score:[2,1,1,""],pairwise_auc:[2,1,1,""],performance_multilabel:[2,1,1,""],performance_singlelabel:[2,1,1,""]},"WORC.classification.parameter_optimization":{random_search_parameters:[2,1,1,""]},"WORC.classification.trainclassifier":{add_parameters_to_grid:[2,1,1,""],trainclassifier:[2,1,1,""]},"WORC.detectors":{detectors:[4,0,0,"-"]},"WORC.detectors.detectors":{AbstractDetector:[4,2,1,""],BigrClusterDetector:[4,2,1,""],CartesiusClusterDetector:[4,2,1,""],CsvDetector:[4,2,1,""],DebugDetector:[4,2,1,""],HostnameDetector:[4,2,1,""],LinuxDetector:[4,2,1,""],WORCDirectoryDetector:[4,2,1,""]},"WORC.detectors.detectors.AbstractDetector":{__abstractmethods__:[4,3,1,""],__dict__:[4,3,1,""],__module__:[4,3,1,""],__weakref__:[4,3,1,""],do_detection:[4,4,1,""]},"WORC.detectors.detectors.BigrClusterDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.CartesiusClusterDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.CsvDetector":{__abstractmethods__:[4,3,1,""],__init__:[4,4,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.DebugDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.HostnameDetector":{__abstractmethods__:[4,3,1,""],__init__:[4,4,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.LinuxDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.WORCDirectoryDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.exampledata":{create_example_data:[5,0,0,"-"],datadownloader:[5,0,0,"-"]},"WORC.exampledata.create_example_data":{create_random_features:[5,1,1,""]},"WORC.exampledata.datadownloader":{download_HeadAndNeck:[5,1,1,""],download_project:[5,1,1,""],download_subject:[5,1,1,""]},"WORC.facade":{basicworc:[6,0,0,"-"],simpleworc:[6,0,0,"-"]},"WORC.facade.basicworc":{BasicWORC:[6,2,1,""]},"WORC.facade.basicworc.BasicWORC":{__init__:[6,4,1,""],__module__:[6,3,1,""],execute:[6,4,1,""]},"WORC.facade.helpers":{configbuilder:[7,0,0,"-"],exceptions:[7,0,0,"-"],processing:[7,0,0,"-"]},"WORC.facade.helpers.configbuilder":{ConfigBuilder:[7,2,1,""]},"WORC.facade.helpers.configbuilder.ConfigBuilder":{__dict__:[7,3,1,""],__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""],build_config:[7,4,1,""],coarse_overrides:[7,4,1,""],custom_config_overrides:[7,4,1,""],estimator_scoring_overrides:[7,4,1,""],fullprint:[7,4,1,""]},"WORC.facade.helpers.exceptions":{InvalidCsvFileException:[7,5,1,""],InvalidOrderException:[7,5,1,""],NoFeaturesFoundException:[7,5,1,""],NoImagesFoundException:[7,5,1,""],NoMasksFoundException:[7,5,1,""],NoSegmentationsFoundException:[7,5,1,""],PathNotFoundException:[7,5,1,""]},"WORC.facade.helpers.exceptions.InvalidCsvFileException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.InvalidOrderException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoFeaturesFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoImagesFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoMasksFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoSegmentationsFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.PathNotFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.processing":{convert_radiomix_features:[7,1,1,""]},"WORC.facade.simpleworc":{SimpleWORC:[6,2,1,""]},"WORC.facade.simpleworc.SimpleWORC":{__dict__:[6,3,1,""],__init__:[6,4,1,""],__module__:[6,3,1,""],__weakref__:[6,3,1,""],add_config_overrides:[6,4,1,""],add_evaluation:[6,4,1,""],binary_classification:[6,4,1,""],count_num_subjects:[6,4,1,""],execute:[6,4,1,""],features_from_radiomix_xlsx:[6,4,1,""],features_from_this_directory:[6,4,1,""],images_from_this_directory:[6,4,1,""],labels_from_this_file:[6,4,1,""],masks_from_this_directory:[6,4,1,""],multiclass_classification:[6,4,1,""],predict_labels:[6,4,1,""],regression:[6,4,1,""],segmentations_from_this_directory:[6,4,1,""],semantics_from_this_file:[6,4,1,""],set_fixed_splits:[6,4,1,""],set_multicore_execution:[6,4,1,""],set_tmpdir:[6,4,1,""],survival:[6,4,1,""]},"WORC.featureprocessing":{ComBat:[9,0,0,"-"],Decomposition:[9,0,0,"-"],FeatureConverter:[9,0,0,"-"],ICCThreshold:[9,0,0,"-"],Imputer:[9,0,0,"-"],OneHotEncoderWrapper:[9,0,0,"-"],Preprocessor:[9,0,0,"-"],Relief:[9,0,0,"-"],Scalers:[9,0,0,"-"],SelectGroups:[9,0,0,"-"],SelectIndividuals:[9,0,0,"-"],StatisticalTestFeatures:[9,0,0,"-"],StatisticalTestThreshold:[9,0,0,"-"],VarianceThreshold:[9,0,0,"-"]},"WORC.featureprocessing.ComBat":{ComBat:[9,1,1,""],ComBatMatlab:[9,1,1,""],ComBatPython:[9,1,1,""],Synthetictest:[9,1,1,""]},"WORC.featureprocessing.Decomposition":{Decomposition:[9,1,1,""]},"WORC.featureprocessing.FeatureConverter":{FeatureConverter:[9,1,1,""],convert_PREDICT:[9,1,1,""],convert_pyradiomics:[9,1,1,""],convert_pyradiomics_featurevector:[9,1,1,""]},"WORC.featureprocessing.ICCThreshold":{ICCThreshold:[9,2,1,""],convert_features_ICC_threshold:[9,1,1,""]},"WORC.featureprocessing.ICCThreshold.ICCThreshold":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Imputer":{Imputer:[9,2,1,""]},"WORC.featureprocessing.Imputer.Imputer":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.OneHotEncoderWrapper":{OneHotEncoderWrapper:[9,2,1,""],test:[9,1,1,""]},"WORC.featureprocessing.OneHotEncoderWrapper.OneHotEncoderWrapper":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Preprocessor":{Preprocessor:[9,2,1,""]},"WORC.featureprocessing.Preprocessor.Preprocessor":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Relief":{SelectMulticlassRelief:[9,2,1,""]},"WORC.featureprocessing.Relief.SelectMulticlassRelief":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],multi_class_relief:[9,4,1,""],single_class_relief:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Scalers":{LogStandardScaler:[9,2,1,""],RobustStandardScaler:[9,2,1,""],WORCScaler:[9,2,1,""],test:[9,1,1,""]},"WORC.featureprocessing.Scalers.LogStandardScaler":{__module__:[9,3,1,""],fit:[9,4,1,""]},"WORC.featureprocessing.Scalers.RobustStandardScaler":{__module__:[9,3,1,""],fit:[9,4,1,""]},"WORC.featureprocessing.Scalers.WORCScaler":{__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.SelectGroups":{SelectGroups:[9,2,1,""]},"WORC.featureprocessing.SelectGroups.SelectGroups":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.SelectIndividuals":{SelectIndividuals:[9,2,1,""]},"WORC.featureprocessing.SelectIndividuals.SelectIndividuals":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.StatisticalTestFeatures":{StatisticalTestFeatures:[9,1,1,""]},"WORC.featureprocessing.StatisticalTestThreshold":{StatisticalTestThreshold:[9,2,1,""]},"WORC.featureprocessing.StatisticalTestThreshold.StatisticalTestThreshold":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.VarianceThreshold":{VarianceThresholdMean:[9,2,1,""],selfeat_variance:[9,1,1,""]},"WORC.featureprocessing.VarianceThreshold.VarianceThresholdMean":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.plotting":{compute_CI:[10,0,0,"-"],linstretch:[10,0,0,"-"],plot_ROC:[10,0,0,"-"],plot_barchart:[10,0,0,"-"],plot_boxplot_features:[10,0,0,"-"],plot_boxplot_performance:[10,0,0,"-"],plot_errors:[10,0,0,"-"],plot_estimator_performance:[10,0,0,"-"],plot_hyperparameters:[10,0,0,"-"],plot_images:[10,0,0,"-"],plot_pvalues_features:[10,0,0,"-"],plot_ranked_scores:[10,0,0,"-"],plotminmaxresponse:[10,0,0,"-"],scatterplot:[10,0,0,"-"]},"WORC.plotting.compute_CI":{compute_confidence:[10,1,1,""],compute_confidence_bootstrap:[10,1,1,""],compute_confidence_logit:[10,1,1,""]},"WORC.plotting.linstretch":{linstretch:[10,1,1,""]},"WORC.plotting.plot_ROC":{curve_thresholding:[10,1,1,""],main:[10,1,1,""],plot_PRC_CIc:[10,1,1,""],plot_ROC:[10,1,1,""],plot_ROC_CIc:[10,1,1,""],plot_single_PRC:[10,1,1,""],plot_single_ROC:[10,1,1,""]},"WORC.plotting.plot_barchart":{count_parameters:[10,1,1,""],main:[10,1,1,""],paracheck:[10,1,1,""],plot_barchart:[10,1,1,""],plot_bars:[10,1,1,""]},"WORC.plotting.plot_boxplot_features":{generate_feature_boxplots:[10,1,1,""],plot_boxplot_features:[10,1,1,""]},"WORC.plotting.plot_boxplot_performance":{generate_performance_boxplots:[10,1,1,""],test:[10,1,1,""]},"WORC.plotting.plot_errors":{plot_errors:[10,1,1,""]},"WORC.plotting.plot_estimator_performance":{combine_multiple_estimators:[10,1,1,""],compute_statistics:[10,1,1,""],fit_thresholds:[10,1,1,""],main:[10,1,1,""],plot_estimator_performance:[10,1,1,""]},"WORC.plotting.plot_hyperparameters":{plot_hyperparameters:[10,1,1,""]},"WORC.plotting.plot_images":{bbox_2D:[10,1,1,""],extract_boundary:[10,1,1,""],plot_im_and_overlay:[10,1,1,""],slicer:[10,1,1,""]},"WORC.plotting.plot_pvalues_features":{manhattan_importance:[10,1,1,""]},"WORC.plotting.plot_ranked_scores":{example:[10,1,1,""],flatten_object:[10,1,1,""],main:[10,1,1,""],plot_ranked_images:[10,1,1,""],plot_ranked_percentages:[10,1,1,""],plot_ranked_posteriors:[10,1,1,""],plot_ranked_scores:[10,1,1,""]},"WORC.plotting.plotminmaxresponse":{main:[10,1,1,""]},"WORC.plotting.scatterplot":{main:[10,1,1,""],make_scatterplot:[10,1,1,""]},"WORC.processing":{ExtractNLargestBlobsn:[11,0,0,"-"],classes:[11,0,0,"-"],helpers:[11,0,0,"-"],label_processing:[11,0,0,"-"],preprocessing:[11,0,0,"-"],segmentix:[11,0,0,"-"]},"WORC.processing.ExtractNLargestBlobsn":{ExtractNLargestBlobsn:[11,1,1,""]},"WORC.processing.classes":{"switch":[11,2,1,""]},"WORC.processing.classes.switch":{__dict__:[11,3,1,""],__init__:[11,4,1,""],__iter__:[11,4,1,""],__module__:[11,3,1,""],__weakref__:[11,3,1,""],match:[11,4,1,""]},"WORC.processing.helpers":{check_image_orientation:[11,1,1,""],resample_image:[11,1,1,""],transpose_image:[11,1,1,""]},"WORC.processing.label_processing":{findlabeldata:[11,1,1,""],load_config_XNAT:[11,1,1,""],load_label_XNAT:[11,1,1,""],load_label_csv:[11,1,1,""],load_label_txt:[11,1,1,""],load_labels:[11,1,1,""]},"WORC.processing.preprocessing":{bias_correct_image:[11,1,1,""],clip_image:[11,1,1,""],normalize_image:[11,1,1,""],preprocess:[11,1,1,""]},"WORC.processing.segmentix":{dilate_contour:[11,1,1,""],get_ring:[11,1,1,""],mask_contour:[11,1,1,""],segmentix:[11,1,1,""]},"WORC.resources":{fastr_tools:[14,0,0,"-"]},"WORC.resources.fastr_tests":{CalcFeatures_test:[13,0,0,"-"],elastix_test:[13,0,0,"-"],segmentix_test:[13,0,0,"-"]},"WORC.resources.fastr_tests.CalcFeatures_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.resources.fastr_tests.elastix_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.resources.fastr_tests.segmentix_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.statistics":{delong:[15,0,0,"-"]},"WORC.statistics.delong":{calc_pvalue:[15,1,1,""],compute_ground_truth_statistics:[15,1,1,""],compute_midrank:[15,1,1,""],compute_midrank_weight:[15,1,1,""],delong_roc_test:[15,1,1,""],delong_roc_variance:[15,1,1,""],fastDeLong:[15,1,1,""]},"WORC.tests":{WORCTutorialSimple_travis_multiclass:[16,0,0,"-"],WORCTutorialSimple_travis_regression:[16,0,0,"-"],test_combat:[16,0,0,"-"],test_helpers:[16,0,0,"-"],test_iccthreshold:[16,0,0,"-"],test_plot_errors:[16,0,0,"-"],test_validators:[16,0,0,"-"]},"WORC.tests.WORCTutorialSimple_travis_multiclass":{main:[16,1,1,""]},"WORC.tests.WORCTutorialSimple_travis_regression":{main:[16,1,1,""]},"WORC.tests.test_combat":{test_combat:[16,1,1,""],test_combat_fastr:[16,1,1,""]},"WORC.tests.test_helpers":{find_exampledatadir:[16,1,1,""],find_testdatadir:[16,1,1,""]},"WORC.tests.test_iccthreshold":{test_iccthreshold:[16,1,1,""]},"WORC.tests.test_plot_errors":{test_plot_errors:[16,1,1,""]},"WORC.tests.test_validators":{test_invalidlabelsvalidator_columnsubstring:[16,1,1,""],test_invalidlabelsvalidator_patientcolumn:[16,1,1,""],test_invalidlabelsvalidator_patientsubstring:[16,1,1,""],test_invalidlabelsvalidator_validconfig:[16,1,1,""]},"WORC.tools":{Elastix:[17,0,0,"-"],Evaluate:[17,0,0,"-"],Inference:[17,0,0,"-"],Slicer:[17,0,0,"-"],Transformix:[17,0,0,"-"],createfixedsplits:[17,0,0,"-"]},"WORC.tools.Elastix":{Elastix:[17,2,1,""]},"WORC.tools.Elastix.Elastix":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],addchangeorder:[17,4,1,""],create_bbox:[17,4,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],getparametermap:[17,4,1,""]},"WORC.tools.Evaluate":{Evaluate:[17,2,1,""]},"WORC.tools.Evaluate.Evaluate":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_links_Addon:[17,4,1,""],create_links_Standalone:[17,4,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],set:[17,4,1,""]},"WORC.tools.Inference":{Inference:[17,2,1,""]},"WORC.tools.Inference.Inference":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""]},"WORC.tools.Slicer":{Slicer:[17,2,1,""]},"WORC.tools.Slicer.Slicer":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],set:[17,4,1,""]},"WORC.tools.Transformix":{Transformix:[17,2,1,""]},"WORC.tools.Transformix.Transformix":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""],execute:[17,4,1,""]},"WORC.tools.createfixedsplits":{createfixedsplits:[17,1,1,""]},"WORC.validators":{preflightcheck:[18,0,0,"-"]},"WORC.validators.preflightcheck":{AbstractValidator:[18,2,1,""],EvaluateValidator:[18,2,1,""],InvalidLabelsValidator:[18,2,1,""],MinSubjectsValidator:[18,2,1,""],SamplesWarning:[18,2,1,""],SimpleValidator:[18,2,1,""],ValidatorsFactory:[18,2,1,""]},"WORC.validators.preflightcheck.AbstractValidator":{__abstractmethods__:[18,3,1,""],__dict__:[18,3,1,""],__module__:[18,3,1,""],__weakref__:[18,3,1,""],do_validation:[18,4,1,""]},"WORC.validators.preflightcheck.EvaluateValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.InvalidLabelsValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.MinSubjectsValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.SamplesWarning":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.SimpleValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.ValidatorsFactory":{__dict__:[18,3,1,""],__module__:[18,3,1,""],__weakref__:[18,3,1,""],factor_validators:[18,6,1,""]},WORC:{WORC:[0,0,0,"-"],__init__:[0,0,0,"-"],addexceptions:[0,0,0,"-"],classification:[2,0,0,"-"],facade:[6,0,0,"-"],featureprocessing:[9,0,0,"-"],plotting:[10,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","attribute","Python attribute"],"4":["py","method","Python method"],"5":["py","exception","Python exception"],"6":["py","staticmethod","Python static method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:attribute","4":"py:method","5":"py:exception","6":"py:staticmethod"},terms:{"0284186x":9,"06875v1":9,"0a1":66,"0rc1":59,"105741d":59,"1st":2,"1x1x1":[50,60,62],"22nd":70,"2nd":[2,66],"5th":9,"95th":9,"95varianc":[33,34,62],"98nd":66,"boolean":[0,1,2,6,9,10,11,19,25,31,33,39,43,47,51,52,57,59,61,62],"case":[2,11,24,61,62,64,66,70],"catch":[0,61],"class":[0,2,4,6,7,9,15,17,18,59,61,64,70],"default":[0,1,2,6,9,10,11,17,19,21,22,23,25,27,28,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,60,61,62,64,65,66,69,70],"export":68,"final":[2,9,11,62,70],"float":[2,9,10,11,15,21,25,33,39,41,42,49,51,53,61,62,66],"function":[0,2,4,6,7,9,10,11,16,17,18,22,50,59,61,62,63,64,65,66,67,69,70],"gr\u00fcnhagen":59,"import":[2,9,34,59,61,62,68,70],"int":[2,9,11],"long":66,"new":[0,59,61,66,68],"return":[0,1,2,9,10,11,15,61,64],"short":66,"static":[18,42,62],"switch":[9,11,61],"throw":[61,66],"true":[0,2,5,6,9,10,11,21,26,29,32,33,37,38,40,41,43,44,48,49,50,51,55,57,58,60,62,69,70],"try":[2,60,68],"while":[2,11,40,61,62,66],Added:59,Adding:59,Age:69,And:9,Els:59,For:[0,2,6,9,22,42,48,59,60,61,62,63,64,65,66,68,69,70],IDs:[11,65],Not:[2,6,61,68],One:[2,54,61,62],PCs:[22,62],SVs:2,That:9,The:[0,1,2,6,9,10,11,15,26,34,46,59,60,61,62,63,64,65,66,67,68],Then:2,There:[61,69,70],These:[10,62,64,66,69,70],USING:59,Use:[2,6,19,20,22,27,28,31,32,47,48,53,54,61,62,66,69],Using:[59,68],Vos:59,Was:61,Will:6,With:59,__abstractmethods__:[2,4,9,18],__dict__:[0,2,4,6,7,9,11,17,18],__doc__:[0,2,4,6,7,9,11,17,18],__file__:69,__init__:[0,2,4,6,7,9,11,17],__iter__:[2,11],__len__:2,__module__:[0,2,4,6,7,9,11,17,18],__weakref__:[0,2,4,6,7,9,11,17,18],_abc_data:[4,18],_abc_impl:[4,18],_base:9,_cluster_config_overrid:7,_data:9,_debug_config_overrid:7,_format_result:2,_generate_detector_messag:[4,18],_is_detect:4,_set_and_validate_estim:6,_valid:[6,18],abbrevi:[22,62],abc:[4,18],about:66,abov:[2,9,60,61,62,66,68,69,70],absolut:61,abspath:69,abstractdetector:4,abstractvalid:18,accept:[2,39,61,62],accorad:2,accord:[2,9,10,66,69,70],accordingli:[60,69],account:[9,10,70],accur:[2,4,7,9,11,17],accuraci:[2,10,70],acquisit:68,across:2,act:62,actual:[0,2,6,30,59,60,61,62,63,64,68,70],adaboost:[22,61,62],adaboost_learning_r:[21,22,62],adaboost_n_estim:[21,22,62],adaboostclassifi:[21,62],adaboostregressor:[21,62],adapt:[59,68],adasyn:[2,53,61,62],add:[0,2,6,9,17,61,64,65,66,67,69,70],add_combat:0,add_config_overrid:6,add_elastix:0,add_elastix_sourcesandsink:0,add_evalu:[0,6,69,70],add_feature_calcul:[0,64],add_parameters_to_grid:2,add_preprocess:0,add_segmentix:0,add_tool:0,addchangeord:17,added:[9,17,24,61,62,64,70],addexcept:59,addinf:61,adding:[2,17,62,64,69,70],addit:[0,6,38,59,61,62,66,69,70],addition:[1,9,10,61,62,70],address:59,adequ:64,adher:61,adjust:[2,10,61,62,70],adopt:[2,15,54,61,62],advanc:[59,69,70],advancedsampl:[0,59],advantag:62,advic:[52,60,62,64,69,70],affect:2,affin:17,after:[0,2,9,38,60,61,62,64,65,66,69,70],afterward:[6,9],again:[62,66,68,69],age:[41,62,66,70],agesex:10,aggreg:66,agument:11,aim:59,aka:70,alejandro:66,alex:66,algorithm:[2,15,60,61,62,68],align:70,all:[0,1,2,6,9,10,11,21,24,38,40,44,48,53,57,58,60,61,62,63,64,65,66,68,69,70],allign:70,allow:[2,6,61,66,67],allow_non:2,along:[9,68],alpha:[2,10],alpha_new:2,alpha_old:2,alreadi:[60,62,68,70],als:70,also:[0,2,6,9,34,54,59,60,61,62,64,65,66,68,69,70],alter:[2,11,61,62,66],altern:70,although:68,alwai:[2,9,61,68,69,70],among:[2,9,10,59,62],amount:[66,68],anaconda:[65,69],analys:69,analysi:[34,59,62,66,70],analyticsvidhya:62,angl:[42,62,66],angu:59,angular:66,ani:[2,9,10,21,39,48,61,62,65,66,68,69,70],annual:59,anoth:[11,60,68,70],anova:2,any_structur:2,anymor:61,anyth:68,anywai:9,apach:59,api:[54,60,62],appear:66,append:[61,62,70],appendix:2,appli:[0,2,6,9,11,38,50,60,61,62,66,68],applic:[11,59,66,68],approach:[9,59,62,68],appropri:0,arbitrari:66,area:[15,66,70],arg:[1,2,4,11,15,18],argmax:10,argu:66,argument:[0,1,2,11,61,64,65],arif:59,around:[2,6,17,56,60,62,64,70],arrai:[1,2,9,10,11,15,59],artefact:66,articl:[15,59,66],arxiv:[9,59],asm:66,aspect:66,assertionerror:0,assess:[6,9,61],assign:[2,40,42,62],assist:[59,66],associ:2,assum:[2,9,50,60,62,65,68,69,70],assumesameimageandmaskmetadata:[11,37,38,62],assumpt:[2,38,62,70],attribut:[0,2,4,6,7,9,11,17,18,59,61],atyp:70,auc:[2,15,70],author:15,auto:[2,53,62],autom:59,automat:[0,6,11,40,59,60,61,62,66,68,69],avail:[2,6,61,63,68],averag:[10,61],average_precision_weight:[39,62],avoid:[2,60,66],awai:66,axes:66,axi:[9,50,62,66],axial:[11,49,50,51,56,60,61,62,66],back:[61,65],backend:[38,61,62],backward:61,balanc:70,band:[6,70],bangma:59,barchart:[10,61,70],base:[0,2,4,5,6,7,9,10,11,17,18,34,50,59,61,62,66,70],baseestim:[2,9],baselin:68,basesearchcv:2,basesearchcvfastr:2,basesearchcvjoblib:2,basestr:6,basi:70,basic:[64,66,68,70],basicworc:[0,59,61,69,70],batch:[9,23,24,60,62],bay:[24,62],bbox_2d:10,bca:70,been:[0,9,10,59,66,68,69],befor:[0,2,6,9,42,60,61,62,65,66,68,69],beforehand:66,begin:[59,61],beginn:59,behavior:2,behaviour:61,being:[15,50,62],belong:[0,2,9],below:[0,2,34,48,60,62,66,68,69,70],benefit:[60,66,68],bengio:70,benign:59,bent:59,berlin:66,besid:[0,59,62,70],best:[2,10,61,62,63,68],best_estim:2,best_estimator_:2,best_index_:2,best_params_:2,best_score_:2,beta:2,better:61,between:[2,9,17,21,22,34,42,59,61,62,66],bia:[2,11,50,60,61,62],bias_correct_imag:11,biascorrect:[49,50,62],biascorrection_mask:[49,50,62],big:61,bigr:[6,40,62,69],bigr_erasmusmc:2,bigrclusterdetector:4,bin:[52,59,62,64],binari:[2,6,9,10,11,59,61,69],binary_classif:[0,6,17,69],binaryimag:11,bincount:[51,52,62],binwidth:[51,52,62],bio:59,biomark:[59,66,68],biomed:59,bit:61,bitbucket:2,bitwise_xor:61,black:59,blazev:59,blob:[11,56,60,62,64],block:69,blog:62,bme:59,bmia:69,boht:66,bonferonni:9,book:59,bool:2,boolean_uniform:2,boost:[22,61,62],boostrap:61,bootstrap:[3,10,20,59,61,70],bootstrap_metr:10,bootstrap_n:10,border:60,borderlinesmot:[2,53,62],both:[2,10,59,60,61,62,64,66,68,70],bound:[11,17],boundari:[9,10,11,34,42,62],box:[17,59,62],boxplot:[10,61],braband:59,braf:59,branch:[0,22,62],breviti:69,british:59,broad:66,brought:68,bug:61,bugfix:61,buggi:61,build:[0,17,59,61,68,69,70],build_config:7,build_train:0,built:69,buisman:59,bulletin:9,busy:66,button:59,c_valu:2,cache_s:2,cad:2,caddementia:2,calc_pvalu:15,calcfeat_nod:0,calcfeatur:[37,61,62],calcfeatures_test:[0,12],calcul:[0,2,9,10,38,62,64],call:[2,61,64,66,69,70],callabl:2,can:[0,2,6,9,10,11,17,34,38,42,44,50,59,60,61,62,64,65,66,68,69,70],cancer:[59,66],candid:2,cannot:[2,59,60,61],captur:60,carcinoma:59,cardin:61,cartesiu:[6,69],cartesiusclusterdetector:4,caruana:[2,10],cash:[62,68],cast:61,castillo:59,categor:[9,61],categori:70,caught:6,center:[59,66],centr:66,certain:[2,6,17,60,61,62,66,70],cf_pyradiom:[37,62],challeg:2,challeng:[2,70],chang:[6,59,60,62,64,66,69],changelog:59,chapter:[6,59,60,62,63,65,66,67,69,70],characterist:[10,15,70],check:[2,6,11,48,50,60,61,62,64,70],check_image_orient:11,check_multimetric_scor:2,check_scor:2,checkorient:[49,50,62],checkspac:[49,50,62],chi2:61,child:[22,62],choic:[2,59,68],choos:[2,50,61,62],chosen:[2,62,66],chunk:2,chunksdict:2,circular:66,class_i:2,class_j:2,class_weight:2,classfic:[40,62],classif:[0,3,6,22,46,61,64,66,69,70],classifi:[0,2,10,21,22,32,59,61,62,65,70],classifier_data:2,classifiermixin:2,classpi:2,clean:[54,61,62],clf:2,clinic:68,clip:[11,49,50,60,61,62],clip_imag:11,clipping_rang:[49,50,62],clone:69,closest:2,cluster:[2,6,22,40,61,62,68,69],cnb_alpha:[21,22,62],coars:[6,66,69],coarse_overrid:7,code:[60,62,69],coef0:2,coeffici:[2,9,70],col:[22,62],coliag:[41,42,58,62],coliage_featur:[9,57,58,62],collabor:59,colleagu:68,color:10,colorect:59,column:[2,6,9,59,66,70],com:[6,9,15,38,59,62,64,65,66,69,70],combat:[0,3,16,24,37,38,59,61],combatharmon:[9,38,62],combatmatlab:9,combatpython:9,combin:[1,2,9,10,24,31,32,59,61,62,63,66,68,70],combine_featur:1,combine_method:[1,31,32,62],combine_multiple_estim:10,comma:[2,9,21,23,35,36,41,62],command:[0,2,9,17,59,61,62,64,65,68,69],common:[2,6],commonli:66,commun:69,compact:66,compar:[15,68],comparison:[59,66],compat:[1,7,9,11,60,61,64],complementari:66,complementnb:[22,62],complementnd:[21,62],complet:[61,62,69,70],complex:[66,70],compon:[9,17,34,60,62,68,70],comprehens:[60,63,66],comput:[0,2,6,9,10,15,16,42,52,59,60,61,62,66,68,69,70],compute_ci:[0,59],compute_confid:10,compute_confidence_bootstrap:10,compute_confidence_logit:10,compute_ground_truth_statist:15,compute_midrank:15,compute_midrank_weight:15,compute_statist:10,concept:[59,68],concern:68,concord:70,conda:65,condit:65,conduct:[2,61,70],confer:[59,66,70],conffid:61,confid:[6,10,61,70],config:[0,1,2,6,7,9,10,11,17,22,34,60,61,62,63,64,66,69,70],config_file_path:[1,11],config_io_classifi:[0,59,64],config_io_combat:[0,59],config_io_pyradiom:[0,59],config_preprocess:[0,59],config_segmentix:[0,59],config_worc:[0,59],configbuild:[0,6,61],configpars:[0,11,62],configur:[0,1,2,6,9,59,60,61,64,65,67,69,70],confipars:1,congress:59,congruenc:66,connect:59,consist:[2,39,40,62,69,70],consol:7,constant:[9,43,62,68],construct:[2,6,10,59,69],construct_classifi:[0,59],construct_svm:2,consumpt:2,contain:[0,1,2,6,9,10,11,36,61,62,66,69,70],containingfor:2,content:[7,11,59,66],continu:[2,61,69],contour:[10,11,56,60,62],contrast:[2,66],contribut:59,control:2,converg:[10,61],convers:61,convert:[1,7,9,61,64,66],convert_config_pyradiom:1,convert_features_icc_threshold:9,convert_predict:9,convert_pyradiom:9,convert_pyradiomics_featurevector:9,convert_radiomix_featur:7,convex:66,copi:[0,2,9,11,38,59,60,61,62,64],copymetadata:0,core:[2,6,38,40,61,62,66,69],coron:[51,62],correct:[11,24,50,60,61,62,70],correctli:[10,61,65,70],correl:[9,15,66,68,70],correspond:[2,9,10,40,52,61,62,66,70],cost:2,could:[61,65,66,68],count:[6,52,62,66],count_num_subject:6,count_paramet:10,coupl:70,cours:70,covari:15,cox:70,cpu:2,crash:[59,61,69],creat:[0,2,5,6,10,17,61,62,66,68,69,70],creata:2,create_bbox:17,create_ensembl:[2,61],create_example_data:[0,59,70],create_links_addon:17,create_links_standalon:17,create_network:[13,17],create_param_grid:2,create_random_featur:5,create_sourc:62,createfixedsplit:[0,59],creation:[59,61,66],criteria:59,criterion:2,crop:68,cross:[0,2,10,17,26,38,40,61,62,70],cross_valid:[37,38,62],crossval:[0,59],crossval_typ:10,crossvalid:[3,59],csv:[6,9,10,61,69,70],csv_file_path:4,csv_out:9,csvdetector:4,ct001:0,ct002:0,cto:59,current:[0,2,9,11,26,32,50,59,60,61,62,65,68,70],curv:[6,10,15,61,70],curve_threshold:10,custom:[2,51,52,62],custom_config_overrid:7,cv_iter:2,cv_results_:2,cyan:10,dai:65,dat:9,data:[0,2,9,10,11,16,26,59,60,61,62,66,68,69],data_path:69,datadir:69,datadownload:[0,59,61,69],datafil:61,datafold:[5,69],datafram:[2,10],dataset:[0,2,6,30,38,40,59,60,61,62,68,69,70],datatyp:[61,64,67],datayp:61,dcm:11,deal:[60,61],debug:[10,38,59,61,62,69],debugdetector:4,decent:68,decid:[66,68],decision_funct:2,decision_function_shap:2,decod:66,decomposit:[0,6,59,61,70],decompositon:61,default_queu:65,default_scor:2,defaultconfig:[0,7,62,64,70],defin:[0,2,4,6,7,9,11,17,18,34,56,62,63,64,66,68,69,70],definit:[9,59,66],degre:[2,22,42,62,66],del:69,delai:2,delet:[2,59,61,64],delete_cc_para:2,delete_nonestimator_paramet:2,delong:[0,59],delong_roc_test:15,delong_roc_vari:15,demand:2,dementia:2,demo_param:2,demonst:2,den:59,depend:[0,2,10,59,61,65,68,70],deprec:61,depth:[22,62],der:59,describ:[0,2,63,66,67,70],descript:[2,9,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,69],descriptor:66,design:68,desmoid:59,despit:59,detail:[2,6,10,11,60,62,65,66,70],detect:[61,65,66],detector:[0,6,59,61,69],determin:[1,2,6,10,11,20,28,32,34,36,38,42,44,46,48,50,52,56,59,61,62,66,68,69,70],determinist:2,develop:[2,66,68],developp:61,deviat:[9,42,62,66],diagnosi:59,diagnost:59,diamet:66,dicom:[0,41,42,50,58,59,60,61,62,70],dicom_featur:[9,57,58,61,62],dicom_feature_label:[41,42,62,66],dicom_feature_tag:[41,42,62,66],dict:[0,1,2,9,11],dictionari:[0,1,2,6,10,11,61,62,70],did:[61,64,68,70],didn:61,differ:[2,10,11,15,59,60,61,68],differenti:59,difficult:68,difscal:9,digit:66,dilat:[11,50,55,56,60,61,62,70],dilate_contour:11,dilate_roi:11,dimens:66,dimension:68,direct:[61,66],directli:[6,66,68,69,70],directori:[0,6,62,69],dirnam:69,disabl:[52,61,62],disc:[50,56,62],discret:[42,62,66],discrete_uniform:2,discrimin:59,discuss:[60,66,70],dispatch:2,dissimilar:66,distanc:[9,34,42,62,66],distance_p:9,distinguish:[2,59,70],distribut:[2,61,64,69,70],distrubit:2,divers:68,divid:68,do_detect:4,do_test_rs_ensembl:2,do_valid:18,doc:64,docstr:70,doctest:2,document:[2,6,9,60,61,63,65,69,70],doe:[2,9,61,62,65,66],doi:9,doing:[2,62],don:69,done:[0,2,60,61,62,63,64,66,68,70],down:61,download:[61,69],download_headandneck:[5,69],download_project:5,download_subject:5,dpi:10,draw_network:70,drawback:66,drawn:[2,40,62],drmaa:[40,62],drmaaplugin:65,drop:61,drug:66,dti:61,dtrf:59,due:[2,61,68],dummi:61,dure:[2,40,61,62,65],dwarkas:59,e104:66,e107:66,each:[2,6,9,10,11,42,61,62,65,66,68,69,70],earlier:[66,69],easi:[59,68],easier:[61,68,70],easili:[61,62,68,69,70],echo:66,ecr:59,edg:[42,62,66],edit:[69,70],editelastixtransformfil:61,edwardo:2,effect:59,effici:[2,61,66],effort:68,efron:70,eigen:[21,62],either:[0,2,9,10,24,34,62,69,70],ejrad:[],elasticnet:[21,22,61,62],elasticnet_alpha:[21,22,62],elasticnet_l1_ratio:[21,22,62],elastix4:[37,62],elastix:[0,37,59,61,62,70],elastix_para:0,elastix_test:[0,12],electr:66,element:[9,34,50,62,70],elif:[65,69],ellip:66,ellipsi:2,ellipt:66,elong:66,els:[64,65],emb:64,embed:[60,61,63],emper:[24,62],emphasi:66,empir:70,emploi:2,empti:2,emptygraylevel:65,enabl:[2,6,52,62],encod:[2,48,62],end:[59,64],energi:66,engin:[2,59,68],enhanc:66,enough:2,ensembl:[2,3,10,17,28,40,59,61,68],ensemble_scor:10,ensur:0,enter:[2,11],entir:2,entri:59,entropi:66,environ:65,epsilon_insensit:[21,62],equal:[2,9,22,24,28,50,62,66],erasmu:68,error:[2,6,10,16,59,61,66,69,70],error_scor:2,especi:[2,38,59,61,62],establish:[59,66],estim:[0,6,7,10,17,21,22,28,34,40,59,61,62],estimator_input:2,estimator_scoring_overrid:7,estsiz:10,etc:[2,9,10,59],etcetera:69,european:59,eusomii:59,evalu:[0,2,3,6,10,30,40,59,61,69],evaluatevalid:18,even:66,everi:[38,62,68],everywher:64,exact:2,exampl:[0,2,6,10,11,15,16,17,48,59,61,62,65,66,68,69],example_stwstrategyhn:69,exampledata:[0,59,69,70],examplefil:69,excel:[66,70],except:[0,6,61],exclud:[9,24,32,34,62],excluded_featur:[23,24,62],exctract:66,exe:[23,62],execut:[0,2,6,16,17,21,22,24,59,61,62,64,68,69],execute_first:7,executionplugin:65,exhaust:2,exist:[17,61,68],exp:2,exp_uniform:2,expand:[10,61,66],expect:[68,69],expected_hostnam:4,experi:[2,6,16,59,61,66,70],experiment:[30,62],experiment_fold:69,experiment_nam:69,expert:66,explain:[34,62],explant:66,explicit:2,explor:2,explos:2,expon:[2,22,62],express:2,extens:[61,68,69],extrac:60,extract:[1,2,6,9,10,11,42,52,56,59,60,61,62,68,70],extract_boundari:10,extract_firstord:[51,52,62],extract_shap:[51,52,62],extractnlargestblobsn:[0,59],extractor:[51,52,62],extrat:11,f1_score:61,f1_weight:[2,6,39,62],f1_weighted_predictproba:[2,39,62],f6d255a45dd:62,facad:[0,7,59,61,69,70],facilit:[59,68],factor_valid:18,fail:61,fals:[1,2,5,9,10,11,17,19,21,22,25,29,31,37,39,41,44,47,49,50,51,55,57,59,62,69],familiar:68,fancyimput:9,faq:[59,61],fashion:69,fast:[2,15,59],fastdelong:15,fastr3:61,fastr:[0,2,6,17,21,22,40,59,61,62,64,65,69,70],fastr_plugin:[0,2,17,21,22,62],fastr_tempdir:[0,62],fastr_test:[0,12],fastr_tool:[0,12],fastrconfig:[0,59,62,70],fastrhom:62,fat:66,fator:2,fatsat:66,fault:61,feat:1,feat_in:9,feat_out:9,feat_out_0:59,feat_test:2,feat_train:2,featpreprocess:[3,59],featsel:[3,59],featur:[0,1,2,5,6,7,9,10,11,16,17,24,32,34,36,38,42,44,48,51,52,58,59,60,61,62,68,69],feature_fil:[6,69],feature_file_nam:6,feature_label:[2,9,10,69],feature_label_1:10,feature_label_2:10,feature_labels_tofit:[9,47,48,62],feature_select:[9,34,62],feature_set:9,feature_valu:[2,9,69],featurecalcul:[37,38,62,64],featureconvert:[0,59,64],featurefil:[1,10],featurefile_p1:69,featurenam:10,featureprocess:[0,59,64],features_:69,features_from_radiomix_xlsx:6,features_from_this_directori:[6,69],features_in:9,features_mod1_patient1:1,features_mod1_patient2:1,features_mod2_patient1:1,features_mod2_patient2:1,features_out:9,features_p1:69,features_test:70,features_test_in:9,features_test_out:9,features_train:70,features_train_in:9,features_train_out:9,featuresc:[3,59],featuresdatadir:69,featurevector:9,feel:[68,69],fellow:68,felt:68,fetur:[11,66],few:68,fewer:66,fibromatosi:59,fibrosi:59,fiduzi:59,field:[1,2,9,11,36,48,60,61,62,64,66,68,69],fig:10,figsiz:10,figur:[10,61,68],figwidth:10,fij:9,file1:[2,9],file2:[2,9],file3:[2,9],file:[0,1,2,5,6,9,10,11,46,59,60,61,62,64,66,69],file_io:[0,59,61],file_path:6,filenam:[10,11,65,70],filepath:[10,61],filesmatlabr2015bbinmatlab:[23,62],filesystem:61,fill:[56,60,62],fill_valu:9,fillhol:[55,56,62],filter:[42,59,62,68],finalbsplineinterpolationord:61,find:[2,16,59,61,63,65,68,69],find_exampledatadir:16,find_testdatadir:16,findlabeldata:11,first:[6,9,10,15,34,52,59,61,62,66,68,69,70],fit:[2,9,30,40,61,62,63,64,66,70],fit_and_scor:[2,63,64],fit_param:2,fit_threshold:10,fit_tim:2,fitandscor:[0,59,61,63,64],fitfailedwarn:2,fittd:2,fitted_workflow:2,five:[64,68],fix:[2,10,17,26,34,52,59,62,65,68,70],fixandscor:61,fixed_se:[2,25,26,62],fixed_splits_csv:6,fixedsplit:2,flag:61,flat:66,flatten:[10,61],flatten_object:10,fleiss:9,flexibl:[61,68],flip:[10,66],fluctuat:66,focu:70,focuss:70,fold:2,folder:[2,7,10,16,61,62,64,69,70],follow:[2,9,10,59,60,62,64,65,66,68,69,70],fontsiz:[9,10],force2d:[51,52,62],force2ddimens:[51,52,62],foremost:66,foresight:68,forest:[34,62],fork:65,form:66,format:[0,1,2,5,6,7,9,10,11,59,60,61,62,64,65,70],formula:2,forward:68,found:[2,59,61,62,68,69,70],foundat:59,four:68,fpr:10,fractal:[58,61,62],fractal_featur:[9,57,58,62],framework:[59,61,68],frangi:[42,62,66],free:69,freeli:70,frequenc:[42,62,66],frequent:9,from:[0,1,2,6,7,9,10,11,15,21,24,38,40,42,46,56,59,60,61,62,64,65,66,68,69,70],frozenset:[2,4,9,18],fulfil:2,full:[6,7,10,11,38,49,50,59,60,61,62,69],fulli:[6,59,61],fullprint:7,fun:68,function_bas:59,funtion:9,further:61,furthermor:66,futur:61,gabor:[42,58,59,61,62],gabor_angl:[41,42,62,66],gabor_frequ:[41,42,62,66],gamma:[2,22,62],garcia:2,gastrointestin:59,gather:10,gaussian:[52,59,62],gaussiannb:[21,62],gave:[2,61],gclm:[48,62,66],gener:[0,2,3,6,9,10,21,22,27,34,50,59,60,61,64,65,66,68,70],generalis:59,generaliz:59,generate_config:64,generate_feature_boxplot:10,generate_performance_boxplot:10,genet:[11,70],geometrytoler:[51,52,62],get:[2,10,11,59,68,69,70],get_r:11,getparametermap:17,gibhub:59,git:69,github:[1,2,6,9,10,11,15,38,59,62,64,65,69,70],give:[2,48,60,61,62,65,66,68,69,70],given:[0,2,6,9,10,40,42,59,61,62,64,66,69,70],glcm:[42,48,52,58,59,62,65],glcm_angl:[41,42,62,66],glcm_distanc:[41,42,62,66],glcm_level:[41,42,62,66],glcmm:66,gldm:[52,58,59,62,65],gldzm:[58,61,62],glob:[6,69],glrlm:[42,52,58,59,62,65],glszm:[42,52,58,59,62,65],gmean:[39,62],going:68,good:70,grade:59,grahpviz:61,grai:59,grand:2,graphviz:61,grayscal:[42,62],grid:[2,40,62],grid_scor:61,gridsearch:[22,62],gridsearchcv:2,gridsearchcvfastr:2,gridsearchcvjoblib:2,griethuysen:66,grlm:66,ground:[10,70],ground_truth:15,groundtruth:2,group:[2,9,34,61,62,66,68,70],groupsel:[2,64],groupwis:[2,61,66,70],groupwisesearch:[33,34,62],growth:59,gsout:2,guarante:2,guid:[2,59,62],guidelin:70,hack:65,had:[61,68],haibo:2,halton:2,haltonsampl:2,hand:68,handbook:59,handl:[9,61],handle_unknown:9,hanff:59,happen:66,harmon:[0,9,16,38,59,60,61,62],has:[0,2,6,9,50,59,62,65,66,68],have:[0,2,9,10,11,34,38,59,60,61,62,64,65,66,68,69,70],hdf5:[1,2,6,7,9,10,59,69,70],head:[69,70],header:[0,2,6,66,70],heidelberg:66,held:2,help:[2,4,7,9,11,17,61,70],helper:[0,6,59],henc:[2,6,9,10,60,61,62,64,66,68,70],hepatocellular:59,herder:59,here:[2,60,62,63,64,66,70],hf_mean:9,high:[59,66,68,69],higher:2,highest:2,highli:[2,68],highlight:[51,52,62],hing:[21,62],histogram:[2,41,42,58,59,62],histogram_featur:[9,57,58,62],histopatholog:59,histori:68,hofland:59,hold:[0,2],hole:[56,60,62],home:61,homogen:[22,62,66],hope:59,horribl:69,hospit:[23,62],host:59,hostnamedetector:4,hot:[48,62],hounsfield:62,how:[1,2,10,11,28,42,56,61,62,64,66,68,69,70],howev:[2,60,62,64,66,68,70],htm:62,html:[0,9,21,22,34,42,51,52,60,62],http:[0,2,6,9,15,21,22,34,38,42,51,52,54,59,60,62,64,65,69,70],huber:[21,62],hyper:[2,62],hyperoptim:[3,28,40,59,60,61],hyperparamat:2,hyperparamet:[2,10,40,61,62,63,66,68],hypothes:66,hypothesi:15,i_max:10,i_min:10,icc:[2,9,16,59,61,70],icc_anova:2,iccthreshold:[0,59],icctyp:[2,9],idea:[68,70],ident:2,identifi:[6,69],ids:[2,11],ieee:[2,15,59,66],ignor:[9,62],iid:2,iivarinen:66,illustr:68,imag:[0,2,6,10,11,17,38,42,50,52,59,61,62,68,69],image_featur:[2,9,10],image_features_test:2,image_features_train:2,image_file_nam:[6,69],image_mr:70,image_typ:[41,42,62],imagedatadir:69,imagefeatur:[3,59,66,70],imagefil:11,images1:70,images_from_this_directori:[6,69],images_test:70,images_train:[0,6,70],imagetyp:62,imaginary_label_1:69,imbalanc:[2,54,61,62],img2:10,img:[10,11],immedi:2,implement:[0,2,6,9,11,15,22,24,62,68,70],implicitli:68,imposs:2,improv:[2,66],imput:[0,2,3,44,59,61,64,68],imputat:2,incekara:59,includ:[0,2,6,11,28,32,60,61,62,64,66,68,69,70],incompat:[52,62],incorpor:61,incorrect:[50,61,62],incorrectli:[10,61,70],increas:[2,40,61,62],inde:66,independ:[68,70],index:[2,9,10,59,62,66,70],indexerror:[0,59],indic:[2,11],individu:2,ineffici:68,infer:[0,40,59,62,70],infinit:61,influenc:66,info:[6,62,65],inform:[2,9,10,38,59,62,64,66,69,70],informat:59,ini:[0,1,2,9,11,61,62,64],init:[9,64],init_adasyn:2,init_borderlinesmot:2,init_nearmiss:2,init_neighbourhoodcleaningrul:2,init_randomoversampl:2,init_randomundersampl:2,init_smot:2,init_smoteenn:2,init_smotetomek:2,initi:[0,2,4,6,7,9,11,17,61,66],inner:[42,60,62,66],input:[0,2,6,9,10,11,17,59,61,62,64,65,68],input_fil:[7,11],inputarrai:9,inset:61,insight:70,inspect:61,instal:[59,60,61,62],instanc:[0,2],instanti:2,instead:[2,52,60,61,62,66,69,70],integ:[2,6,9,10,11,19,21,25,27,28,33,37,39,40,41,42,43,44,49,51,52,53,55,59,61,62],integr:[59,61,68],intellig:66,intens:[11,50,52,60,62,66],inter:[2,9],interact:[6,59,61,69],interest:[6,66],interfac:2,intermed:10,intermedi:2,intermediatefacad:61,intern:[59,66,70],interpol:[11,51,52,62],interpret:[64,68],interquartil:66,interv:[6,10,61,70],intervent:[59,66],intra:[2,9],intraclass:[9,70],introduct:[59,69],introductori:68,invalidcsvfileexcept:7,invalidlabelsvalid:18,invalidorderexcept:7,invari:66,inverse_transform:2,involv:2,ioerror:0,iopars:[0,2,59,64],ioplugin:0,iri:2,is_empti:2,is_multimetr:2,is_train:6,isbi:59,isi:70,isn:61,issu:[59,61,65,68,69,70],item:[0,2,9,69],iter:[2,10,20,22,38,40,61,62,64,70],ith:2,itk:[0,11,61],itkimag:10,its:[2,68],itself:[66,68,70],jacob:66,jalv:59,jfortin1:[9,38,62],jiaj:66,job:[2,6,40,61,62],joblib:[2,22,38,61,62],joblib_backend:[37,38,62],joblib_ncor:[37,38,62],join:69,joost:66,joseph:9,journal:[15,59,66],json:[2,11,61,69],jth:2,jukka:66,just:[10,61,64,69,70],k_neighbor:[2,53,54,62],kapsa:59,keep:[2,11,59,61,68],kei:[2,3,41,61,62,70],kept:9,kernel:[2,22,62,70],kessel:59,keyerror:0,kfold:2,kind:[61,68],klein:59,knn:[9,43,44,61,62],knnimput:61,know:62,knowledg:2,known:66,kovesi:66,kurtosi:66,kwarg:[2,4,18],label1:[45,62,70],label2:[45,62,70],label:[0,1,2,3,6,9,10,11,15,24,46,48,51,52,59,60,61,66,68,69],label_1_count:15,label_data:[2,10,11],label_data_test:2,label_data_train:2,label_fil:[2,10,11,17,69],label_info:11,label_nam:[1,2,6,11,45,46,62,69],label_process:[0,59],label_s:2,label_set:9,label_statu:11,label_typ:[0,1,2,9,10,11,17,70],labelprocess:61,labels_from_this_fil:[6,59,69],labels_test:[9,70],labels_train:[9,70],lambda:2,lambda_tol:2,languag:[23,24,59,62,68],laplacian:[52,59,62],laptop:68,larg:[2,61,66,68],larger:[40,61,62,66],largest:[10,11,56,60,62,66],lasso:[2,21,33,34,62],last:[61,66,68],lastli:[50,62,64],later:[2,9,62,66],latest:[42,51,52,60,62],latex:61,latter:64,lbfg:[21,62],lbp:[42,58,59,62],lbp_npoint:[41,42,62,66],lbp_radiu:[41,42,62,66],lda:[21,22,62],lda_shrinkag:[21,22,62],lda_solv:[21,22,62],lead:66,learn:[2,9,10,21,22,34,54,59,60,61,62,68,70],least:[2,66,68],leav:[26,61,62],led:61,leender:59,left:[2,61],length:[2,9,10,59],lengthi:69,lesion:[32,62,66],less:[61,62,66],let:69,letter:15,level:[42,51,52,59,62,70],lib:59,licens:59,lidc:59,lightweight:2,lij:9,like:[2,9,61,62,66,68,69],limit:70,line:[2,9,59,60,64,66,68,69],linear:[2,21,61,62,70],linear_model:[21,22,34,62],linearexecut:[6,17,21,62],link:[17,61,64,69,70],link_n4biasfieldcorrection_doc:60,linr:[21,62],linstretch:[0,59],linux:61,linuxdetector:4,lipoma:59,liposarcoma:59,list:[0,1,2,4,6,7,9,10,11,17,18,21,23,35,36,38,41,42,44,47,58,62,65,70],literatu:9,literatur:[9,60,66],littl:[2,68],liver:[59,70],load:[1,11,42,62,69],load_config:[1,64],load_config_xnat:11,load_data:1,load_featur:[1,61],load_iri:2,load_label:11,load_label_csv:11,load_label_txt:11,load_label_xnat:11,loc:[2,21,22,33,43,53,54,62],local:[42,59,62],locat:[6,58,61,62,66,69],location_featur:[9,57,58,62],log10:15,log:[9,15,22,41,42,51,52,58,59,61,62,64,65,68],log_featur:[9,57,58,62],log_sigma:[41,42,62,66],log_uniform:2,log_z_scor:[35,62],logarithm:[9,61],logic:61,logist:[22,62],logisticregress:[21,22,34,61,62],logit:9,logstandardscal:9,longer:[61,62],loo:[25,26,61,62],loo_cross_valid:2,look:[6,59,60,62,63,64,66,68,69,70],loop:[2,65],loss:[2,22,62,66],lot:[52,62,66,68],low:[59,66],lower:[9,11,34,50,61,62],lowerbound:11,lr_l1_ratio:[21,22,62],lr_solver:[21,22,62],lrc:[21,22,62],lrpenalti:[21,22,62],lsqr:[21,62],luckili:68,lung:59,maarten:59,machin:[2,34,59,61,62,66,68,70],macskassi:70,made:[6,59,61,62,66,68,70],maenpaa:66,magnet:66,mai:[2,62,64,66,68,69],main:[6,10,13,16,60,61,69,70],major:[53,61,62,66],majorli:[6,61],make:[2,6,10,38,40,60,61,62,64,65,68,69,70],make_scatterplot:10,make_scor:2,malign:59,manag:[0,66],mandatori:[1,2,9,10,11],manhattan:61,manhattan_import:10,mani:[0,2,9,10,28,56,60,61,62,66,68,70],manipul:70,mann:70,mannwhitneyu:[9,33,62],manual:[2,6,39,59,60,61,62,65,66,68,69],manufactur:66,map:[2,10,70],mappingproxi:[0,2,4,6,7,9,11,17,18],mark:10,marku:66,martijn:59,mask:[0,2,6,10,11,38,50,52,55,56,60,61,62,68,69],mask_contour:11,mask_file_nam:6,masked_arrai:2,masks_from_this_directori:6,masks_test:70,masks_train:70,mass:66,master:[2,60,64,70],match:[1,11,61,62,70],matlab:[9,11,23,24,59,60,62,68],matplotlib2tikz:61,matplotlib:10,matrix:[2,9,59],matter:9,matti:66,max:[1,31,32,34,41,62,64,66],max_it:[2,21,22,62],maxim:2,maximum:[2,22,42,61,62,66],maxlen:[2,39,40,61,62],mean:[1,2,6,9,24,31,32,43,61,62,65,66,70],mean_fit_tim:2,mean_score_tim:2,mean_test_scor:2,mean_train_scor:2,measur:[2,6,66,70],median:[9,43,50,62,66],medic:[59,66,68],medicin:[59,66],meet:[6,59],melanoma:59,member:2,memori:[2,39,40,61,62,70],mention:66,mesenter:59,mesh:66,messag:[2,10,61],metadata:[0,11,38,50,60,61,62,66],metadata_fil:11,metadata_test:70,metadata_train:70,metaestimatormixin:2,metastas:59,method:[0,2,6,9,10,11,15,32,34,36,44,49,50,53,54,59,61,62,65,66,68,70],metion:9,metric1:10,metric1t:10,metric2:10,metric2t:10,metric:[0,9,10,27,28,39,40,59,61,62,70],mhd:[11,70],miccai:59,michael:66,miclea:59,micro:68,microsoft:69,middl:[0,10,70],midrank:15,mimic:11,min:[9,34,41,61,62,64,66],min_object_s:[55,56,62],mine:[59,60,68],minim:[2,42,62,69,70],minimum:[22,42,50,56,61,62,66],minkov:9,minm:[49,62],minmax:[9,35,61,62],minor:[53,61,62,66],minsubjectsvalid:18,mismatch:[38,62],miss:[2,9,61],missing_valu:9,missingpi:[9,61],mixtur:11,mod:[9,23,24,61,62,64],modal:[2,9,42,52,61,62,66,70],modalityname1:[2,9],modalityname2:[2,9],mode:6,model:[1,2,6,10,15,17,34,40,58,59,61,62,68,70],model_select:[2,9],moder:[24,60,62,66],modified_hub:[21,62],modnam:1,modu:[0,2,10,17,45,46,62,69],modul:[12,21,22,34,61,62,64,70],modular:59,modulenotfounderror:59,molecular:59,momentum:66,more:[2,6,9,10,11,36,38,40,59,60,61,62,64,65,66,68,69,70],moreov:68,morpholog:[11,66],most:[2,6,9,22,62,66,68,69],most_frequ:[9,43,62],mostli:[2,9,61,62,70],mount:[2,6,61,69],move:61,mr001:0,mr002:0,mri:[52,59,62,66],mse:70,mstarmans91:[6,59,64,65,69,70],much:[40,54,61,62,66],multi:[2,59,66],multi_class_auc:2,multi_class_auc_scor:2,multi_class_relief:9,multicentr:59,multiclass:[2,6,70],multiclass_classif:6,multicor:[6,38,62],multihread:61,multilabel:[2,6,45,46,59,61,62],multilabel_typ:10,multimetric_grid_search:2,multimod:61,multipl:[0,2,9,10,32,38,60,61,62,66,68,69,70],multipli:[11,55,56,62],multiprocess:[37,62],multiresolut:66,multiscal:66,multislic:[42,58,62],multivendor:59,must:[2,59,62],mutat:59,mutlicor:2,mwu:9,mxn:2,n_1:10,n_2:10,n_blob:[55,56,62],n_classifi:15,n_compon:61,n_core:2,n_exampl:15,n_featur:[2,5,9,61],n_iter:[2,17,19,20,25,26,39,40,62],n_job:2,n_jobspercor:[2,39,40,62],n_jobsperscor:2,n_neighbor:[2,9,43,44,53,54,62],n_neighbour:9,n_neightbor:9,n_object:5,n_output:2,n_patient:9,n_sampl:[2,9,61],n_split:[2,39,40,61,62],n_splits_:2,n_test:10,n_train:10,nadeau:70,naiv:68,name:[0,2,6,9,10,11,17,22,24,36,42,48,57,58,59,61,62,66,69,70],name_of_label_predicted_for_evalu:70,nan:[2,9,32,44,61,62,66],ndarrai:2,nearest:[9,34,44,62],nearmiss:[53,62],neccesari:[61,64],neck:69,need:[2,6,9,59,61,62,64,66,68,69,70],needaccess:9,neg:[9,61,70],neg_dual_func:2,neighbor:[9,34,44,62],neighborhood:59,neighbour:[9,66],neighbourhoodcleaningrul:[2,53,62],net:9,nettyp:17,network:[0,13,17,59,61,62,64,68,69],neural:70,neurocombat:60,never:[30,60,62],new_spac:11,newest:61,newli:61,nework:0,next:[66,69,70],ngldm:[58,61,62],ngtdm:[42,52,58,59,61,62,65],nice:[61,68],niessen:59,nifti:[61,70],nii:[0,6,11,69,70],nipyp:2,nmod:0,nocrossv:2,node:[0,17,32,61,62,68,70],nofeaturesfoundexcept:7,noimagesfoundexcept:7,nois:[24,62],nomasksfoundexcept:7,nomean:9,non:[2,6,9,24,61,62,66,68,70],none:[0,1,2,4,5,6,7,9,10,11,15,17,18,21,35,51,55,56,61,62,65],nonparametr:70,nor:59,norm_tol:2,normal:[2,6,10,11,49,50,51,52,60,61,62,66,68,70],normalization_factor:10,normalize_imag:[11,60],normalize_roi:[11,49,50,62],normalize_whitespac:2,normalizescal:[51,52,62],nosegmentationsfoundexcept:7,not_label:2,notabl:61,note:[0,2,6,9,10,11,61,62,66,68,69],notic:66,notimplementederror:0,now:[61,66],npoint:66,npv:[61,70],nrrd:[11,70],nsampl:10,nsubject:[5,69],num_class:2,num_train:2,number:[2,6,9,10,11,15,20,22,26,34,38,40,42,44,54,61,62,66,68,70],numbertoextract:11,numer:[2,9,70],numf:9,numpi:[2,9,10,11,15,59,61,66],obj:59,object:[0,1,2,4,6,7,9,10,11,17,18,22,32,54,56,59,60,61,62,64,69],objectsampl:[0,59,61],observ:[2,9],obsolet:[38,62],occur:[2,9,34,59,62,63,65,70],occurr:9,odd:66,oddfeat:9,oddpati:9,odink:59,oerat:15,of_:[23,62],off:[2,66,70],offer:66,offici:59,often:[62,66,68,70],ojala:66,older:61,omit:69,onc:[2,11,60,61,66],oncolog:59,oncoradiom:[6,61],one:[0,2,6,9,10,11,26,36,48,50,61,62,64,65,66,68,69,70],onehotencod:[2,3,9,48,59,61],onehotencoderwrapp:[0,59],onevsrest:61,onevsrestclassifi:2,onli:[2,6,9,11,22,30,40,50,61,62,65,66,68,69,70],onlin:[68,69],ontolog:68,onward:2,open:[59,61,65,68,69],oper:[10,11,59,66,70],opim:2,optim:[0,2,22,40,60,61,62,63,66,70],optimiz:0,option:[0,1,2,6,9,10,11,19,21,22,23,25,27,29,31,32,33,35,37,39,41,43,45,47,49,51,53,55,57,60,61,62,64,66,69,70],order:[2,9,10,11,52,60,61,62,63,66,68],org:[2,9,21,22,34,62],organ:[66,68],orient:[11,41,42,50,58,59,60,61,62],orientation_featur:[9,57,58,62],orientationprimaryaxi:[49,50,62],origin:[2,51,52,58,60,61,62,66],original_featur:[9,57,58,62],oserror:0,other:[0,2,9,34,39,59,60,61,62,64,68,70],otherwis:[2,9,50,52,60,61,62],otsu:[11,49,50,61,62],our:[59,62,64,66,69,70],out:[2,10,11,26,61,62,68,69,70],outcom:[2,40,62,68,69],outer:[26,60,62,66],outlier:[9,61],output:[2,6,9,10,11,17,61,62,64,68,69,70],output_csv:[9,10],output_fold:7,output_hdf:2,output_itk:10,output_json:2,output_nam:10,output_name_zoom:10,output_png:[9,10],output_tex:[9,10],output_zip:10,outputfold:[2,10,69],over:[2,6,9,61,62,66,68],overal:[61,69],overfit:[30,60,61,62],overfit_scal:[2,10],overfitscal:[29,30,62],overid:61,overlai:10,overrid:[6,61],oversampl:[61,68],overview:[60,63,66,69,70],overwrit:[6,50,61,62],overwritten:0,own:[37,62,64,66,68,69],p_ngtdm:65,packag:[59,61,66,70],packagedir:61,pad:[10,17],padmo:59,page:[15,59,68,70],pairwis:11,pairwise_auc:2,panda:[2,10,69],panda_data:2,paper:[2,9,66],par:[9,23,24,62],para:2,paracheck:10,parallel:[2,6,61,62],param:[2,10],param_c:2,param_degre:2,param_distribut:2,param_gamma:2,param_grid:2,param_kernel:2,param_list:2,paramet:[0,2,6,9,10,11,22,34,40,54,59,60,61,62,63,64,68,70],parameter_optim:[0,59],parametergrid:2,parameters_al:2,parameters_est:2,parametersampl:2,parametr:[9,24,62],paramt:2,parekh:66,parent:17,pars:[1,61,62,64],part:[2,6,34,42,61,62,63,64,66,68,70],parti:9,pass:[2,61,70],path:[0,1,2,7,9,10,11,24,61,62,69],pathnotfoundexcept:7,patient001:0,patient002:0,patient1:[62,70],patient1_0:70,patient1_1:70,patient2:[62,70],patient3:[62,70],patient:[0,1,2,6,9,10,11,32,54,59,61,62,66,69,70],patient_001:69,patient_002:69,patient_featur:[9,61,70],patient_id:[2,11,17],patientclass:[61,62],patientinfo:[1,2,9,10,11],patientinfo_test:2,patientinfo_train:2,patrick:9,pattern:[59,70],pca:[2,6,34,61,62,64,70],pcatyp:[33,34,62],pce:61,pdf:9,peak:66,pearson:70,peform:69,penalti:[22,61,62],peopl:59,per:[0,1,2,9,24,56,61,62,65,66,70],per_featur:[9,23,24,62],percentag:[2,6,9,10,17,26,34,40,54,61,62,66,69,70],percentil:[9,61,66],perform:[0,2,6,9,10,17,26,30,38,40,46,59,61,62,63,68,69,70],performance_all_0:69,performance_fil:69,performance_metr:2,performance_multilabel:2,performance_singlelabel:2,person:59,peter:66,peura:66,pf_:[23,35,62],phase:[41,42,58,59,62],phase_featur:[9,57,58,62],phase_minwavelength:[41,42,62,66],phase_nscal:[41,42,62,66],phd:68,phenotyp:66,phil:59,philip:66,physic:0,pick:[62,70],pid:[10,11,61],pietikainen:66,pilot:59,pinfo:[10,17,61],pinfo_hn:69,pip:[60,61,65,69],pipelin:[0,59,61,68,70],pixel:[0,10,42,52,62,66],place:64,placehold:9,platform:[59,68,69],pleas:[2,6,9,59,60,62,63,64,65,66,69,70],plot:[0,9,16,59,61],plot_bar:10,plot_barchart:[0,59],plot_boxplot_featur:[0,59],plot_boxplot_perform:[0,59],plot_error:[0,59],plot_estimator_perform:[0,59],plot_hyperparamet:[0,59],plot_im_and_overlai:10,plot_imag:[0,59,61],plot_prc_cic:10,plot_pvalues_featur:[0,59],plot_ranked_imag:10,plot_ranked_percentag:10,plot_ranked_posterior:[10,61],plot_ranked_scor:[0,59],plot_roc:[0,59],plot_roc_c:10,plot_single_prc:10,plot_single_roc:10,plot_svm:61,plot_svr:61,plot_test:9,plotminmaxrespons:[0,59],plotrankedscor:61,plu:[2,24,62,70],pluge:0,plugin:[0,2,21,22,40,61,62,65,68],png:[0,10,61],point:[2,10,42,62,69],pointint:10,pointsar:10,poli:[2,21,62],polynomi:[22,62,70],port:61,posit:[2,9,10,34,62,66,70],possibl:[2,9,59,61,66,68,70],post:69,posterior:[6,10,70],posteriors_csv:10,potenti:64,ppv:70,practic:68,prax:66,prc_csv:10,prc_png:10,prc_tex:10,pre:61,pre_dispatch:2,precis:[10,61,66,70],precomput:69,precrop:[51,52,62],predict:[2,5,6,9,10,15,37,57,59,60,61,62,65,66,68,69,70],predict_label:[6,61,69],predict_log_proba:2,predict_proba:[2,61],predictions_on:15,predictions_sorted_transpos:15,predictions_two:15,predictproba:61,predit:61,preflighcheck:61,preflightcheck:[0,59,61],prepar:[11,59],preprint:59,preprocess:[0,2,3,9,37,38,50,59,61,68,70],preprocess_nod:0,preprocessor:[0,32,59,61,62,64],preprocss:2,present:[2,59,61,66],preserverd:[24,62],prevent:61,previou:[68,70],previous:[61,68],primari:[50,62],primary_axi:11,princip:66,principl:[34,59,62,68,70],print:[2,7,9,10,61,69,70],probabl:[2,15,69],probe:59,problem:[2,59,61,68],procedur:[9,62,70],proceed:[59,70],process:[0,2,6,15,38,59,60,61,62,68,70],process_fit:2,processpoolexecut:17,produc:[2,66],program:[23,62,68],progress:[2,61],project:[5,11,61],project_nam:5,projectid:[45,46,62],proof:59,proper:[0,61],properli:61,properti:[2,66],prostat:59,proven:68,provid:[0,2,6,10,11,17,24,28,38,49,50,60,62,63,66,69,70],provost:70,pseudo:2,psycholog:9,publish:15,purpos:[0,30,62],push:59,put:[10,61,62,70],pvalu:15,pxcastconvert:61,pyradiom:[1,3,9,37,51,52,57,59,61,64,65,66],python3:61,python:[5,9,23,59,60,61,62,64,68,69],python_intro:60,pywavelet:65,qda:[21,22,62],qda_reg_param:[21,22,62],qualiti:2,quantifi:66,quantit:[59,66,68],question:68,quick:[59,62],quickli:66,quit:[62,68],qxm:2,radial:[66,70],radian:[42,62,66],radii:[42,62],radiograph:66,radiolog:[59,66],radiom:[0,9,60,62,63,70],radiomix:[6,7,61],radiu:[10,11,42,50,56,62,66],rais:[2,61],rajic:59,ran:[2,61,69],random:[2,5,24,26,34,61,62,70],random_se:2,random_search:2,random_search_paramet:2,random_split:[25,62],random_split_cross_valid:2,random_st:[2,9],randomizedsearchcv:2,randomizedsearchcvfastr:2,randomizedsearchcvjoblib:2,randomli:[2,34,62],randomoversampl:[53,62],randomsearch:2,randomst:2,randomundersampl:[53,62],rang:[10,11,22,34,54,62,66],rank:[6,9,10,28,34,40,61,62,68,70],rank_:2,rank_test_scor:2,ranked_pid:10,ranked_scor:10,ranked_truth:10,rankedposterior:61,rankedsvm:[0,59,61],ranking_scor:[2,39,40,62],ranksvm:2,ranksvm_test:2,ranksvm_test_origin:2,ranksvm_train:2,ranksvm_train_old:2,rate:[10,22,62,70],rater:9,rather:2,ratio:[10,22,62,66],rational:63,raw:[11,66],rbf:[2,21,62],read:[1,2,11,68,69,70],read_hdf:69,reader:61,readthedoc:[0,42,51,52,54,59,60,61,62],reason:[2,66],recal:[10,61,70],receiv:[10,15,70],recommend:[2,22,24,59,60,62,64,66,68,69],recommmend:69,recreat:2,reduc:[2,59,61],reduct:[61,68],redund:[61,66],ref:2,refactor:61,refer:[0,1,2,3,4,6,7,9,10,11,15,17,18,37,61,62,64,66,68],refit:[2,40,61,62],refit_and_scor:2,refit_ensembl:10,refit_workflow:[2,39,40,62],reflect:66,regard:59,regardless:69,region:[6,66],registr:[0,38,59,61,62,68,70],registrationnod:[37,38,62],regress:[2,6,10,17,22,46,59,61,62,69,70],regressor:[0,59,60,61],regular:[22,62,70],rel:2,relat:[0,66],releas:[61,68],relev:[60,64,66,68,70],reli:66,reliabl:9,relief:[0,2,34,59,61,62],reliefdistancep:[33,34,62],reliefnn:[33,34,62],reliefnumfeatur:[33,34,62],reliefsamples:[33,34,61,62],reliefsel:2,reliefus:[33,34,62],remov:[9,10,38,56,60,61,62],remove_small_object:[55,56,62],removeconst:10,renam:61,rencken:59,repeat:[2,62],repetit:66,replac:[2,9,44,61,62,64,65],replacenan:[2,61],report:70,repositori:[59,69],repres:[2,66],reproduc:[61,68],requir:[0,2,6,22,59,61,62,65,68,69,70],resampl:[2,3,11,49,50,54,59,60,61,70],resample_imag:11,resampled_imag:11,resampledpixelspac:[51,52,62],resampling_spac:[49,50,62],research:[59,66,68],resourc:[0,11,13,59,65,68],respect:[2,9,56,60,62,69,70],result:[2,9,10,38,50,59,61,62,66,68],ret:2,retreiv:11,retriev:66,return_al:2,return_estim:2,return_n_test_sampl:2,return_paramet:2,return_tim:2,return_train_scor:2,returnplot:10,revert:61,review:66,rfmax_depth:[21,22,62],rfmin_samples_split:[21,22,62],rfn_estim:[21,22,62],rfr:[21,62],rgrd:[58,61,62],rgrd_featur:[9,57,58,62],ridg:[21,61,62],right:70,ring:[11,55,56,60,61,62],risk:[59,70],rms_score:2,rng:2,robust:[9,35,59,61,62,66],robust_z_scor:[9,35,62],robustscal:[9,61],robuststandardscal:[9,61],roc:[6,10,15,61,70],roc_comparison:15,roc_csv:10,roc_png:10,roc_tex:10,roi:[11,50,52,59,61,62,70],roi_dilate_radiu:11,roidetermin:[11,49,50,62],roidil:[49,50,62],roidilateradiu:[49,50,62],rokwa:9,root:[2,6],rosset:70,rotat:[50,62,66],rough:66,round:[2,22,61,62],rounded_list:2,routin:[66,68],row:[2,9,66],rtstructread:61,run:[2,6,9,59,61,62,65,68,70],runtim:[2,61],rvs:2,safe:64,saga:[21,62],sagit:[51,61,62],sai:60,same:[1,2,9,10,22,32,38,60,61,62,66,68,69,70],samefeat:9,sampl:[0,1,2,9,10,22,34,40,54,61,62,70],sample_s:9,sample_weight:15,sampler:2,sampleswarn:18,sampling_strategi:[2,53,54,62],sar:2,sar_scor:2,sarcoma:59,satur:66,save:[0,2,5,9,10,38,40,61,62,66,69,70],save_config:[0,64],save_data:2,save_memori:10,scale:[2,9,21,22,33,36,42,43,52,53,54,61,62,66,68],scaler:[0,2,30,59,61,62,64],scaling_method:[35,36,62],scan:[62,66,69],scanner:66,scatterplot:[0,59],schoot:59,scienc:70,scikit:[2,9,21,22,34,60,62],scipi:2,score:[2,6,9,10,17,40,50,61,62,63,70],score_tim:2,scorer:2,scorer_:2,scorers_dict:2,scoring_method:[2,6,7,39,40,62],scoring_paramet:2,script:[9,60,61,64,65,68,69,70],script_path:69,scroll:70,search:[2,6,9,34,40,59,61,62,64,65],searchcv:[0,10,59,61,64],sebastian:59,second:[2,9,15,24,62,66],section:[62,69,70],see:[0,1,2,4,6,7,9,10,11,17,21,22,34,38,42,51,52,54,59,60,61,62,64,65,66,69,70],seed:[2,26,61,62],seem:[61,68],seen:[2,70],seg:[17,61],seg_liver_mr:70,seg_tumor1_mr:70,seg_tumor2_mr:70,seg_tumor_mr:70,segment:[0,6,10,11,17,38,56,60,61,62,66,68,69],segmentation_file_nam:[6,69],segmentations1:70,segmentations2:70,segmentations_from_this_directori:[6,69],segmentations_test:70,segmentations_train:[6,70],segmentix:[0,1,3,37,38,52,59,60,61,70],segmentix_test:[0,12],segradiu:[55,56,62],segtyp:[55,56,62],sel:9,select:[2,6,9,11,22,34,52,59,61,62,68,70],selected_label:6,selectfeatgroup:[3,34,59],selectfrommodel:[33,34,61,62],selectfrommodel_estim:[33,34,62],selectfrommodel_lasso_alpha:[33,34,62],selectfrommodel_n_tre:[33,34,62],selectgroup:[0,59],selectindividu:[0,59],selectmodel:2,selectmulticlassrelief:9,selectormixin:9,self:[2,4,7,9,11,17,22,62,65],selfeat_vari:9,semant:[0,6,58,59,61,62],semantic_featur:[9,57,58,62],semantics_from_this_fil:6,semantics_test:70,semantics_train:70,semf_:[23,35,62],semicolon:61,sensibl:66,sensit:70,separ:[2,6,21,23,30,35,36,41,61,62,70],sequenc:[0,2,70],seri:6,seriou:60,serpar:61,serv:[0,66,68,70],session:5,set:[0,1,2,5,6,9,10,15,17,22,30,38,40,44,50,60,61,62,64,65,66,68,69,70],set_fixed_split:6,set_multicore_execut:[6,69],set_tmpdir:[6,69],settin:2,settings_dict:1,setup:[6,61],sever:[0,6,9,11,60,61,62,65,66,68,70],sex:[9,41,62,66,70],sf_:[23,62],sf_compact:9,sgd:[21,22,62],sgd_alpha:[21,22,62],sgd_l1_ratio:[21,22,62],sgd_loss:[21,22,62],sgd_penalti:[21,22,62],sgdr:[21,62],shape:[2,9,41,42,52,58,59,62],shape_featur:[9,57,58,62],shear:68,sheet:70,shift:[24,62],should:[0,1,2,6,9,10,11,24,36,38,40,42,54,56,60,61,62,70],show:[2,10,61,69,70],shown:68,shrink:2,shrinkag:[22,62],shrout:9,shuffle_estim:10,shutil:61,siemen:66,sigma:[9,15,66],sign:[2,9],signal:15,signatur:[2,4,7,9,11,17,59],signific:[10,70],significantli:62,similar:[2,9,60,61,64,65,66,68,69,70],similarli:64,simpl:[6,60,66,68,69],simpleelastix:70,simpleitk:[50,60,62,70],simpler:68,simplest:70,simplevalid:18,simpleworc:[0,59,60,61,69,70],simpli:[24,59,61,62,65,69,70],simplifi:69,simultan:[2,68],singel:6,singl:[2,6,10,11,15,24,40,42,44,59,60,61,62,63,70],single_class_relief:9,singleclass:2,singlelabel:[2,17,45,46,62],singleton:2,sink:[0,17,61,64,68,70],sink_data:[0,13,17,70],site:[2,59],sitkbsplin:[51,52,62],six:66,size:[2,10,17,34,40,42,59,61,62,70],size_alpha:2,skew:66,skip:[36,61,62,69,70],skip_featur:[9,35,36,62],sklearn:[2,9,10,21,22,34,39,61,62,64],slack:[22,62],sleijfer:59,slice:[0,2,10,56,61,62,66,70],slicer:[0,10,59,61],slight:2,slightli:69,slow:61,small:[9,56,60,61,62,66],smaller:[54,62,66],smallest:2,smart:[10,62],smit:59,smote:[2,53,61,62],smoteen:2,smoteenn:[53,62],smotetomek:[53,62],snapshot:70,sne:[6,70],societi:59,soft:59,softwar:[24,59,62,68],sole:66,solid:66,solut:[2,65],solv:[65,68],solver:[22,61,62],some:[0,2,6,61,62,64,68,69,70],somenam:[62,70],someon:68,sometim:61,sort:[2,15,61,69],sourc:[0,1,2,4,5,6,7,9,10,11,13,15,16,17,18,59,61,62,64,66,68,69],source_data:[0,13,70],space:[2,9,10,11,34,50,60,61,62,64,66,70],span:2,spars:[9,70],spawn:[0,2],spawner:0,spearman:70,specif:[2,9,22,48,62,64,65,66,68,69,70],specifi:[0,2,6,11,22,34,38,40,48,54,62],speed:[6,69],spend:2,spheric:66,split0_test_scor:2,split0_train_scor:2,split1_test_scor:2,split1_train_scor:2,split2_test_scor:2,split2_train_scor:2,split:[2,9,17,22,26,61,62,66,68,70],springer:66,squar:[2,10,70],squared_epsilon_insensit:[21,62],squared_hing:[21,62],squared_loss:[21,62],src:2,ssh:69,stabl:[0,9,21,22,34,54,61,62],stack:1,standalon:[17,61],standard:[6,9,42,59,61,62,66,69,70],standardis:59,standardscal:9,starman:59,start:[2,59,61,62,65,68],stat:[2,10,69],state:[0,2,28,61,62,64,69],statement:[11,64],staticmethod:18,statist:[0,2,9,10,16,34,59,61,62,66,69,70],statisticalsel:2,statisticaltest:61,statisticaltestfeatur:[0,59,61],statisticaltestmetr:[33,34,62],statisticaltestthreshold:[0,33,34,59,62],statisticaltestus:[33,34,62],statsticaltestthreshold:61,statu:[2,11,59],std:9,std_fit_tim:2,std_score_tim:2,std_test_scor:2,std_train_scor:2,stefan:59,step:[2,42,60,61,62,63,66,68,70],still:[61,69,70],stimul:59,stop:[11,61],store:[2,6,7,69,70],str:[2,61],straight:[60,68],strategi:[2,9,10,43,44,54,59,61,62],stratif:59,stratifi:[2,17],stratifiedkfold:2,strenght:[22,62],strength:[22,62,66],stretch:10,string:[0,1,2,6,9,10,11,21,23,35,39,40,41,45,47,61,62,70],stromal:59,strongli:69,struct:61,structer:66,structur:[66,69,70],stuck:69,student:[9,68,70],studi:[0,59,68],studio:69,stwstrategyhn1:69,sub:[0,66],subfold:[6,61,69],subgroup:66,subject:[2,5,6],subkei:[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,62],subpackag:59,subset:69,substr:[9,24,36,48,62],subtract:[11,55,56,61,62],succeed:61,success:2,suffici:70,suggest:[2,64],suit:[0,2,11],suitabl:[59,66],sun2014fast:15,sun:15,suppli:[1,2,10,42,50,54,56,61,62,70],support:[2,9,26,50,59,61,62,65,66,68,70],suppos:62,sure:[6,64,65,70],surfac:66,surfsara:69,surgeri:59,surgic:59,surrog:2,surround:66,surveil:59,surviv:[6,10,59,70],svc:2,svd:[21,62],svm:[2,6,10,21,22,61,62],svmc:[21,22,62],svmcoef0:[21,22,62],svmdegre:[21,22,62],svmgamma:[21,22,62],svmkernel:[21,22,62],svr:[2,6,21,62],symlink:61,symmetri:66,symposium:59,synthet:[9,10],synthetictest:9,system:[0,2,62,66,70],tabl:[2,70],tadpol:[2,70],tag:[41,42,61,62,66,70],take:[2,9,40,61,62,64,70],taken:10,tandfonlin:9,target:2,task:68,techniqu:[62,66],tedious:68,tell:[6,64,70],tempdir:[61,69],tempfold:2,temporari:[0,6,61,69],tempsav:[2,37,38,62],term:[22,34,61,62,68],terminolog:59,test:[0,2,6,9,10,15,26,30,34,38,40,59,61,62,69,70],test_combat:[0,59],test_combat_fastr:16,test_data:2,test_help:[0,59],test_iccthreshold:[0,59],test_invalidlabelsvalidator_columnsubstr:16,test_invalidlabelsvalidator_patientcolumn:16,test_invalidlabelsvalidator_patientsubstr:16,test_invalidlabelsvalidator_validconfig:16,test_metr:10,test_plot_error:[0,59],test_rs_ensembl:2,test_sampl:10,test_sample_count:2,test_scor:[2,39,62],test_score_dict:2,test_siz:[2,17,25,26,39,40,62],test_target:2,test_valid:[0,59],tex:[10,61],text:2,textur:[42,58,59,62],texture_featur:9,texture_gabor:[41,42,62],texture_gabor_featur:[9,57,58,62],texture_glcm:[41,42,51,52,62],texture_glcm_featur:[9,57,58,62],texture_glcmm:[41,42,62],texture_glcmms_featur:[9,57,58,62],texture_gldm:[51,52,62],texture_gldm_featur:[57,58,62],texture_gldzm_featur:[9,57,58,62],texture_glrlm:[41,42,51,52,62],texture_glrlm_featur:[9,57,58,62],texture_glszm:[41,42,51,52,62],texture_glszm_featur:[9,57,58,62],texture_lbp:[41,42,62],texture_lbp_featur:[9,57,58,62],texture_ngldm_featur:[9,57,58,62],texture_ngtdm:[41,42,51,52,62],texture_ngtdm_featur:[9,57,58,62],tf_glcm_contrastd1:66,than:[2,54,61,62],thei:[2,61,62,63,66,69,70],them:[2,61,62,68,70],themselv:66,therebi:[59,61,68,70],therefor:[0,6,9,60,61,64,66,68,69,70],thi:[0,2,6,9,10,32,36,40,48,50,54,59,60,61,62,63,64,65,66,67,68,69,70],thick:66,thing:[61,62,69],third:9,thoma:59,thomeer:59,those:[2,6,9,64,66,70],thread:[37,61,62],three:[2,66],thresh:[9,10],threshold:[2,9,10,16,34,50,54,61,62,66],threshold_annot:10,threshold_clean:[2,53,54,62],through:[0,2,11,17,50,59,61,62,66,68,69,70],throughput:66,thu:[2,9,59,60,61,62,66,68,70],tibshirani:70,tiff:[11,70],tikzplotlib:61,timbergen:59,time:[2,10,26,34,40,54,61,62,66,68,69,70],timer:61,timo:66,tip:59,tissu:59,titl:15,tmp:6,tmpdir:[6,69],todo:[2,9],togeth:[61,64],tol:2,toler:2,tomek:2,tomographi:59,tone:59,too:66,tool:[0,6,37,38,59,60,61,62,64,67,68,69,70],toolbox:[9,57,58,59,61,62,65,66,70],top50:2,top:[10,61],topi:66,toshiba:66,total:[2,66],towardsdatasci:62,tpr:10,trace:[65,69],track:2,trade:2,train:[0,2,6,10,22,26,30,34,38,40,61,62,70],train_data:2,train_scor:2,train_score_dict:2,train_target:2,train_test_split:2,trainclassifi:[0,10,59,61,64],transact:[2,66],transform:[2,9,38,61,62,64,66,70],transformationnod:[37,38,62],transformermixin:9,transformix:[0,37,59,61,62],transpos:[11,60,61],transpose_imag:11,travi:61,treat:62,tree:[22,34,62,70],tri:[2,68],trick:59,trigger:66,truth:[2,10,61,70],tsampl:10,ttest:[9,33,61,62],tube:66,tubular:66,tumor:[59,69,70],tumour:59,tune:[2,62,68],tupl:2,turn:61,tutori:[16,59,62,65],two:[0,2,9,10,15,21,33,41,43,53,61,62,66,69,70],txt:[0,1,2,6,9,10,61,62,70],type:[0,2,4,7,9,10,11,17,22,25,26,34,38,59,61,62,64,66,68,70],typeerror:[0,2],typegroup:61,typic:70,typo:61,udr:2,unadjust:15,unaffect:[24,62],unag:11,uncorrect:70,under:[2,15,59,61,62,66,70],underli:2,underscor:70,understand:68,unfit:2,unfortun:65,uniform:[2,22,54,61,62,64,66],uniformli:2,uniqu:[2,66],unit:[61,62],univari:[2,6,70],univers:[2,59],unless:2,unreleas:[],unround:61,unsuccesful:61,unsuit:61,unsupervis:2,until:2,updat:61,upgrad:61,upon:[6,62],upper:[34,62],upperbound:[11,50,62],uri:61,url:[11,45,46,61,62],urltyp:61,usabl:2,usag:[2,40,61,62,66,70],usd:9,use:[0,2,6,9,10,11,17,20,22,24,26,28,30,32,34,38,43,44,48,50,52,58,60,61,62,64,66,68,69,70],use_fastr:2,useag:9,used:[0,1,2,6,9,10,11,22,26,28,30,34,38,40,42,44,46,50,52,54,56,58,59,61,62,64,66,68,69,70],useful:[2,9,38,62,70],usemask:11,usepca:[33,34,62],user:[2,6,60,66,67,69],usersmynamefeaturefold:6,usersmynameimagefold:6,usersmynamemaskfold:6,usersmynamesegmentationfold:6,uses:[2,6,9,61,64,65,66,67],using:[0,2,6,9,17,22,24,26,28,34,40,44,50,52,59,60,61,62,64,65,66,68,69,70],usual:66,util:2,v600e:59,val:0,valid:[0,2,6,9,10,17,26,38,40,59,61,62,70],validationm:[26,62],validatorsfactori:18,valu:[0,2,6,9,10,11,15,34,39,42,44,48,52,60,61,62,64,66,69,70],value1:62,value2:62,valueerror:0,van:[59,66],vari:[2,52,61,62,66,68],variabl:[0,10,24,60,61,62,69],varianc:[2,9,15,33,34,61,62,66],variancethreshold:[0,34,59,61,62],variancethresholdmean:9,variant:68,variat:[24,62],varieti:[6,59,66],variou:[2,10,59,61,62,64,67,68,70],varsel:2,vector:[2,9],veenland:59,veldt:59,vendor:59,verbos:[2,5,9,10,61],verhoef:59,veri:[2,68],vermeulen:59,version:[15,24,61,62,65,66],verson:61,versu:59,vessel:[41,42,58,59,62],vessel_featur:[9,57,58,62],vessel_radiu:[41,42,62,66],vessel_scale_rang:[41,42,62,66],vessel_scale_step:[41,42,62,66],vfs:[0,61],via:69,vincent:59,virtual:65,virtualenv:69,vishwa:66,visit:64,visser:59,visual:[66,69],vizual:61,vol:70,volum:[15,59,66],voort:59,voxel:[56,62,66],voxelarrayshift:[51,52,62],wai:[62,66,70],want:[0,6,11,59,60,62,66,69,70],warn:[2,61],warp:70,wavelength:[42,62],wavelet:[51,52,58,59,61,62],wavelet_featur:[9,57,58,62],weak:[0,2,4,6,7,9,11,17,18],week:65,weichao:15,weight:[2,22,61,62],weigth:[34,62],welch:[9,33,62,70],well:[11,59,61,62,64,66,68,69,70],were:[61,64,66,68,70],weus:70,what:[64,66],when:[0,2,6,9,10,17,22,26,28,34,36,40,44,60,61,62,64,65,66,68,69,70],whenev:2,where:[2,10,59,61,68,69],wheter:[30,62],whether:[1,2,6,9,10,11,20,28,38,42,46,48,50,52,56,61,62,63,66,69],which:[0,2,6,7,9,10,11,24,34,36,38,40,48,52,60,61,62,63,64,65,66,68,69,70],whitnei:70,whole:[40,62,68],why:62,wich:2,wide:[59,66],width:[52,59,62,70],wijnenga:59,wiki:[1,2,9,10,11],wilcoxon:[2,9,33,62,70],wildcard:6,willemssen:59,window:[22,61,62,69],wip:[9,10,45,46,59,60,62,63,64],with_mean:9,with_std:9,within:[61,63,65,66,68,70],withing:[50,62],without:[2,61],wonder:68,worc:[1,2,4,5,6,7,9,10,11,13,15,16,17,18,22,37,39,42,48,60,61,62,63,64,66,67,68,69],worc_:69,worc_config:[0,59,61,62],worcassertionerror:0,worccastconvert:61,worccastcovert:61,worcdirectorydetector:4,worcerror:0,worcflow:59,worcindexerror:0,worcioerror:0,worckeyerror:[0,59],worcnotimplementederror:0,worcscal:9,worctutori:[6,59,69,70],worctutorialsimple_travis_multiclass:[0,59],worctutorialsimple_travis_regress:[0,59],worctypeerror:0,worcvalueerror:[0,59],worcworc:64,work:[11,61,66,68],workaround:2,workflow:[0,2,6,10,40,61,62,63,64,66,68,69,70],would:[62,66,68,69,70],wrap:[2,60,61,64,68],wrapper:[2,60,64,70],write:10,written:[2,9,10],wtype:0,www:[9,62],x_test:[2,9],x_train:[2,9,10],xgb:[22,62],xgb_boosting_round:[21,22,62],xgb_colsample_bytre:[21,22,62],xgb_gamma:[21,22,62],xgb_learning_r:[21,22,62],xgb_max_depth:[21,22,62],xgb_min_child_weight:[21,22,62],xgbclassifi:[21,62],xgboost:[60,61,62],xgbregressor:[21,62],xgdboost:[60,61],xlsx:[2,7],xml:64,xnat:[11,61,69],xnat_url:5,y_predict:[2,10],y_score:[2,10],y_test:2,y_train:[2,9,10],y_truth:[2,10],yandexdataschool:15,year:15,yet:[6,11,61],yield:2,yml:61,you:[0,2,6,11,17,48,54,59,60,61,62,64,65,66,68,69,70],your:[0,2,6,30,37,38,40,46,52,59,61,62,64,65,69],yourself:[59,68],yspace:9,z_score:[9,11,35,49,62],zero:[9,44,61,62],zij:9,zip:[10,61,69],zone:59,zoomfactor:10,zwanenburg:66},titles:["WORC Package","IOparser Package","classification Package","<no title>","detectors Package","exampledata Package","facade Package","helpers Package","fastrconfig Package","featureprocessing Package","plotting Package","processing Package","resources Package","fastr_tests Package","fastr_tools Package","statistics Package","tests Package","tools Package","validators Package","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","WORC: Workflow for Optimal Radiomics Classification","Additional functionality","Changelog","Configuration","Data Mining Methods","Developer documentation","FAQ","Radiomics Features","Resource File Formats","Introduction","Quick start guide","User Manual"],titleterms:{"0rc1":61,"boolean":65,"class":11,"function":60,"import":69,Added:61,Adding:64,The:[69,70],actual:69,addexcept:[0,65],addit:60,advancedsampl:2,analysi:[63,69],arrai:65,attribut:70,basicworc:6,begin:65,bigr:65,bin:66,binari:66,bootstrap:62,calcfeatures_test:13,chang:61,changelog:61,choic:66,classif:[2,59,62,63],classifi:60,cluster:65,column:65,combat:[9,60,62],command:70,compon:63,compute_ci:10,config_io_classifi:1,config_io_combat:1,config_io_pyradiom:1,config_preprocess:1,config_segmentix:1,config_worc:1,configbuild:7,configur:62,construct:70,construct_classifi:2,content:62,crash:65,create_example_data:5,createfixedsplit:[2,17],creation:62,crossval:2,crossvalid:62,data:[63,64,70],datadownload:5,debug:70,decomposit:9,definit:70,delet:65,delong:15,depend:66,detector:4,develop:[59,64],dicom:66,differ:[65,66],dimension:63,document:[59,64],elastix:17,elastix_para:70,elastix_test:13,ensembl:62,entri:65,error:65,estim:2,evalu:[17,62,70],exampl:[64,70],exampledata:5,except:7,execut:[65,70],experi:[65,69],extract:66,extractnlargestblobsn:11,facad:6,fals:65,faq:65,fastr:68,fastr_test:13,fastr_tool:14,fastrconfig:8,feat_out_0:65,featpreprocess:62,featsel:62,featur:[63,64,65,66,70],featureconvert:9,featureprocess:9,featuresc:62,file:[65,67,70],file_io:1,filter:66,first:65,fitandscor:2,fix:[61,66],format:67,found:65,from:63,full:66,function_bas:65,gabor:66,gaussian:66,gener:62,given:65,glcm:66,gldm:66,glrlm:66,glszm:66,grai:66,groupwis:63,guid:69,hdf5:65,helper:[7,11],histogram:66,hyperoptim:[62,64],icc:60,iccthreshold:9,imag:[60,66,70],imagefeatur:62,imput:[9,62,63],indexerror:65,indic:[59,65],infer:17,input:[69,70],instal:[65,69],integ:65,interact:[62,70],introduct:[62,68],iopars:1,job:65,keep:65,label:[62,65,70],label_process:11,labels_from_this_fil:65,laplacian:66,lbp:66,learn:63,length:66,level:66,lib:65,like:65,line:65,linstretch:10,local:66,log:66,look:65,machin:63,manual:70,mask:70,matrix:66,metadata:70,method:[63,64],metric:2,mine:63,model:63,modul:[0,1,2,4,5,6,7,8,9,10,11,13,15,16,17,18,59,65],modular:68,modulenotfounderror:65,must:65,name:65,need:65,neighborhood:66,network:70,ngtdm:66,numpi:65,obj:65,object:70,objectsampl:2,occur:66,onehotencod:[62,63],onehotencoderwrapp:9,optim:[59,68],orient:66,other:66,packag:[0,1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,65,69],paramet:66,parameter_optim:2,patient:65,pattern:66,pca:63,phase:66,plot:10,plot_barchart:10,plot_boxplot_featur:10,plot_boxplot_perform:10,plot_error:10,plot_estimator_perform:10,plot_hyperparamet:10,plot_imag:10,plot_pvalues_featur:10,plot_ranked_scor:10,plot_roc:10,plotminmaxrespons:10,preflightcheck:18,preprocess:[11,60,62],preprocessor:9,princip:63,process:[7,11,64],pyradiom:62,queue:65,quick:69,radiom:[59,66,68],rankedsvm:2,reduct:63,refer:59,registr:60,regress:63,regressor:2,relief:[9,63],resampl:[62,63],resourc:[12,67],result:69,roi:66,run:[66,69],scale:63,scaler:9,scatterplot:10,searchcv:2,segment:70,segmentix:[11,62],segmentix_test:13,select:[63,66],selectfeatgroup:62,selectgroup:9,selectindividu:9,semant:[66,70],shape:66,simpleworc:[6,65],site:65,size:66,slicer:17,some:65,sourc:70,standard:68,start:69,statist:[15,63],statisticaltestfeatur:9,statisticaltestthreshold:9,submit:65,subpackag:[0,6,12],surviv:63,tabl:59,terminolog:68,test:[16,63,64],test_combat:16,test_help:16,test_iccthreshold:16,test_plot_error:16,test_valid:16,textur:66,tip:69,tone:66,tool:17,toolbox:64,trainclassifi:2,transformix:17,trick:69,tutori:69,type:65,univari:63,unreleas:[],used:65,user:[59,70],valid:18,varianc:63,variancethreshold:9,vessel:66,wavelet:66,welcom:59,where:65,width:66,worc:[0,59,65,70],worc_config:8,worckeyerror:65,worctutorialsimple_travis_multiclass:16,worctutorialsimple_travis_regress:16,worcvalueerror:65,work:65,workflow:59,would:65,your:70,zone:66}}) \ No newline at end of file +Search.setIndex({docnames:["autogen/WORC","autogen/WORC.IOparser","autogen/WORC.classification","autogen/WORC.config","autogen/WORC.detectors","autogen/WORC.exampledata","autogen/WORC.facade","autogen/WORC.facade.helpers","autogen/WORC.fastrconfig","autogen/WORC.featureprocessing","autogen/WORC.plotting","autogen/WORC.processing","autogen/WORC.resources","autogen/WORC.resources.fastr_tests","autogen/WORC.resources.fastr_tools","autogen/WORC.statistics","autogen/WORC.tests","autogen/WORC.tools","autogen/WORC.validators","autogen/config/WORC.config_Bootstrap_defopts","autogen/config/WORC.config_Bootstrap_description","autogen/config/WORC.config_Classification_defopts","autogen/config/WORC.config_Classification_description","autogen/config/WORC.config_ComBat_defopts","autogen/config/WORC.config_ComBat_description","autogen/config/WORC.config_CrossValidation_defopts","autogen/config/WORC.config_CrossValidation_description","autogen/config/WORC.config_Ensemble_defopts","autogen/config/WORC.config_Ensemble_description","autogen/config/WORC.config_Evaluation_defopts","autogen/config/WORC.config_Evaluation_description","autogen/config/WORC.config_FeatPreProcess_defopts","autogen/config/WORC.config_FeatPreProcess_description","autogen/config/WORC.config_Featsel_defopts","autogen/config/WORC.config_Featsel_description","autogen/config/WORC.config_FeatureScaling_defopts","autogen/config/WORC.config_FeatureScaling_description","autogen/config/WORC.config_General_defopts","autogen/config/WORC.config_General_description","autogen/config/WORC.config_HyperOptimization_defopts","autogen/config/WORC.config_HyperOptimization_description","autogen/config/WORC.config_ImageFeatures_defopts","autogen/config/WORC.config_ImageFeatures_description","autogen/config/WORC.config_Imputation_defopts","autogen/config/WORC.config_Imputation_description","autogen/config/WORC.config_Labels_defopts","autogen/config/WORC.config_Labels_description","autogen/config/WORC.config_OneHotEncoding_defopts","autogen/config/WORC.config_OneHotEncoding_description","autogen/config/WORC.config_Preprocessing_defopts","autogen/config/WORC.config_Preprocessing_description","autogen/config/WORC.config_PyRadiomics_defopts","autogen/config/WORC.config_PyRadiomics_description","autogen/config/WORC.config_Resampling_defopts","autogen/config/WORC.config_Resampling_description","autogen/config/WORC.config_Segmentix_defopts","autogen/config/WORC.config_Segmentix_description","autogen/config/WORC.config_SelectFeatGroup_defopts","autogen/config/WORC.config_SelectFeatGroup_description","index","static/additionalfunctionality","static/changelog","static/configuration","static/datamining","static/developerdocumentation","static/faq","static/features","static/file_description","static/introduction","static/quick_start","static/user_manual"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.cpp":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":1,"sphinx.ext.viewcode":1,sphinx:56},filenames:["autogen/WORC.rst","autogen/WORC.IOparser.rst","autogen/WORC.classification.rst","autogen/WORC.config.rst","autogen/WORC.detectors.rst","autogen/WORC.exampledata.rst","autogen/WORC.facade.rst","autogen/WORC.facade.helpers.rst","autogen/WORC.fastrconfig.rst","autogen/WORC.featureprocessing.rst","autogen/WORC.plotting.rst","autogen/WORC.processing.rst","autogen/WORC.resources.rst","autogen/WORC.resources.fastr_tests.rst","autogen/WORC.resources.fastr_tools.rst","autogen/WORC.statistics.rst","autogen/WORC.tests.rst","autogen/WORC.tools.rst","autogen/WORC.validators.rst","autogen/config/WORC.config_Bootstrap_defopts.rst","autogen/config/WORC.config_Bootstrap_description.rst","autogen/config/WORC.config_Classification_defopts.rst","autogen/config/WORC.config_Classification_description.rst","autogen/config/WORC.config_ComBat_defopts.rst","autogen/config/WORC.config_ComBat_description.rst","autogen/config/WORC.config_CrossValidation_defopts.rst","autogen/config/WORC.config_CrossValidation_description.rst","autogen/config/WORC.config_Ensemble_defopts.rst","autogen/config/WORC.config_Ensemble_description.rst","autogen/config/WORC.config_Evaluation_defopts.rst","autogen/config/WORC.config_Evaluation_description.rst","autogen/config/WORC.config_FeatPreProcess_defopts.rst","autogen/config/WORC.config_FeatPreProcess_description.rst","autogen/config/WORC.config_Featsel_defopts.rst","autogen/config/WORC.config_Featsel_description.rst","autogen/config/WORC.config_FeatureScaling_defopts.rst","autogen/config/WORC.config_FeatureScaling_description.rst","autogen/config/WORC.config_General_defopts.rst","autogen/config/WORC.config_General_description.rst","autogen/config/WORC.config_HyperOptimization_defopts.rst","autogen/config/WORC.config_HyperOptimization_description.rst","autogen/config/WORC.config_ImageFeatures_defopts.rst","autogen/config/WORC.config_ImageFeatures_description.rst","autogen/config/WORC.config_Imputation_defopts.rst","autogen/config/WORC.config_Imputation_description.rst","autogen/config/WORC.config_Labels_defopts.rst","autogen/config/WORC.config_Labels_description.rst","autogen/config/WORC.config_OneHotEncoding_defopts.rst","autogen/config/WORC.config_OneHotEncoding_description.rst","autogen/config/WORC.config_Preprocessing_defopts.rst","autogen/config/WORC.config_Preprocessing_description.rst","autogen/config/WORC.config_PyRadiomics_defopts.rst","autogen/config/WORC.config_PyRadiomics_description.rst","autogen/config/WORC.config_Resampling_defopts.rst","autogen/config/WORC.config_Resampling_description.rst","autogen/config/WORC.config_Segmentix_defopts.rst","autogen/config/WORC.config_Segmentix_description.rst","autogen/config/WORC.config_SelectFeatGroup_defopts.rst","autogen/config/WORC.config_SelectFeatGroup_description.rst","index.rst","static/additionalfunctionality.rst","static/changelog.rst","static/configuration.rst","static/datamining.rst","static/developerdocumentation.rst","static/faq.rst","static/features.rst","static/file_description.rst","static/introduction.rst","static/quick_start.rst","static/user_manual.rst"],objects:{"WORC.IOparser":{config_WORC:[1,0,0,"-"],config_io_PyRadiomics:[1,0,0,"-"],config_io_classifier:[1,0,0,"-"],config_io_combat:[1,0,0,"-"],config_preprocessing:[1,0,0,"-"],config_segmentix:[1,0,0,"-"],file_io:[1,0,0,"-"]},"WORC.IOparser.config_WORC":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_PyRadiomics":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_classifier":{load_config:[1,1,1,""]},"WORC.IOparser.config_io_combat":{load_config:[1,1,1,""]},"WORC.IOparser.config_preprocessing":{load_config:[1,1,1,""]},"WORC.IOparser.config_segmentix":{load_config:[1,1,1,""]},"WORC.IOparser.file_io":{convert_config_pyradiomics:[1,1,1,""],load_data:[1,1,1,""],load_features:[1,1,1,""]},"WORC.WORC":{Tools:[0,2,1,""],WORC:[0,2,1,""]},"WORC.WORC.Tools":{__dict__:[0,3,1,""],__init__:[0,4,1,""],__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.WORC.WORC":{__dict__:[0,3,1,""],__init__:[0,4,1,""],__module__:[0,3,1,""],__weakref__:[0,3,1,""],add_ComBat:[0,4,1,""],add_elastix:[0,4,1,""],add_elastix_sourcesandsinks:[0,4,1,""],add_evaluation:[0,4,1,""],add_feature_calculator:[0,4,1,""],add_preprocessing:[0,4,1,""],add_segmentix:[0,4,1,""],add_tools:[0,4,1,""],build:[0,4,1,""],build_training:[0,4,1,""],defaultconfig:[0,4,1,""],execute:[0,4,1,""],save_config:[0,4,1,""],set:[0,4,1,""]},"WORC.addexceptions":{WORCAssertionError:[0,5,1,""],WORCError:[0,5,1,""],WORCIOError:[0,5,1,""],WORCIndexError:[0,5,1,""],WORCKeyError:[0,5,1,""],WORCNotImplementedError:[0,5,1,""],WORCTypeError:[0,5,1,""],WORCValueError:[0,5,1,""]},"WORC.addexceptions.WORCAssertionError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCError":{__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.addexceptions.WORCIOError":{__module__:[0,3,1,""],__weakref__:[0,3,1,""]},"WORC.addexceptions.WORCIndexError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCKeyError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCNotImplementedError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCTypeError":{__module__:[0,3,1,""]},"WORC.addexceptions.WORCValueError":{__module__:[0,3,1,""]},"WORC.classification":{AdvancedSampler:[2,0,0,"-"],ObjectSampler:[2,0,0,"-"],RankedSVM:[2,0,0,"-"],SearchCV:[2,0,0,"-"],construct_classifier:[2,0,0,"-"],createfixedsplits:[2,0,0,"-"],crossval:[2,0,0,"-"],estimators:[2,0,0,"-"],fitandscore:[2,0,0,"-"],metrics:[2,0,0,"-"],parameter_optimization:[2,0,0,"-"],regressors:[2,0,0,"-"],trainclassifier:[2,0,0,"-"]},"WORC.classification.AdvancedSampler":{AdvancedSampler:[2,2,1,""],boolean_uniform:[2,2,1,""],discrete_uniform:[2,2,1,""],exp_uniform:[2,2,1,""],log_uniform:[2,2,1,""]},"WORC.classification.AdvancedSampler.AdvancedSampler":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__iter__:[2,4,1,""],__len__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""]},"WORC.classification.AdvancedSampler.boolean_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.discrete_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.exp_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.AdvancedSampler.log_uniform":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],rvs:[2,4,1,""]},"WORC.classification.ObjectSampler":{ObjectSampler:[2,2,1,""]},"WORC.classification.ObjectSampler.ObjectSampler":{__dict__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],__weakref__:[2,3,1,""],fit:[2,4,1,""],init_ADASYN:[2,4,1,""],init_BorderlineSMOTE:[2,4,1,""],init_NearMiss:[2,4,1,""],init_NeighbourhoodCleaningRule:[2,4,1,""],init_RandomOverSampling:[2,4,1,""],init_RandomUnderSampling:[2,4,1,""],init_SMOTE:[2,4,1,""],init_SMOTEENN:[2,4,1,""],init_SMOTETomek:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.RankedSVM":{RankSVM_test:[2,1,1,""],RankSVM_test_original:[2,1,1,""],RankSVM_train:[2,1,1,""],RankSVM_train_old:[2,1,1,""],is_empty:[2,1,1,""],neg_dual_func:[2,1,1,""]},"WORC.classification.SearchCV":{BaseSearchCV:[2,2,1,""],BaseSearchCVJoblib:[2,2,1,""],BaseSearchCVfastr:[2,2,1,""],Ensemble:[2,2,1,""],GridSearchCVJoblib:[2,2,1,""],GridSearchCVfastr:[2,2,1,""],RandomizedSearchCVJoblib:[2,2,1,""],RandomizedSearchCVfastr:[2,2,1,""],chunks:[2,1,1,""],chunksdict:[2,1,1,""],rms_score:[2,1,1,""],sar_score:[2,1,1,""]},"WORC.classification.SearchCV.BaseSearchCV":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],create_ensemble:[2,4,1,""],decision_function:[2,4,1,""],inverse_transform:[2,4,1,""],predict:[2,4,1,""],predict_log_proba:[2,4,1,""],predict_proba:[2,4,1,""],preprocess:[2,4,1,""],process_fit:[2,4,1,""],refit_and_score:[2,4,1,""],score:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.SearchCV.BaseSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__module__:[2,3,1,""]},"WORC.classification.SearchCV.BaseSearchCVfastr":{__abstractmethods__:[2,3,1,""],__module__:[2,3,1,""]},"WORC.classification.SearchCV.Ensemble":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],decision_function:[2,4,1,""],inverse_transform:[2,4,1,""],predict:[2,4,1,""],predict_log_proba:[2,4,1,""],predict_proba:[2,4,1,""],transform:[2,4,1,""]},"WORC.classification.SearchCV.GridSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.GridSearchCVfastr":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.RandomizedSearchCVJoblib":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.SearchCV.RandomizedSearchCVfastr":{__abstractmethods__:[2,3,1,""],__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""]},"WORC.classification.construct_classifier":{construct_SVM:[2,1,1,""],construct_classifier:[2,1,1,""],create_param_grid:[2,1,1,""]},"WORC.classification.createfixedsplits":{createfixedsplits:[2,1,1,""]},"WORC.classification.crossval":{LOO_cross_validation:[2,1,1,""],crossval:[2,1,1,""],nocrossval:[2,1,1,""],random_split_cross_validation:[2,1,1,""],test_RS_Ensemble:[2,1,1,""]},"WORC.classification.estimators":{RankedSVM:[2,2,1,""]},"WORC.classification.estimators.RankedSVM":{__init__:[2,4,1,""],__module__:[2,3,1,""],fit:[2,4,1,""],predict:[2,4,1,""],predict_proba:[2,4,1,""]},"WORC.classification.fitandscore":{delete_cc_para:[2,1,1,""],delete_nonestimator_parameters:[2,1,1,""],fit_and_score:[2,1,1,""],replacenan:[2,1,1,""]},"WORC.classification.metrics":{ICC:[2,1,1,""],ICC_anova:[2,1,1,""],check_multimetric_scoring:[2,1,1,""],check_scoring:[2,1,1,""],f1_weighted_predictproba:[2,1,1,""],multi_class_auc:[2,1,1,""],multi_class_auc_score:[2,1,1,""],pairwise_auc:[2,1,1,""],performance_multilabel:[2,1,1,""],performance_singlelabel:[2,1,1,""]},"WORC.classification.parameter_optimization":{random_search_parameters:[2,1,1,""]},"WORC.classification.trainclassifier":{add_parameters_to_grid:[2,1,1,""],trainclassifier:[2,1,1,""]},"WORC.detectors":{detectors:[4,0,0,"-"]},"WORC.detectors.detectors":{AbstractDetector:[4,2,1,""],BigrClusterDetector:[4,2,1,""],CartesiusClusterDetector:[4,2,1,""],CsvDetector:[4,2,1,""],DebugDetector:[4,2,1,""],HostnameDetector:[4,2,1,""],LinuxDetector:[4,2,1,""],WORCDirectoryDetector:[4,2,1,""]},"WORC.detectors.detectors.AbstractDetector":{__abstractmethods__:[4,3,1,""],__dict__:[4,3,1,""],__module__:[4,3,1,""],__weakref__:[4,3,1,""],do_detection:[4,4,1,""]},"WORC.detectors.detectors.BigrClusterDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.CartesiusClusterDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.CsvDetector":{__abstractmethods__:[4,3,1,""],__init__:[4,4,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.DebugDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.HostnameDetector":{__abstractmethods__:[4,3,1,""],__init__:[4,4,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.LinuxDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.detectors.detectors.WORCDirectoryDetector":{__abstractmethods__:[4,3,1,""],__module__:[4,3,1,""]},"WORC.exampledata":{create_example_data:[5,0,0,"-"],datadownloader:[5,0,0,"-"]},"WORC.exampledata.create_example_data":{create_random_features:[5,1,1,""]},"WORC.exampledata.datadownloader":{download_HeadAndNeck:[5,1,1,""],download_project:[5,1,1,""],download_subject:[5,1,1,""]},"WORC.facade":{basicworc:[6,0,0,"-"],simpleworc:[6,0,0,"-"]},"WORC.facade.basicworc":{BasicWORC:[6,2,1,""]},"WORC.facade.basicworc.BasicWORC":{__init__:[6,4,1,""],__module__:[6,3,1,""],execute:[6,4,1,""]},"WORC.facade.helpers":{configbuilder:[7,0,0,"-"],exceptions:[7,0,0,"-"],processing:[7,0,0,"-"]},"WORC.facade.helpers.configbuilder":{ConfigBuilder:[7,2,1,""]},"WORC.facade.helpers.configbuilder.ConfigBuilder":{__dict__:[7,3,1,""],__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""],build_config:[7,4,1,""],coarse_overrides:[7,4,1,""],custom_config_overrides:[7,4,1,""],estimator_scoring_overrides:[7,4,1,""],fullprint:[7,4,1,""]},"WORC.facade.helpers.exceptions":{InvalidCsvFileException:[7,5,1,""],InvalidOrderException:[7,5,1,""],NoFeaturesFoundException:[7,5,1,""],NoImagesFoundException:[7,5,1,""],NoMasksFoundException:[7,5,1,""],NoSegmentationsFoundException:[7,5,1,""],PathNotFoundException:[7,5,1,""]},"WORC.facade.helpers.exceptions.InvalidCsvFileException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.InvalidOrderException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoFeaturesFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoImagesFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoMasksFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.NoSegmentationsFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.exceptions.PathNotFoundException":{__init__:[7,4,1,""],__module__:[7,3,1,""],__weakref__:[7,3,1,""]},"WORC.facade.helpers.processing":{convert_radiomix_features:[7,1,1,""]},"WORC.facade.simpleworc":{SimpleWORC:[6,2,1,""]},"WORC.facade.simpleworc.SimpleWORC":{__dict__:[6,3,1,""],__init__:[6,4,1,""],__module__:[6,3,1,""],__weakref__:[6,3,1,""],add_config_overrides:[6,4,1,""],add_evaluation:[6,4,1,""],binary_classification:[6,4,1,""],count_num_subjects:[6,4,1,""],execute:[6,4,1,""],features_from_radiomix_xlsx:[6,4,1,""],features_from_this_directory:[6,4,1,""],images_from_this_directory:[6,4,1,""],labels_from_this_file:[6,4,1,""],masks_from_this_directory:[6,4,1,""],multiclass_classification:[6,4,1,""],predict_labels:[6,4,1,""],regression:[6,4,1,""],segmentations_from_this_directory:[6,4,1,""],semantics_from_this_file:[6,4,1,""],set_fixed_splits:[6,4,1,""],set_multicore_execution:[6,4,1,""],set_tmpdir:[6,4,1,""],survival:[6,4,1,""]},"WORC.featureprocessing":{ComBat:[9,0,0,"-"],Decomposition:[9,0,0,"-"],FeatureConverter:[9,0,0,"-"],ICCThreshold:[9,0,0,"-"],Imputer:[9,0,0,"-"],OneHotEncoderWrapper:[9,0,0,"-"],Preprocessor:[9,0,0,"-"],Relief:[9,0,0,"-"],Scalers:[9,0,0,"-"],SelectGroups:[9,0,0,"-"],SelectIndividuals:[9,0,0,"-"],StatisticalTestFeatures:[9,0,0,"-"],StatisticalTestThreshold:[9,0,0,"-"],VarianceThreshold:[9,0,0,"-"]},"WORC.featureprocessing.ComBat":{ComBat:[9,1,1,""],ComBatMatlab:[9,1,1,""],ComBatPython:[9,1,1,""],Synthetictest:[9,1,1,""]},"WORC.featureprocessing.Decomposition":{Decomposition:[9,1,1,""]},"WORC.featureprocessing.FeatureConverter":{FeatureConverter:[9,1,1,""],convert_PREDICT:[9,1,1,""],convert_pyradiomics:[9,1,1,""],convert_pyradiomics_featurevector:[9,1,1,""]},"WORC.featureprocessing.ICCThreshold":{ICCThreshold:[9,2,1,""],convert_features_ICC_threshold:[9,1,1,""]},"WORC.featureprocessing.ICCThreshold.ICCThreshold":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Imputer":{Imputer:[9,2,1,""]},"WORC.featureprocessing.Imputer.Imputer":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.OneHotEncoderWrapper":{OneHotEncoderWrapper:[9,2,1,""],test:[9,1,1,""]},"WORC.featureprocessing.OneHotEncoderWrapper.OneHotEncoderWrapper":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Preprocessor":{Preprocessor:[9,2,1,""]},"WORC.featureprocessing.Preprocessor.Preprocessor":{__dict__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],__weakref__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Relief":{SelectMulticlassRelief:[9,2,1,""]},"WORC.featureprocessing.Relief.SelectMulticlassRelief":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],multi_class_relief:[9,4,1,""],single_class_relief:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.Scalers":{LogStandardScaler:[9,2,1,""],RobustStandardScaler:[9,2,1,""],WORCScaler:[9,2,1,""],test:[9,1,1,""]},"WORC.featureprocessing.Scalers.LogStandardScaler":{__module__:[9,3,1,""],fit:[9,4,1,""]},"WORC.featureprocessing.Scalers.RobustStandardScaler":{__module__:[9,3,1,""],fit:[9,4,1,""]},"WORC.featureprocessing.Scalers.WORCScaler":{__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.SelectGroups":{SelectGroups:[9,2,1,""]},"WORC.featureprocessing.SelectGroups.SelectGroups":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.SelectIndividuals":{SelectIndividuals:[9,2,1,""]},"WORC.featureprocessing.SelectIndividuals.SelectIndividuals":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.StatisticalTestFeatures":{StatisticalTestFeatures:[9,1,1,""]},"WORC.featureprocessing.StatisticalTestThreshold":{StatisticalTestThreshold:[9,2,1,""]},"WORC.featureprocessing.StatisticalTestThreshold.StatisticalTestThreshold":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.featureprocessing.VarianceThreshold":{VarianceThresholdMean:[9,2,1,""],selfeat_variance:[9,1,1,""]},"WORC.featureprocessing.VarianceThreshold.VarianceThresholdMean":{__abstractmethods__:[9,3,1,""],__init__:[9,4,1,""],__module__:[9,3,1,""],fit:[9,4,1,""],transform:[9,4,1,""]},"WORC.plotting":{compute_CI:[10,0,0,"-"],linstretch:[10,0,0,"-"],plot_ROC:[10,0,0,"-"],plot_barchart:[10,0,0,"-"],plot_boxplot_features:[10,0,0,"-"],plot_boxplot_performance:[10,0,0,"-"],plot_errors:[10,0,0,"-"],plot_estimator_performance:[10,0,0,"-"],plot_hyperparameters:[10,0,0,"-"],plot_images:[10,0,0,"-"],plot_pvalues_features:[10,0,0,"-"],plot_ranked_scores:[10,0,0,"-"],plotminmaxresponse:[10,0,0,"-"],scatterplot:[10,0,0,"-"]},"WORC.plotting.compute_CI":{compute_confidence:[10,1,1,""],compute_confidence_bootstrap:[10,1,1,""],compute_confidence_logit:[10,1,1,""]},"WORC.plotting.linstretch":{linstretch:[10,1,1,""]},"WORC.plotting.plot_ROC":{curve_thresholding:[10,1,1,""],main:[10,1,1,""],plot_PRC_CIc:[10,1,1,""],plot_ROC:[10,1,1,""],plot_ROC_CIc:[10,1,1,""],plot_single_PRC:[10,1,1,""],plot_single_ROC:[10,1,1,""]},"WORC.plotting.plot_barchart":{count_parameters:[10,1,1,""],main:[10,1,1,""],paracheck:[10,1,1,""],plot_barchart:[10,1,1,""],plot_bars:[10,1,1,""]},"WORC.plotting.plot_boxplot_features":{generate_feature_boxplots:[10,1,1,""],plot_boxplot_features:[10,1,1,""]},"WORC.plotting.plot_boxplot_performance":{generate_performance_boxplots:[10,1,1,""],test:[10,1,1,""]},"WORC.plotting.plot_errors":{plot_errors:[10,1,1,""]},"WORC.plotting.plot_estimator_performance":{combine_multiple_estimators:[10,1,1,""],compute_statistics:[10,1,1,""],fit_thresholds:[10,1,1,""],main:[10,1,1,""],plot_estimator_performance:[10,1,1,""]},"WORC.plotting.plot_hyperparameters":{plot_hyperparameters:[10,1,1,""]},"WORC.plotting.plot_images":{bbox_2D:[10,1,1,""],extract_boundary:[10,1,1,""],plot_im_and_overlay:[10,1,1,""],slicer:[10,1,1,""]},"WORC.plotting.plot_pvalues_features":{manhattan_importance:[10,1,1,""]},"WORC.plotting.plot_ranked_scores":{example:[10,1,1,""],flatten_object:[10,1,1,""],main:[10,1,1,""],plot_ranked_images:[10,1,1,""],plot_ranked_percentages:[10,1,1,""],plot_ranked_posteriors:[10,1,1,""],plot_ranked_scores:[10,1,1,""]},"WORC.plotting.plotminmaxresponse":{main:[10,1,1,""]},"WORC.plotting.scatterplot":{main:[10,1,1,""],make_scatterplot:[10,1,1,""]},"WORC.processing":{ExtractNLargestBlobsn:[11,0,0,"-"],classes:[11,0,0,"-"],helpers:[11,0,0,"-"],label_processing:[11,0,0,"-"],preprocessing:[11,0,0,"-"],segmentix:[11,0,0,"-"]},"WORC.processing.ExtractNLargestBlobsn":{ExtractNLargestBlobsn:[11,1,1,""]},"WORC.processing.classes":{"switch":[11,2,1,""]},"WORC.processing.classes.switch":{__dict__:[11,3,1,""],__init__:[11,4,1,""],__iter__:[11,4,1,""],__module__:[11,3,1,""],__weakref__:[11,3,1,""],match:[11,4,1,""]},"WORC.processing.helpers":{check_image_orientation:[11,1,1,""],resample_image:[11,1,1,""],transpose_image:[11,1,1,""]},"WORC.processing.label_processing":{findlabeldata:[11,1,1,""],load_config_XNAT:[11,1,1,""],load_label_XNAT:[11,1,1,""],load_label_csv:[11,1,1,""],load_label_txt:[11,1,1,""],load_labels:[11,1,1,""]},"WORC.processing.preprocessing":{bias_correct_image:[11,1,1,""],clip_image:[11,1,1,""],normalize_image:[11,1,1,""],preprocess:[11,1,1,""]},"WORC.processing.segmentix":{dilate_contour:[11,1,1,""],get_ring:[11,1,1,""],mask_contour:[11,1,1,""],segmentix:[11,1,1,""]},"WORC.resources":{fastr_tools:[14,0,0,"-"]},"WORC.resources.fastr_tests":{CalcFeatures_test:[13,0,0,"-"],elastix_test:[13,0,0,"-"],segmentix_test:[13,0,0,"-"]},"WORC.resources.fastr_tests.CalcFeatures_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.resources.fastr_tests.elastix_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.resources.fastr_tests.segmentix_test":{create_network:[13,1,1,""],main:[13,1,1,""],sink_data:[13,1,1,""],source_data:[13,1,1,""]},"WORC.statistics":{delong:[15,0,0,"-"]},"WORC.statistics.delong":{calc_pvalue:[15,1,1,""],compute_ground_truth_statistics:[15,1,1,""],compute_midrank:[15,1,1,""],compute_midrank_weight:[15,1,1,""],delong_roc_test:[15,1,1,""],delong_roc_variance:[15,1,1,""],fastDeLong:[15,1,1,""]},"WORC.tests":{WORCTutorialSimple_travis_multiclass:[16,0,0,"-"],WORCTutorialSimple_travis_regression:[16,0,0,"-"],test_combat:[16,0,0,"-"],test_helpers:[16,0,0,"-"],test_iccthreshold:[16,0,0,"-"],test_plot_errors:[16,0,0,"-"],test_validators:[16,0,0,"-"]},"WORC.tests.WORCTutorialSimple_travis_multiclass":{main:[16,1,1,""]},"WORC.tests.WORCTutorialSimple_travis_regression":{main:[16,1,1,""]},"WORC.tests.test_combat":{test_combat:[16,1,1,""],test_combat_fastr:[16,1,1,""]},"WORC.tests.test_helpers":{find_exampledatadir:[16,1,1,""],find_testdatadir:[16,1,1,""]},"WORC.tests.test_iccthreshold":{test_iccthreshold:[16,1,1,""]},"WORC.tests.test_plot_errors":{test_plot_errors:[16,1,1,""]},"WORC.tests.test_validators":{test_invalidlabelsvalidator_columnsubstring:[16,1,1,""],test_invalidlabelsvalidator_patientcolumn:[16,1,1,""],test_invalidlabelsvalidator_patientsubstring:[16,1,1,""],test_invalidlabelsvalidator_validconfig:[16,1,1,""]},"WORC.tools":{Elastix:[17,0,0,"-"],Evaluate:[17,0,0,"-"],Inference:[17,0,0,"-"],Slicer:[17,0,0,"-"],Transformix:[17,0,0,"-"],createfixedsplits:[17,0,0,"-"]},"WORC.tools.Elastix":{Elastix:[17,2,1,""]},"WORC.tools.Elastix.Elastix":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],addchangeorder:[17,4,1,""],create_bbox:[17,4,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],getparametermap:[17,4,1,""]},"WORC.tools.Evaluate":{Evaluate:[17,2,1,""]},"WORC.tools.Evaluate.Evaluate":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_links_Addon:[17,4,1,""],create_links_Standalone:[17,4,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],set:[17,4,1,""]},"WORC.tools.Inference":{Inference:[17,2,1,""]},"WORC.tools.Inference.Inference":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""]},"WORC.tools.Slicer":{Slicer:[17,2,1,""]},"WORC.tools.Slicer.Slicer":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""],execute:[17,4,1,""],set:[17,4,1,""]},"WORC.tools.Transformix":{Transformix:[17,2,1,""]},"WORC.tools.Transformix.Transformix":{__dict__:[17,3,1,""],__init__:[17,4,1,""],__module__:[17,3,1,""],__weakref__:[17,3,1,""],create_network:[17,4,1,""],execute:[17,4,1,""]},"WORC.tools.createfixedsplits":{createfixedsplits:[17,1,1,""]},"WORC.validators":{preflightcheck:[18,0,0,"-"]},"WORC.validators.preflightcheck":{AbstractValidator:[18,2,1,""],EvaluateValidator:[18,2,1,""],InvalidLabelsValidator:[18,2,1,""],MinSubjectsValidator:[18,2,1,""],SamplesWarning:[18,2,1,""],SimpleValidator:[18,2,1,""],ValidatorsFactory:[18,2,1,""]},"WORC.validators.preflightcheck.AbstractValidator":{__abstractmethods__:[18,3,1,""],__dict__:[18,3,1,""],__module__:[18,3,1,""],__weakref__:[18,3,1,""],do_validation:[18,4,1,""]},"WORC.validators.preflightcheck.EvaluateValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.InvalidLabelsValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.MinSubjectsValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.SamplesWarning":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.SimpleValidator":{__abstractmethods__:[18,3,1,""],__module__:[18,3,1,""]},"WORC.validators.preflightcheck.ValidatorsFactory":{__dict__:[18,3,1,""],__module__:[18,3,1,""],__weakref__:[18,3,1,""],factor_validators:[18,6,1,""]},WORC:{WORC:[0,0,0,"-"],__init__:[0,0,0,"-"],addexceptions:[0,0,0,"-"],classification:[2,0,0,"-"],facade:[6,0,0,"-"],featureprocessing:[9,0,0,"-"],plotting:[10,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","attribute","Python attribute"],"4":["py","method","Python method"],"5":["py","exception","Python exception"],"6":["py","staticmethod","Python static method"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:attribute","4":"py:method","5":"py:exception","6":"py:staticmethod"},terms:{"0284186x":9,"06875v1":9,"0a1":66,"0rc1":59,"105741d":59,"1st":2,"1x1x1":[50,60,62],"22nd":70,"2nd":[2,66],"5th":9,"95th":9,"95varianc":[33,34,62],"98nd":66,"boolean":[0,1,2,6,9,10,11,19,25,31,33,39,43,47,51,52,57,59,61,62],"case":[2,11,24,61,62,64,66,70],"catch":[0,61],"class":[0,2,4,6,7,9,15,17,18,59,61,64,70],"default":[0,1,2,6,9,10,11,17,19,21,22,23,25,27,28,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,60,61,62,64,66,69,70],"export":68,"final":[2,9,11,62,70],"float":[2,9,10,11,15,21,25,33,39,41,42,49,51,53,61,62,66],"function":[0,2,4,6,7,9,10,11,16,17,18,22,50,59,61,62,63,64,65,66,67,69,70],"gr\u00fcnhagen":59,"import":[2,9,34,59,61,62,68,70],"int":[2,9,11],"long":66,"new":[0,59,61,66,68],"return":[0,1,2,9,10,11,15,61,64],"short":66,"static":[18,42,62],"switch":[9,11,61],"throw":[61,66],"true":[0,2,5,6,9,10,11,21,26,29,32,33,37,38,40,41,43,44,48,49,50,51,55,57,58,60,62,69,70],"try":[2,60,68],"while":[2,11,40,61,62,66],Added:59,Adding:59,Age:69,And:9,Els:59,For:[0,2,6,9,22,42,48,59,60,61,62,63,64,65,66,68,69,70],IDs:[11,65],Not:[2,6,61,68],One:[2,54,61,62],PCs:[22,62],SVs:2,That:9,The:[0,1,2,6,9,10,11,15,26,34,46,59,60,61,62,63,64,65,66,67,68],Then:2,There:[61,69,70],These:[10,62,64,66,69,70],USING:59,Use:[2,6,19,20,22,27,28,31,32,47,48,53,54,61,62,66,69],Using:[59,68],Vos:59,Was:61,Will:6,With:59,__abstractmethods__:[2,4,9,18],__dict__:[0,2,4,6,7,9,11,17,18],__doc__:[0,2,4,6,7,9,11,17,18],__file__:69,__init__:[0,2,4,6,7,9,11,17],__iter__:[2,11],__len__:2,__module__:[0,2,4,6,7,9,11,17,18],__weakref__:[0,2,4,6,7,9,11,17,18],_abc_data:[4,18],_abc_impl:[4,18],_base:9,_cluster_config_overrid:7,_data:9,_debug_config_overrid:7,_format_result:2,_generate_detector_messag:[4,18],_is_detect:4,_set_and_validate_estim:6,_valid:[6,18],abbrevi:[22,62],abc:[4,18],about:66,abov:[2,9,60,61,62,66,68,69,70],absolut:61,abspath:69,abstractdetector:4,abstractvalid:18,accept:[2,39,61,62],accorad:2,accord:[2,9,10,66,69,70],accordingli:[60,69],account:[9,10,70],accur:[2,4,7,9,11,17],accuraci:[2,10,70],acquisit:68,across:2,act:62,actual:[0,2,6,30,59,60,61,62,63,64,68,70],adaboost:[22,61,62],adaboost_learning_r:[21,22,62],adaboost_n_estim:[21,22,62],adaboostclassifi:[21,62],adaboostregressor:[21,62],adapt:[59,68],adasyn:[2,53,61,62],add:[0,2,6,9,17,61,64,65,66,67,69,70],add_combat:0,add_config_overrid:6,add_elastix:0,add_elastix_sourcesandsink:0,add_evalu:[0,6,69,70],add_feature_calcul:[0,64],add_parameters_to_grid:2,add_preprocess:0,add_segmentix:0,add_tool:0,addchangeord:17,added:[9,17,24,61,62,64,70],addexcept:59,addinf:61,adding:[2,17,62,64,69,70],addit:[0,6,38,59,61,62,66,69,70],addition:[1,9,10,61,62,70],address:59,adequ:64,adher:61,adjust:[2,10,61,62,70],adopt:[2,15,54,61,62],advanc:[59,69,70],advancedsampl:[0,59],advantag:62,advic:[52,60,62,64,69,70],affect:2,affin:17,after:[0,2,9,38,60,61,62,64,65,66,69,70],afterward:[6,9],again:[62,66,68,69],age:[41,62,66,70],agesex:10,aggreg:66,agument:11,aim:59,aka:70,alejandro:66,alex:66,algorithm:[2,15,60,61,62,68],align:70,all:[0,1,2,6,9,10,11,21,24,38,40,44,48,53,57,58,60,61,62,63,64,65,66,68,69,70],allign:70,allow:[2,6,61,65,66,67],allow_non:2,along:[9,68],alpha:[2,10],alpha_new:2,alpha_old:2,alreadi:[60,62,68,70],als:70,also:[0,2,6,9,34,54,59,60,61,62,64,65,66,68,69,70],alter:[2,11,61,62,66],altern:[65,70],although:68,altner:65,alwai:[2,9,61,68,69,70],among:[2,9,10,59,62],amount:[66,68],anaconda:[65,69],analys:69,analysi:[34,59,62,66,70],analyticsvidhya:62,angl:[42,62,66],angu:59,angular:66,ani:[2,9,10,21,39,48,61,62,65,66,68,69,70],annual:59,anoth:[11,60,68,70],anova:2,any_structur:2,anymor:61,anyth:68,anywai:9,apach:59,api:[54,60,62],appear:66,append:[61,62,65,70],appendix:2,appli:[0,2,6,9,11,38,50,60,61,62,66,68],applic:[11,59,66,68],approach:[9,59,62,68],appropri:0,arbitrari:66,area:[15,66,70],arg:[1,2,4,11,15,18],argmax:10,argu:66,argument:[0,1,2,11,61,64,65],arif:59,around:[2,6,17,56,60,62,64,70],arrai:[1,2,9,10,11,15,59],artefact:66,articl:[15,59,66],arxiv:[9,59],asm:66,aspect:66,assertionerror:0,assess:[6,9,61],assign:[2,40,42,62],assist:[59,66],associ:2,assum:[2,9,50,60,62,65,68,69,70],assumesameimageandmaskmetadata:[11,37,38,62],assumpt:[2,38,62,70],attribut:[0,2,4,6,7,9,11,17,18,59,61],atyp:70,auc:[2,15,70],author:15,auto:[2,53,62],autom:59,automat:[0,6,11,40,59,60,61,62,66,68,69],avail:[2,6,61,63,68],averag:[10,61],average_precision_weight:[39,62],avoid:[2,60,66],awai:66,axes:66,axi:[9,10,50,62,66],axial:[10,11,49,50,51,56,60,61,62,66],back:[61,65],backend:[38,61,62],backward:61,balanc:70,band:[6,70],bangma:59,barchart:[10,61,70],base:[0,2,4,5,6,7,9,10,11,17,18,34,50,59,61,62,66,70],baseestim:[2,9],baselin:68,basesearchcv:2,basesearchcvfastr:2,basesearchcvjoblib:2,basestr:6,basi:70,basic:[64,66,68,70],basicworc:[0,59,61,65,69,70],batch:[9,23,24,60,62],bay:[24,62],bbox_2d:10,bca:70,been:[0,9,10,59,66,68,69],befor:[0,2,6,9,42,60,61,62,65,66,68,69],beforehand:66,begin:[59,61],beginn:59,behavior:2,behaviour:61,being:[15,50,62],belong:[0,2,9],below:[0,2,34,48,60,62,65,66,68,69,70],benefit:[60,66,68],bengio:70,benign:59,bent:59,berlin:66,besid:[0,59,62,70],best:[2,10,61,62,63,68],best_estim:2,best_estimator_:2,best_index_:2,best_params_:2,best_score_:2,beta:2,better:61,between:[2,9,17,21,22,34,42,59,61,62,66],bia:[2,11,50,60,61,62],bias_correct_imag:11,biascorrect:[49,50,62],biascorrection_mask:[49,50,62],big:61,bigr:[6,40,59,62,69],bigr_erasmusmc:2,bigrclusterdetector:4,bin:[52,59,62,64],binari:[2,6,9,10,11,59,61,69],binaru:69,binary_classif:[0,6,17,69],binaryimag:11,bincount:[51,52,62],binwidth:[51,52,62],bio:59,biomark:[59,66,68],biomed:59,bit:61,bitbucket:2,bitwise_xor:61,black:59,blazev:59,blob:[11,56,60,62,64],block:69,blog:62,bme:59,bmia:69,boht:66,bonferonni:9,book:59,bool:2,boolean_uniform:2,boost:[22,61,62],boostrap:61,bootstrap:[3,10,20,59,61,70],bootstrap_metr:10,bootstrap_n:10,border:60,borderlinesmot:[2,53,62],both:[2,10,59,60,61,62,64,66,68,70],bound:[11,17],boundari:[9,10,11,34,42,62],box:[17,59,62],boxplot:[10,61],braband:59,braf:59,branch:[0,22,62],breviti:69,british:59,broad:66,brought:68,bug:61,bugfix:61,buggi:61,build:[0,17,59,61,68,69,70],build_config:7,build_train:0,built:69,buisman:59,bulletin:9,busy:66,button:59,c_valu:2,cache_s:2,cad:2,caddementia:2,calc_pvalu:15,calcfeat_nod:0,calcfeatur:[37,61,62],calcfeatures_test:[0,12],calcul:[0,2,9,10,38,62,64],call:[2,61,64,66,69,70],callabl:2,can:[0,2,6,9,10,11,17,34,38,42,44,50,59,60,61,62,64,66,68,69,70],cancer:[59,66],candid:2,cannot:[2,59,60,61],captur:60,carcinoma:59,cardin:61,cartesiu:[6,69],cartesiusclusterdetector:4,caruana:[2,10],cash:[62,68],cast:61,castillo:59,categor:[9,61],categori:70,caught:6,center:[59,66],centr:66,certain:[2,6,17,60,61,62,66,70],cf_:9,cf_pyradiom:[37,62],challeg:2,challeng:[2,70],chang:[6,59,60,62,64,66,69],changelog:59,chapter:[6,59,60,62,63,65,66,67,69,70],characterist:[10,15,70],check:[2,6,11,48,50,60,61,62,64,70],check_image_orient:11,check_multimetric_scor:2,check_scor:2,checkorient:[49,50,62],checkspac:[49,50,62],chi2:61,child:[22,62],choic:[2,59,68],choos:[2,50,61,62],chosen:[2,62,66],chunk:2,chunksdict:2,circular:66,class_i:2,class_j:2,class_weight:2,classfic:[40,62],classif:[0,3,6,22,46,61,64,65,66,69,70],classifi:[0,2,10,21,22,32,59,61,62,65,70],classifier_data:2,classifiermixin:2,classpi:2,clean:[54,61,62],clf:2,clinic:68,clip:[11,49,50,60,61,62],clip_imag:11,clipping_rang:[49,50,62],clone:69,closest:2,cluster:[2,6,22,40,59,61,62,68,69],cnb_alpha:[21,22,62],coars:[6,66,69],coarse_overrid:7,code:[60,62,69],coef0:2,coeffici:[2,9,70],col:[22,62],coliag:[41,42,58,62],coliage_featur:[9,57,58,62],coliage_features_:9,collabor:59,colleagu:68,color:10,colorect:59,column:[2,6,9,59,66,70],com:[6,9,15,38,59,62,64,65,66,69,70],combat:[0,3,16,24,37,38,59,61],combatharmon:[9,38,62],combatmatlab:9,combatpython:9,combin:[1,2,9,10,24,31,32,59,61,62,63,66,68,70],combine_featur:1,combine_method:[1,31,32,62],combine_multiple_estim:10,comma:[2,9,21,23,35,36,41,62],command:[0,2,9,17,59,61,62,64,65,68,69],common:[2,6],commonli:66,commun:69,compact:66,compar:[15,68],comparison:[59,66],compat:[1,7,9,11,60,61,64],complement_label_1:69,complementari:66,complementnb:[22,62],complementnd:[21,62],complet:[61,62,69,70],complex:[66,70],compon:[9,17,34,60,62,68,70],comprehens:[60,63,66],comput:[0,2,6,9,10,15,16,42,52,59,60,61,62,66,68,69,70],compute_ci:[0,59],compute_confid:10,compute_confidence_bootstrap:10,compute_confidence_logit:10,compute_ground_truth_statist:15,compute_midrank:15,compute_midrank_weight:15,compute_statist:10,concept:[59,68],concern:68,concord:70,conda:65,condit:65,conduct:[2,61,70],confer:[59,66,70],conffid:61,confid:[6,10,61,70],config:[0,1,2,6,7,9,10,11,17,22,34,60,61,62,63,64,65,66,69,70],config_file_path:[1,11],config_io_classifi:[0,59,64],config_io_combat:[0,59],config_io_pyradiom:[0,59],config_preprocess:[0,59],config_segmentix:[0,59],config_worc:[0,59],configbuild:[0,6,61],configpars:[0,11,62],configur:[0,1,2,6,9,59,60,61,64,65,67,69,70],confipars:1,congress:59,congruenc:66,connect:59,consist:[2,39,40,62,69,70],consol:7,constant:[9,43,62,68],construct:[2,6,10,59,69],construct_classifi:[0,59],construct_svm:2,consumpt:2,contain:[0,1,2,6,9,10,11,36,61,62,65,66,69,70],containingfor:2,content:[7,11,59,66],continu:[2,61,69],contour:[10,11,56,60,62],contrast:[2,66],contribut:59,control:2,converg:[10,61],convers:61,convert:[1,7,9,61,64,66],convert_config_pyradiom:1,convert_features_icc_threshold:9,convert_predict:9,convert_pyradiom:9,convert_pyradiomics_featurevector:9,convert_radiomix_featur:7,convex:66,copi:[0,2,9,11,38,59,60,61,62,64],copymetadata:0,core:[2,6,38,40,61,62,66,69],coron:[51,62],correct:[11,24,50,60,61,62,70],correctli:[10,61,65,70],correl:[9,15,66,68,70],correspond:[2,9,10,40,52,61,62,65,66,70],cost:2,could:[61,65,66,68],count:[6,52,62,66],count_num_subject:6,count_paramet:10,coupl:70,cours:70,covari:15,cox:70,cpu:2,crash:[59,61,69],creat:[0,2,5,6,10,17,61,62,65,66,68,69,70],creata:2,create_bbox:17,create_ensembl:[2,61],create_example_data:[0,59,70],create_links_addon:17,create_links_standalon:17,create_network:[13,17],create_param_grid:2,create_random_featur:5,create_sourc:62,createfixedsplit:[0,59],creation:[59,61,66],criteria:59,criterion:2,crop:68,cross:[0,2,10,17,26,38,40,61,62,70],cross_valid:[37,38,62],crossval:[0,59],crossval_typ:10,crossvalid:[3,59],csv:[6,9,10,61,69,70],csv_file_path:4,csv_out:9,csvdetector:4,ct001:0,ct002:0,cto:59,current:[0,2,9,11,26,32,50,59,60,61,62,65,68,70],curv:[6,10,15,61,70],curve_threshold:10,custom:[2,51,52,62],custom_config_overrid:7,cv_iter:2,cv_results_:2,cyan:10,dai:65,dat:9,data:[0,2,9,10,11,16,26,59,60,61,62,65,66,68,69],data_path:69,datadir:69,datadownload:[0,59,61,69],datafil:61,datafold:[5,69],datafram:[2,10],dataset:[0,2,6,30,38,40,59,60,61,62,68,69,70],datatyp:[61,64,67],datayp:61,dcm:11,deal:[60,61],debug:[10,38,59,61,62,69],debugdetector:4,decent:68,decid:[66,68],decision_funct:2,decision_function_shap:2,decod:66,decomposit:[0,6,59,61,70],decompositon:61,default_queu:65,default_scor:2,defaultconfig:[0,7,62,64,70],defin:[0,2,4,6,7,9,11,17,18,34,56,62,63,64,66,68,69,70],definit:[9,59,66],degre:[2,22,42,62,66],del:69,delai:2,delet:[2,59,61,64],delete_cc_para:2,delete_nonestimator_paramet:2,delong:[0,59],delong_roc_test:15,delong_roc_vari:15,demand:2,dementia:2,demo_param:2,demonst:2,den:59,depend:[0,2,10,59,61,65,68,70],deprec:61,depth:[22,62],der:59,describ:[0,2,63,66,67,70],descript:[2,9,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,69],descriptor:66,design:68,desmoid:59,despit:59,detail:[2,6,10,11,60,62,65,66,70],detect:[9,61,65,66],detector:[0,6,59,61,69],determin:[1,2,6,10,11,20,28,32,34,36,38,42,44,46,48,50,52,56,59,61,62,66,68,69,70],determinist:2,develop:[2,66,68],developp:61,deviat:[9,42,62,66],df_:9,diagnosi:59,diagnost:59,diamet:66,dicom:[0,41,42,50,58,59,60,61,62,70],dicom_featur:[9,57,58,61,62],dicom_feature_label:[41,42,62,66],dicom_feature_tag:[41,42,62,66],dict:[0,1,2,9,11],dictionari:[0,1,2,6,10,11,61,62,65,70],did:[61,64,68,70],didn:61,differ:[2,10,11,15,59,60,61,68],differenti:59,difficult:68,difscal:9,digit:66,dilat:[11,50,55,56,60,61,62,70],dilate_contour:11,dilate_roi:11,dimens:66,dimension:68,direct:[61,66],directli:[6,61,66,68,69,70],directori:[0,6,62,69],dirnam:69,disabl:[52,61,62],disc:[50,56,62],discret:[42,62,66],discrete_uniform:2,discrimin:59,discuss:[60,66,70],dispatch:2,dissimilar:66,distanc:[9,34,42,62,66],distance_p:9,distinguish:[2,59,70],distribut:[2,61,64,69,70],distrubit:2,divers:68,divid:68,do_detect:4,do_test_rs_ensembl:2,do_valid:18,doc:64,docstr:[69,70],doctest:2,document:[2,6,9,60,61,63,65,69,70],doe:[2,9,61,62,65,66],doi:9,doing:[2,62],don:69,done:[0,2,60,61,62,63,64,65,66,68,70],down:61,download:[61,69],download_headandneck:[5,69],download_project:5,download_subject:5,dpi:10,draw_network:70,drawback:66,drawn:[2,40,62],drmaa:[40,62],drmaaplugin:65,drop:61,drug:66,dti:61,dtrf:59,due:[2,61,68],dummi:[61,65],dure:[2,40,61,62,65],dwarkas:59,e104:66,e107:66,each:[2,6,9,10,11,42,61,62,65,66,68,69,70],earlier:[66,69],easi:[59,68],easier:[61,68,70],easili:[61,62,68,69,70],echo:66,ecr:59,edg:[42,62,66],edit:[69,70],editelastixtransformfil:61,edwardo:2,effect:59,effici:[2,61,66],effort:68,efron:70,eigen:[21,62],either:[0,2,9,10,24,34,62,69,70],ejrad:[],elasticnet:[21,22,61,62],elasticnet_alpha:[21,22,62],elasticnet_l1_ratio:[21,22,62],elastix4:[37,62],elastix:[0,37,59,61,62,70],elastix_para:0,elastix_test:[0,12],electr:66,element:[9,34,50,62,70],elif:[65,69],ellip:66,ellipsi:2,ellipt:66,elong:66,els:[64,65],emb:64,embed:[60,61,63],emper:[24,62],emphasi:66,empir:70,emploi:2,empti:2,emptygraylevel:65,enabl:[2,6,52,62],encod:[2,48,62],end:[59,64,65],energi:66,engin:[2,59,68],enhanc:66,enough:2,ensembl:[2,3,10,17,28,40,59,61,68],ensemble_scor:10,ensur:0,enter:[2,11],entir:2,entri:59,entropi:66,environ:65,epsilon_insensit:[21,62],equal:[2,9,22,24,28,50,62,66],erasmu:68,error:[2,6,10,16,59,61,66,69,70],error_scor:2,especi:[2,38,59,61,62],establish:[59,66],estim:[0,6,7,10,17,21,22,28,34,40,59,61,62],estimator_input:2,estimator_scoring_overrid:7,estsiz:10,etc:[2,9,10,59],etcetera:69,european:59,eusomii:59,evalu:[0,2,3,6,10,30,40,59,61,69],evaluatevalid:18,even:66,everi:[38,62,68],everywher:64,exact:2,exactli:[65,69],exampl:[0,2,6,10,11,15,16,17,48,59,61,62,65,66,68,69],example_stwstrategyhn:69,exampledata:[0,59,69,70],examplefil:69,excel:[66,70],except:[0,6,61],exclud:[9,24,32,34,62],excluded_featur:[23,24,62],exclus:69,exctract:66,exe:[23,62],execut:[0,2,6,16,17,21,22,24,59,61,62,64,68,69],execute_first:7,executionplugin:65,exhaust:2,exist:[17,61,68],exp:2,exp_uniform:2,expand:[10,61,66],expect:[65,68,69],expected_hostnam:4,experi:[2,6,16,59,61,66,70],experiment:[30,62],experiment_fold:69,experiment_nam:69,expert:66,explain:[34,62,65],explant:66,explicit:2,explor:[2,69],explos:2,expon:[2,22,62],express:2,extens:[61,68,69],extrac:60,extract:[1,2,6,9,10,11,42,52,56,59,60,61,62,65,68,70],extract_boundari:10,extract_firstord:[51,52,62],extract_shap:[51,52,62],extractnlargestblobsn:[0,59],extractor:[51,52,62],extrat:11,f1_score:61,f1_weight:[2,6,39,62],f1_weighted_predictproba:[2,39,62],f6d255a45dd:62,facad:[0,7,59,61,69,70],facilit:[59,68],factor_valid:18,fail:61,fals:[1,2,5,9,10,11,17,19,21,22,25,29,31,37,39,41,44,47,49,50,51,55,57,59,62,69],familiar:68,fancyimput:9,faq:[59,61],fashion:69,fast:[2,15,59],fastdelong:15,fastr3:61,fastr:[0,2,6,17,21,22,40,59,61,62,64,65,69,70],fastr_plugin:[0,2,17,21,22,62],fastr_tempdir:[0,62],fastr_test:[0,12],fastr_tool:[0,12],fastrconfig:[0,59,62,70],fastrhom:62,fat:66,fator:2,fatsat:66,fault:61,feat:1,feat_in:9,feat_out:9,feat_out_0:59,feat_test:2,feat_train:2,featpreprocess:[3,59],featsel:[3,59,65],featur:[0,1,2,5,6,7,9,10,11,16,17,24,32,34,36,38,42,44,48,51,52,58,59,60,61,62,68,69],feature:65,feature_dict:65,feature_fil:[6,69],feature_file_nam:6,feature_label:[2,9,10,65,69],feature_label_1:10,feature_label_2:10,feature_labels_tofit:[9,47,48,62],feature_select:[9,34,61,62],feature_set:9,feature_valu:[2,9,65,69],featurecalcul:[37,38,62,64],featureconvert:[0,59,64],featurefil:[1,10],featurefile_p1:69,featurenam:10,featureprocess:[0,59,64,65],features_:69,features_from_radiomix_xlsx:6,features_from_this_directori:[6,65,69],features_in:9,features_mod1_patient1:1,features_mod1_patient2:1,features_mod2_patient1:1,features_mod2_patient2:1,features_out:9,features_p1:69,features_test:70,features_test_in:9,features_test_out:9,features_train:[65,70],features_train_in:9,features_train_out:9,featuresc:[3,59],featuresdatadir:[65,69],featurespatient1:65,featurespatient2:65,featurevector:9,feel:[68,69],fellow:68,felt:68,fetur:[11,66],few:68,fewer:66,fibromatosi:59,fibrosi:59,fiduzi:59,field:[1,2,9,11,36,48,60,61,62,64,66,68,69],fig:10,figsiz:10,figur:[10,61,68],figwidth:10,fij:9,file1:[2,9],file2:[2,9],file3:[2,9],file:[0,1,2,5,6,9,10,11,46,59,60,61,62,64,66,69],file_io:[0,59,61],file_path:6,filenam:[10,11,65,70],filepath:[10,61],filesmatlabr2015bbinmatlab:[23,62],filesystem:61,fill:[56,60,62],fill_valu:9,fillhol:[55,56,62],filter:[42,59,62,68],finalbsplineinterpolationord:61,find:[2,16,59,61,63,65,68,69],find_exampledatadir:16,find_testdatadir:16,findlabeldata:11,first:[6,9,10,15,34,52,59,61,62,66,68,69,70],fit:[2,9,30,40,61,62,63,64,66,70],fit_and_scor:[2,63,64],fit_param:2,fit_threshold:10,fit_tim:2,fitandscor:[0,59,61,63,64],fitfailedwarn:2,fittd:2,fitted_workflow:2,five:[64,68],fix:[2,10,17,26,34,52,59,62,65,68,70],fixandscor:61,fixed_se:[2,25,26,62],fixed_splits_csv:6,fixedsplit:2,flag:61,flat:66,flatten:[10,61],flatten_object:10,fleiss:9,flexibl:[61,68],flip:[10,66],fluctuat:66,focu:70,focuss:70,fold:2,folder:[2,7,10,16,61,62,64,65,69,70],follow:[2,9,10,59,60,62,64,65,66,68,69,70],fontsiz:[9,10],force2d:[51,52,62],force2ddimens:[51,52,62],foremost:66,foresight:68,forest:[34,62],fork:65,form:66,format:[0,1,2,5,6,7,9,10,11,59,60,61,62,64,70],formula:2,forward:68,found:[2,59,61,62,68,69,70],foundat:59,four:68,fpr:10,fracf_:9,fractal:[58,61,62],fractal_featur:[9,57,58,62],framework:[59,61,68],frangi:[42,62,66],free:69,freeli:70,frequenc:[42,62,66],frequent:9,from:[0,1,2,6,7,9,10,11,15,21,24,38,40,42,46,56,59,60,61,62,64,65,66,68,69,70],frozenset:[2,4,9,18],fulfil:2,full:[6,7,10,11,38,49,50,59,60,61,62,69],fulli:[6,59,61],fullprint:7,fun:68,function_bas:59,funtion:9,further:61,furthermor:66,futur:61,gabor:[9,42,58,59,61,62],gabor_angl:[41,42,62,66],gabor_frequ:[41,42,62,66],gamma:[2,22,62],garcia:2,gastrointestin:59,gather:10,gaussian:[52,59,62],gaussiannb:[21,62],gave:[2,61],gclm:[48,62,66],gener:[0,2,3,6,9,10,21,22,27,34,50,59,60,61,64,65,66,68,70],generalis:59,generaliz:59,generate_config:64,generate_feature_boxplot:10,generate_performance_boxplot:10,genet:[11,70],geometrytoler:[51,52,62],get:[2,10,11,59,68,69,70],get_r:11,getparametermap:17,gibhub:59,git:69,github:[1,2,6,9,10,11,15,38,59,62,64,65,69,70],give:[2,48,60,61,62,65,66,68,69,70],given:[0,2,6,9,10,40,42,59,61,62,64,66,69,70],glcm:[42,48,52,58,59,62,65],glcm_:9,glcm_angl:[41,42,62,66],glcm_distanc:[41,42,62,66],glcm_level:[41,42,62,66],glcmm:66,glcmms_:9,gldm:[52,58,59,62,65],gldzm:[58,61,62],gldzm_:9,glob:[6,69],glrlm:[42,52,58,59,62,65],glrlm_:9,glszm:[42,52,58,59,62,65],glszm_:9,gmean:[39,62],going:68,good:70,grade:59,grahpviz:61,grai:59,grand:2,graphviz:61,grayscal:[42,62],grid:[2,40,62],grid_scor:61,gridsearch:[22,62],gridsearchcv:2,gridsearchcvfastr:2,gridsearchcvjoblib:2,griethuysen:66,grlm:66,ground:[10,70],ground_truth:15,groundtruth:2,group:[2,9,34,61,62,65,66,68,70],groupsel:[2,64],groupwis:[2,61,65,66,70],groupwisesearch:[33,34,62,65],growth:59,gsout:2,guarante:2,guid:[2,59,62,65],guidelin:70,hack:65,had:[61,68],haibo:2,halton:2,haltonsampl:2,hand:68,handbook:59,handl:[9,61],handle_unknown:9,hanff:59,happen:66,harmon:[0,9,16,38,59,60,61,62],has:[0,2,6,9,50,59,62,65,66,68],have:[0,2,9,10,11,34,38,59,60,61,62,64,65,66,68,69,70],hdf5:[1,2,6,7,9,10,59,69,70],head:[69,70],header:[0,2,6,66,70],heidelberg:66,held:2,help:[2,4,7,9,11,17,61,70],helper:[0,6,59],henc:[2,6,9,10,60,61,62,64,66,68,70],hepatocellular:59,herder:59,here:[2,60,62,63,64,66,69,70],hf_:9,hf_mean:9,high:[59,66,68,69],higher:2,highest:2,highli:[2,68],highlight:[51,52,62],hing:[21,62],histogram:[2,41,42,58,59,62],histogram_featur:[9,57,58,62],histopatholog:59,histori:68,hofland:59,hold:[0,2],hole:[56,60,62],home:61,homogen:[22,62,66],hope:59,horribl:69,hospit:[23,62],host:59,hostnamedetector:4,hot:[48,62],hounsfield:62,how:[1,2,10,11,28,42,56,61,62,64,65,66,68,69,70],howev:[2,60,62,64,66,68,70],htm:62,html:[0,9,21,22,34,42,51,52,60,62],http:[0,2,6,9,15,21,22,34,38,42,51,52,54,59,60,62,64,65,69,70],huber:[21,62],hyper:[2,62],hyperoptim:[3,28,40,59,60,61],hyperparamat:2,hyperparamet:[2,10,40,61,62,63,66,68],hypothes:66,hypothesi:15,i_max:10,i_min:10,icc:[2,9,16,59,61,70],icc_anova:2,iccthreshold:[0,59],icctyp:[2,9],idea:[68,70],ident:2,identifi:[6,69],ids:[2,11],ieee:[2,15,59,66],ignor:[9,62],iid:2,iivarinen:66,illustr:68,imag:[0,2,6,10,11,17,38,42,50,52,59,61,62,65,68,69],image_featur:[2,9,10,65],image_features_test:2,image_features_train:2,image_file_nam:[6,69],image_mr:70,image_typ:[41,42,62],imagedatadir:69,imagefeatur:[3,59,66,70],imagefil:11,images1:70,images_from_this_directori:[6,69],images_test:70,images_train:[0,6,70],imagetyp:62,imaginary_label_1:69,imbalanc:[2,54,61,62],img2:10,img:[10,11],immedi:2,implement:[0,2,6,9,11,15,22,24,62,68,70],implicitli:68,imposs:2,improv:[2,66],imput:[0,2,3,44,59,61,64,68],imputat:2,incekara:59,includ:[0,2,6,11,28,32,60,61,62,64,65,66,68,69,70],incompat:[52,62],incorpor:61,incorrect:[50,61,62],incorrectli:[10,61,70],increas:[2,40,61,62],inde:66,independ:[68,70],index:[2,9,10,59,62,65,66,70],indexerror:[0,59],indic:[2,11],individu:2,ineffici:68,infer:[0,40,59,62,70],infinit:61,influenc:66,info:[6,62,65],inform:[2,9,10,38,59,62,64,66,69,70],informat:59,ini:[0,1,2,9,11,61,62,64],init:[9,64],init_adasyn:2,init_borderlinesmot:2,init_nearmiss:2,init_neighbourhoodcleaningrul:2,init_randomoversampl:2,init_randomundersampl:2,init_smot:2,init_smoteenn:2,init_smotetomek:2,initi:[0,2,4,6,7,9,11,17,61,66],inner:[42,60,62,66],input:[0,2,6,9,10,11,17,59,61,62,64,65,68],input_fil:[7,11],inputarrai:9,inset:61,insight:70,inspect:61,instal:[59,60,61,62],instanc:[0,2],instanti:2,instead:[2,52,59,60,61,62,66,69,70],integ:[2,6,9,10,11,19,21,25,27,28,33,37,39,40,41,42,43,44,49,51,52,53,55,59,61,62],integr:[59,61,68],intellig:66,intens:[11,50,52,60,62,66],inter:[2,9],interact:[6,59,61,69],interest:[6,66],interfac:2,intermed:10,intermedi:2,intermediatefacad:61,intern:[59,66,70],interpol:[11,51,52,62],interpret:[64,68],interquartil:66,interv:[6,10,61,70],intervent:[59,66],intra:[2,9],intraclass:[9,70],introduc:69,introduct:[59,69],introductori:68,invalidcsvfileexcept:7,invalidlabelsvalid:18,invalidorderexcept:7,invari:66,inverse_transform:2,involv:2,ioerror:0,iopars:[0,2,59,64],ioplugin:0,iri:2,is_empti:2,is_multimetr:2,is_train:6,isbi:59,isi:70,isn:61,issu:[59,61,65,68,69,70],item:[0,2,9,69],iter:[2,10,20,22,38,40,61,62,64,70],ith:2,itk:[0,11,61],itkimag:10,its:[2,68],itself:[66,68,70],jacob:66,jalv:59,jfortin1:[9,38,62],jiaj:66,job:[2,6,40,59,61,62],joblib:[2,22,38,61,62],joblib_backend:[37,38,62],joblib_ncor:[37,38,62],join:69,joost:66,joseph:9,journal:[15,59,66],json:[2,11,61,69],jth:2,jukka:66,just:[10,61,64,69,70],k_neighbor:[2,53,54,62],kapsa:59,keep:[2,11,59,61,68],kei:[2,3,41,61,62,65,70],kept:9,kernel:[2,22,62,70],kessel:59,keyerror:0,kfold:2,kind:[61,68],klein:59,knn:[9,43,44,61,62],knnimput:61,know:62,knowledg:2,known:66,kovesi:66,kurtosi:66,kwarg:[2,4,18],label1:[45,62,70],label2:[45,62,70],label:[0,1,2,3,6,9,10,11,15,24,46,48,51,52,59,60,61,66,68,69],label_1_count:15,label_data:[2,10,11],label_data_test:2,label_data_train:2,label_feature_1:65,label_feature_2:65,label_feature_3:65,label_feature_4:65,label_fil:[2,10,11,17,69],label_info:11,label_nam:[1,2,6,11,45,46,62,69],label_process:[0,59],label_s:2,label_set:9,label_statu:11,label_typ:[0,1,2,9,10,11,17,70],labelprocess:61,labels_from_this_fil:[6,59,69],labels_test:[9,70],labels_train:[9,70],lambda:2,lambda_tol:2,languag:[23,24,59,62,68],laplacian:[52,59,62],laptop:68,larg:[2,61,66,68],larger:[40,61,62,66],largest:[10,11,56,60,62,66],lasso:[2,21,33,34,62],last:[61,66,68],lastli:[50,62,64],later:[2,9,62,66],latest:[42,51,52,60,62],latex:61,latter:64,lbfg:[21,62],lbp:[42,58,59,62],lbp_:9,lbp_npoint:[41,42,62,66],lbp_radiu:[41,42,62,66],lda:[21,22,62],lda_shrinkag:[21,22,62],lda_solv:[21,22,62],lead:66,learn:[2,9,10,21,22,34,54,59,60,61,62,68,70],least:[2,65,66,68],leav:[26,61,62],led:61,leender:59,left:[2,61],length:[2,9,10,59],lengthi:69,lesion:[32,62,66],less:[61,62,66],let:69,letter:15,level:[42,51,52,59,62,70],lib:59,licens:59,lidc:59,lightweight:2,lij:9,like:[2,9,59,61,62,66,68,69],limit:70,line:[2,9,59,60,64,66,68,69],linear:[2,21,61,62,70],linear_model:[21,22,34,62],linearexecut:[6,17,21,62],link:[17,61,64,69,70],link_n4biasfieldcorrection_doc:60,linr:[21,62],linstretch:[0,59],linux:61,linuxdetector:4,lipoma:59,liposarcoma:59,list:[0,1,2,4,6,7,9,10,11,17,18,21,23,35,36,38,41,42,44,47,58,62,65,70],literatu:9,literatur:[9,60,66],littl:[2,68],liver:[59,70],load:[1,11,42,62,69],load_config:[1,64],load_config_xnat:11,load_data:1,load_featur:[1,61],load_iri:2,load_label:11,load_label_csv:11,load_label_txt:11,load_label_xnat:11,loc:[2,21,22,33,43,53,54,62],local:[42,59,62],locat:[6,58,61,62,66,69],location_featur:[9,57,58,62],locf_:9,log10:15,log:[9,15,22,41,42,51,52,58,59,61,62,64,65,68],log_featur:[9,57,58,62],log_sigma:[41,42,62,66],log_uniform:2,log_z_scor:[35,62],logarithm:[9,61],logic:61,logist:[22,62],logisticregress:[21,22,34,61,62],logit:9,logstandardscal:9,longer:[61,62],loo:[25,26,61,62],loo_cross_valid:2,look:[6,9,59,60,62,63,64,66,68,69,70],loop:[2,65],loss:[2,22,62,66],lot:[52,62,66,68],low:[59,66],lower:[9,11,34,50,61,62],lowerbound:11,lr_l1_ratio:[21,22,62],lr_solver:[21,22,62],lrc:[21,22,62],lrpenalti:[21,22,62],lsqr:[21,62],luckili:68,lung:59,maarten:59,machin:[2,34,59,61,62,66,68,70],macskassi:70,made:[6,59,61,62,66,68,70],maenpaa:66,magnet:66,mai:[2,62,64,66,68,69],main:[6,10,13,16,60,61,69,70],major:[53,61,62,66],majorli:[6,61],make:[2,6,10,38,40,60,61,62,64,65,68,69,70],make_scatterplot:10,make_scor:2,malign:59,manag:[0,66],mandatori:[1,2,9,10,11],manhattan:61,manhattan_import:10,mani:[0,2,9,10,28,56,60,61,62,66,68,70],manipul:70,mann:70,mannwhitneyu:[9,33,62],manual:[2,6,39,59,60,61,62,65,66,68,69],manufactur:66,map:[2,10,70],mappingproxi:[0,2,4,6,7,9,11,17,18],mark:10,marku:66,martijn:59,mask:[0,2,6,10,11,38,50,52,55,56,60,61,62,68,69],mask_contour:11,mask_file_nam:6,masked_arrai:2,masks_from_this_directori:6,masks_test:70,masks_train:70,mass:66,master:[2,60,64,70],match:[1,11,61,62,70],matlab:[9,11,23,24,59,60,62,68],matplotlib2tikz:61,matplotlib:10,matrix:[2,9,59],matter:9,matti:66,max:[1,31,32,34,41,62,64,66],max_it:[2,21,22,62],maxim:2,maximum:[2,22,42,61,62,66],maxlen:[2,39,40,61,62],mean:[1,2,6,9,24,31,32,43,61,62,65,66,70],mean_fit_tim:2,mean_score_tim:2,mean_test_scor:2,mean_train_scor:2,measur:[2,6,66,70],median:[9,43,50,62,66],medic:[59,66,68],medicin:[59,66],meet:[6,59],melanoma:59,member:2,memori:[2,39,40,61,62,70],mention:66,mesenter:59,mesh:66,messag:[2,10,61],metadata:[0,11,38,50,60,61,62,66],metadata_fil:11,metadata_test:70,metadata_train:70,metaestimatormixin:2,metastas:59,method:[0,2,6,9,10,11,15,32,34,36,44,49,50,53,54,59,61,62,65,66,68,70],metion:9,metric1:10,metric1t:10,metric2:10,metric2t:10,metric:[0,9,10,27,28,39,40,59,61,62,70],mhd:[11,70],miccai:59,michael:66,miclea:59,micro:68,microsoft:69,middl:[0,10,70],midrank:15,mimic:11,min:[9,34,41,61,62,64,66],min_object_s:[55,56,62],mine:[59,60,65,68],minim:[2,42,62,69,70],minimum:[22,42,50,56,61,62,66],minkov:9,minm:[49,62],minmax:[9,35,61,62],minor:[53,61,62,66],minsubjectsvalid:18,mismatch:[38,62],miss:[2,9,61],missing_valu:9,missingpi:[9,61],mixtur:11,mod:[9,23,24,61,62,64],modal:[2,9,42,52,61,62,66,70],modalityname1:[2,9],modalityname2:[2,9],mode:6,model:[1,2,6,10,15,17,34,40,58,59,61,62,68,70],model_select:[2,9],moder:[24,60,62,66],modified_hub:[21,62],modnam:1,modu:[0,2,10,17,45,46,62,69],modul:[12,21,22,34,61,62,64,70],modular:59,modulenotfounderror:59,molecular:59,momentum:66,more:[2,6,9,10,11,36,38,40,59,60,61,62,64,65,66,68,69,70],moreov:68,morpholog:[11,66],most:[2,6,9,22,61,62,66,68,69],most_frequ:[9,43,62],mostli:[2,9,61,62,70],mount:[2,6,61,69],move:61,mr001:0,mr002:0,mri:[52,59,62,66],mse:70,mstarmans91:[6,59,64,65,69,70],much:[40,54,61,62,66,69],multi:[2,59,66],multi_class_auc:2,multi_class_auc_scor:2,multi_class_relief:9,multicentr:59,multiclass:[2,6,69,70],multiclass_classif:[6,69],multicor:[6,38,62],multihread:61,multilabel:[2,6,45,46,59,61,62],multilabel_typ:10,multimetric_grid_search:2,multimod:61,multipl:[0,2,9,10,32,38,60,61,62,66,68,69,70],multipli:[11,55,56,62],multiprocess:[37,62],multiresolut:66,multiscal:66,multislic:[42,58,62],multivendor:59,must:[2,59,62],mutat:59,mutlicor:2,mutual:69,mwu:9,mxn:2,n_1:10,n_2:10,n_blob:[55,56,62],n_classifi:15,n_compon:61,n_core:2,n_exampl:15,n_featur:[2,5,9,61],n_iter:[2,17,19,20,25,26,39,40,62],n_job:2,n_jobspercor:[2,39,40,62],n_jobsperscor:2,n_neighbor:[2,9,43,44,53,54,62],n_neighbour:9,n_neightbor:9,n_object:5,n_output:2,n_patient:9,n_sampl:[2,9,61],n_split:[2,39,40,61,62],n_splits_:2,n_test:10,n_train:10,nadeau:70,naiv:68,name:[0,2,6,9,10,11,17,22,24,36,42,48,57,58,59,61,62,66,69,70],name_of_label_predicted_for_evalu:70,nan:[2,9,32,44,61,62,66],ndarrai:2,nearest:[9,34,44,62],nearmiss:[53,62],neccesari:[61,64],neck:69,need:[2,6,9,59,61,62,64,66,68,69,70],needaccess:9,neg:[9,61,70],neg_dual_func:2,neighbor:[9,34,44,62],neighborhood:59,neighbour:[9,66],neighbourhoodcleaningrul:[2,53,62],net:9,nettyp:17,network:[0,13,17,59,61,62,64,68,69],neural:70,neurocombat:60,never:[30,60,62],new_spac:11,newest:61,newli:61,nework:0,next:[66,69,70],ngldm:[58,61,62],ngldm_:9,ngtdm:[42,52,58,59,61,62,65],ngtdm_:9,nice:[61,68],niessen:59,nifti:[61,70],nii:[0,6,11,69,70],nipyp:2,nmod:0,nocrossv:2,node:[0,17,32,61,62,68,70],nofeaturesfoundexcept:7,noimagesfoundexcept:7,nois:[24,62],nomasksfoundexcept:7,nomean:9,non:[2,6,9,24,61,62,66,68,70],none:[0,1,2,4,5,6,7,9,10,11,15,17,18,21,35,51,55,56,61,62,65],nonparametr:70,nor:59,norm_tol:2,normal:[2,6,10,11,49,50,51,52,60,61,62,65,66,68,70],normalization_factor:10,normalize_imag:[11,60],normalize_roi:[11,49,50,62],normalize_whitespac:2,normalizescal:[51,52,62],nosegmentationsfoundexcept:7,not_label:2,notabl:61,note:[0,2,6,9,10,11,61,62,66,68,69],notic:66,notimplementederror:0,now:[61,66],npoint:66,npv:[61,70],nrrd:[11,70],nsampl:10,nsubject:[5,69],num_class:2,num_train:2,number:[2,6,9,10,11,15,20,22,26,34,38,40,42,44,54,61,62,66,68,70],numbertoextract:11,numer:[2,9,70],numf:9,numpi:[2,9,10,11,15,59,61,66],obj:59,object:[0,1,2,4,6,7,9,10,11,17,18,22,32,54,56,59,60,61,62,64,65,69],objectsampl:[0,59,61],observ:[2,9],obsolet:[38,62],occur:[2,9,34,59,62,63,65,70],occurr:9,odd:66,oddfeat:9,oddpati:9,odink:59,oerat:15,of_:[9,23,62],off:[2,65,66,70],offer:[66,69],offici:59,often:[62,66,68,70],ojala:66,older:61,omit:69,onc:[2,11,60,61,66],oncolog:59,oncoradiom:[6,61],one:[0,2,6,9,10,11,26,36,48,50,61,62,64,65,66,68,69,70],onehotencod:[2,3,9,48,59,61],onehotencoderwrapp:[0,59],onevsrest:61,onevsrestclassifi:2,onli:[2,6,9,11,22,30,40,50,61,62,65,66,68,69,70],onlin:[68,69],ontolog:68,onward:2,open:[59,61,65,68,69],oper:[10,11,59,66,70],opim:2,optim:[0,2,22,40,60,61,62,63,66,70],optimiz:0,option:[0,1,2,6,9,10,11,19,21,22,23,25,27,29,31,32,33,35,37,39,41,43,45,47,49,51,53,55,57,60,61,62,64,65,66,69,70],order:[2,9,10,11,52,60,61,62,63,66,68],org:[2,9,21,22,34,62],organ:[66,68],orient:[11,41,42,50,58,59,60,61,62],orientation_featur:[9,57,58,62],orientationprimaryaxi:[49,50,62],origin:[2,51,52,58,60,61,62,66],original_featur:[9,57,58,62],oserror:0,other:[0,2,9,34,39,59,60,61,62,64,68,69,70],otherwis:[2,9,50,52,60,61,62],otsu:[11,49,50,61,62],our:[59,62,64,66,69,70],out:[2,10,11,26,61,62,68,69,70],outcom:[2,40,62,68,69],outer:[26,60,62,66],outlier:[9,61],output:[2,6,9,10,11,17,61,62,64,65,68,69,70],output_csv:[9,10],output_fold:7,output_hdf:2,output_itk:10,output_json:2,output_nam:10,output_name_zoom:10,output_png:[9,10],output_tex:[9,10],output_zip:10,outputfold:[2,10,69],over:[2,6,9,61,62,66,68],overal:[61,69],overfit:[30,60,61,62],overfit_scal:[2,10],overfitscal:[29,30,62],overid:61,overlai:10,overrid:[6,61],oversampl:[61,68],overview:[60,63,66,69,70],overwrit:[6,50,61,62],overwritten:0,own:[37,59,61,62,64,66,68,69],p_ngtdm:65,packag:[59,61,66,70],packagedir:61,pad:[10,17],padmo:59,page:[15,59,68,70],pairwis:11,pairwise_auc:2,panda:[2,10,65,69],panda_data:[2,65],paper:[2,9,66],par:[9,23,24,62],para:2,paracheck:10,parallel:[2,6,61,62],param:[2,10],param_c:2,param_degre:2,param_distribut:2,param_gamma:2,param_grid:2,param_kernel:2,param_list:2,paramet:[0,2,6,9,10,11,22,34,40,54,59,60,61,62,63,64,68,70],parameter_optim:[0,59],parametergrid:2,parameters_al:2,parameters_est:2,parametersampl:2,parametr:[9,24,62],paramt:2,parekh:66,parent:17,pars:[1,61,62,64],part:[2,6,34,42,61,62,63,64,66,68,70],parti:9,pass:[2,61,70],path:[0,1,2,7,9,10,11,24,61,62,65,69],pathnotfoundexcept:7,patient001:0,patient002:0,patient1:[62,65,70],patient1_0:70,patient1_1:70,patient2:[62,65,70],patient3:[62,70],patient:[0,1,2,6,9,10,11,32,54,59,61,62,66,69,70],patient_001:69,patient_002:69,patient_featur:[9,61,70],patient_id:[2,11,17],patientclass:[61,62],patientinfo:[1,2,9,10,11],patientinfo_test:2,patientinfo_train:2,patrick:9,pattern:[59,70],pca:[2,6,34,61,62,64,70],pcatyp:[33,34,62],pce:61,pdf:9,peak:66,pearson:70,peform:69,penalti:[22,61,62],peopl:59,per:[0,1,2,9,24,56,61,62,65,66,70],per_featur:[9,23,24,62],percentag:[2,6,9,10,17,26,34,40,54,61,62,66,69,70],percentil:[9,61,66],perform:[0,2,6,9,10,17,26,30,38,40,46,59,61,62,63,68,69,70],performance_all_0:69,performance_fil:69,performance_metr:2,performance_multilabel:2,performance_singlelabel:2,person:59,peter:66,peura:66,pf_:[23,35,62],phase:[41,42,58,59,62],phase_featur:[9,57,58,62],phase_minwavelength:[41,42,62,66],phase_nscal:[41,42,62,66],phasef_:9,phd:68,phenotyp:66,phil:59,philip:66,physic:0,pick:[62,70],pid:[10,11,61],pietikainen:66,pilot:59,pinfo:[10,17,61],pinfo_hn:69,pip:[60,61,65,69],pipelin:[0,59,61,68,70],pixel:[0,10,42,52,62,66],place:64,placehold:9,platform:[59,68,69],pleas:[2,6,9,59,60,62,63,64,65,66,69,70],plot:[0,9,16,59,61],plot_bar:10,plot_barchart:[0,59],plot_boxplot_featur:[0,59],plot_boxplot_perform:[0,59],plot_error:[0,59],plot_estimator_perform:[0,59],plot_hyperparamet:[0,59],plot_im_and_overlai:10,plot_imag:[0,59,61],plot_prc_cic:10,plot_pvalues_featur:[0,59],plot_ranked_imag:10,plot_ranked_percentag:10,plot_ranked_posterior:[10,61],plot_ranked_scor:[0,59],plot_roc:[0,59],plot_roc_c:10,plot_single_prc:10,plot_single_roc:10,plot_svm:61,plot_svr:61,plot_test:9,plotminmaxrespons:[0,59],plotrankedscor:61,plu:[2,24,62,70],pluge:0,plugin:[0,2,21,22,40,61,62,65,68],png:[0,10,61],point:[2,10,42,62,69],pointint:10,pointsar:10,poli:[2,21,62],polynomi:[22,62,70],port:61,posit:[2,9,10,34,62,66,70],possibl:[2,9,59,61,66,68,70],post:69,posterior:[6,10,70],posteriors_csv:10,potenti:64,ppv:70,practic:68,prax:66,prc_csv:10,prc_png:10,prc_tex:10,pre:61,pre_dispatch:2,precis:[10,61,66,70],precomput:69,precrop:[51,52,62],predict:[2,5,6,9,10,15,37,57,59,60,61,62,65,66,68,69,70],predict_label:[6,61,69],predict_log_proba:2,predict_proba:[2,61],predictions_on:15,predictions_sorted_transpos:15,predictions_two:15,predictproba:61,predit:61,preflighcheck:61,preflightcheck:[0,59,61],prepar:[11,59],preprint:59,preprocess:[0,2,3,9,37,38,50,59,61,68,70],preprocess_nod:0,preprocessor:[0,32,59,61,62,64],preprocss:2,present:[2,59,61,66,69],preserverd:[24,62],prevent:61,previou:[68,70],previous:[61,68],primari:[50,62],primary_axi:11,princip:66,principl:[34,59,62,68,70],print:[2,7,9,10,61,69,70],probabl:[2,15,65,69],probe:59,problem:[2,59,61,68],procedur:[9,62,70],proceed:[59,70],process:[0,2,6,15,38,59,60,61,62,68,70],process_fit:2,processpoolexecut:17,produc:[2,66],program:[23,62,68],progress:[2,61],project:[5,11,61],project_nam:5,projectid:[45,46,62],proof:59,proper:[0,61],properli:61,properti:[2,66],prostat:59,proven:68,provid:[0,2,6,10,11,17,24,28,38,49,50,60,62,63,66,69,70],provost:70,pseudo:2,psycholog:9,publish:15,purpos:[0,30,62],push:59,put:[10,61,62,70],pvalu:15,pxcastconvert:61,pyradiom:[1,3,9,37,51,52,57,59,61,64,65,66],python3:61,python:[5,9,23,59,60,61,62,64,68,69],python_intro:60,pywavelet:65,qda:[21,22,62],qda_reg_param:[21,22,62],qualiti:2,quantifi:66,quantit:[59,66,68],question:68,queue:59,quick:[59,62,65],quickli:66,quit:[62,68],qxm:2,radial:[66,70],radian:[42,62,66],radii:[42,62],radiograph:66,radiolog:[59,66],radiom:[0,9,60,62,63,70],radiomix:[6,7,61],radiu:[10,11,42,50,56,62,66],rais:[2,61],rajic:59,ran:[2,61,69],random:[2,5,24,26,34,61,62,70],random_se:2,random_search:2,random_search_paramet:2,random_split:[25,62],random_split_cross_valid:2,random_st:[2,9],randomizedsearchcv:2,randomizedsearchcvfastr:2,randomizedsearchcvjoblib:2,randomli:[2,34,62,65],randomoversampl:[53,62],randomsearch:2,randomst:2,randomundersampl:[53,62],rang:[10,11,22,34,54,62,66],rank:[6,9,10,28,34,40,61,62,68,70],rank_:2,rank_test_scor:2,ranked_pid:10,ranked_scor:10,ranked_truth:10,rankedposterior:61,rankedsvm:[0,59,61],ranking_scor:[2,39,40,62],ranksvm:2,ranksvm_test:2,ranksvm_test_origin:2,ranksvm_train:2,ranksvm_train_old:2,rate:[10,22,62,70],rater:9,rather:2,ratio:[10,22,62,66],rational:63,raw:[11,66],rbf:[2,21,62],read:[1,2,11,68,69,70],read_hdf:69,reader:61,readthedoc:[0,42,51,52,54,59,60,61,62],reason:[2,66],recal:[10,61,70],receiv:[10,15,70],recent:61,recogn:65,recommend:[2,22,24,59,60,62,64,66,68,69],recommmend:69,recreat:2,reduc:[2,59,61],reduct:[61,68],redund:[61,66],ref:2,refactor:61,refer:[0,1,2,3,4,6,7,9,10,11,15,17,18,37,61,62,64,66,68],refit:[2,40,61,62],refit_and_scor:2,refit_ensembl:10,refit_workflow:[2,39,40,62],reflect:66,regard:59,regardless:69,region:[6,66],registr:[0,38,59,61,62,68,70],registrationnod:[37,38,62],regress:[2,6,10,17,22,46,59,61,62,65,69,70],regressor:[0,59,60,61],regular:[22,62,70],rel:[2,65],relat:[0,66],releas:[61,68],relev:[60,64,66,68,70],reli:66,reliabl:9,relief:[0,2,34,59,61,62],reliefdistancep:[33,34,62],reliefnn:[33,34,62],reliefnumfeatur:[33,34,62],reliefsamples:[33,34,61,62],reliefsel:2,reliefus:[33,34,62],remov:[9,10,38,56,60,61,62],remove_small_object:[55,56,62],removeconst:10,renam:61,rencken:59,repeat:[2,62],repetit:66,replac:[2,9,44,61,62,64,65],replacenan:[2,61],report:70,repositori:[59,69],repres:[2,66],reproduc:[61,68],requir:[0,2,6,22,59,61,62,65,68,69,70],resampl:[2,3,11,49,50,54,59,60,61,70],resample_imag:11,resampled_imag:11,resampledpixelspac:[51,52,62],resampling_spac:[49,50,62],research:[59,66,68],resourc:[0,11,13,59,65,68],respect:[2,9,56,60,62,69,70],result:[2,9,10,38,50,59,61,62,66,68],ret:2,retreiv:11,retriev:66,return_al:2,return_estim:2,return_n_test_sampl:2,return_paramet:2,return_tim:2,return_train_scor:2,returnplot:10,revert:61,review:66,rfmax_depth:[21,22,62],rfmin_samples_split:[21,22,62],rfn_estim:[21,22,62],rfr:[21,62],rgrd:[58,61,62],rgrd_featur:[9,57,58,62],rgrdf_:9,ridg:[21,61,62],right:70,ring:[11,55,56,60,61,62],risk:[59,70],rms_score:2,rng:2,robust:[9,35,59,61,62,66],robust_z_scor:[9,35,62],robustscal:[9,61],robuststandardscal:[9,61],roc:[6,10,15,61,70],roc_comparison:15,roc_csv:10,roc_png:10,roc_tex:10,roi:[11,50,52,59,61,62,70],roi_dilate_radiu:11,roidetermin:[11,49,50,62],roidil:[49,50,62],roidilateradiu:[49,50,62],rokwa:9,root:[2,6],rosset:70,rot90:10,rotat:[50,62,66],rough:66,round:[2,22,61,62],rounded_list:2,routin:[66,68],row:[2,9,66],rtstructread:61,run:[2,6,9,59,61,62,65,68,70],runtim:[2,61],rvs:2,safe:64,saga:[21,62],sagit:[51,61,62],sai:60,same:[1,2,9,10,22,32,38,60,61,62,66,68,69,70],samefeat:9,sampl:[0,1,2,9,10,22,34,40,54,61,62,70],sample_s:9,sample_weight:15,sampler:2,sampleswarn:18,sampling_strategi:[2,53,54,62],sar:2,sar_scor:2,sarcoma:59,satur:66,save:[0,2,5,9,10,38,40,61,62,65,66,69,70],save_config:[0,64],save_data:2,save_memori:10,scale:[2,9,21,22,33,36,42,43,52,53,54,61,62,66,68],scaler:[0,2,30,59,61,62,64],scaling_method:[35,36,62],scan:[62,66,69],scanner:66,scatterplot:[0,59],schoot:59,scienc:70,scikit:[2,9,21,22,34,60,62],scipi:2,score:[2,6,9,10,17,40,50,61,62,63,70],score_tim:2,scorer:2,scorer_:2,scorers_dict:2,scoring_method:[2,6,7,39,40,62],scoring_paramet:2,script:[9,60,61,64,65,68,69,70],script_path:69,scroll:70,search:[2,6,9,34,40,59,61,62,64,65],searchcv:[0,10,59,61,64],sebastian:59,second:[2,9,15,24,62,66],section:[62,65,69,70],see:[0,1,2,4,6,7,9,10,11,17,21,22,34,38,42,51,52,54,59,60,61,62,64,65,66,69,70],seed:[2,26,61,62],seem:[61,68],seen:[2,70],seg:[17,61],seg_liver_mr:70,seg_tumor1_mr:70,seg_tumor2_mr:70,seg_tumor_mr:70,segment:[0,6,10,11,17,38,56,60,61,62,66,68,69],segmentation_file_nam:[6,69],segmentations1:70,segmentations2:70,segmentations_from_this_directori:[6,69],segmentations_test:70,segmentations_train:[6,70],segmentix:[0,1,3,37,38,52,59,60,61,70],segmentix_test:[0,12],segradiu:[55,56,62],segtyp:[55,56,62],sel:9,select:[2,6,9,11,22,34,52,59,61,62,68,70],selected_label:6,selectfeatgroup:[3,34,59,65],selectfrommodel:[33,34,61,62],selectfrommodel_estim:[33,34,62],selectfrommodel_lasso_alpha:[33,34,62],selectfrommodel_n_tre:[33,34,62],selectgroup:[0,59,65],selectindividu:[0,59],selectmodel:2,selectmulticlassrelief:9,selectormixin:[9,61],self:[2,4,7,9,11,17,22,62,65],selfeat_vari:9,semant:[0,6,58,59,61,62],semantic_featur:[9,57,58,62],semantics_from_this_fil:6,semantics_test:70,semantics_train:70,semf_:[9,23,35,62],semicolon:61,sensibl:66,sensit:70,separ:[2,6,21,23,30,35,36,41,61,62,70],sequenc:[0,2,70],seri:[6,65],seriou:60,serpar:61,serv:[0,66,68,70],session:5,set:[0,1,2,5,6,9,10,15,17,22,30,38,40,44,50,60,61,62,64,65,66,68,69,70],set_fixed_split:6,set_multicore_execut:[6,69],set_tmpdir:[6,69],settin:2,settings_dict:1,setup:[6,61],sever:[0,6,9,11,60,61,62,65,66,68,69,70],sex:[9,41,62,66,70],sf_:[9,23,62,65],sf_compact:9,sgd:[21,22,62],sgd_alpha:[21,22,62],sgd_l1_ratio:[21,22,62],sgd_loss:[21,22,62],sgd_penalti:[21,22,62],sgdr:[21,62],shape:[2,9,41,42,52,58,59,62,65],shape_featur:[9,57,58,62],shear:68,sheet:70,shift:[24,62],should:[0,1,2,6,9,10,11,24,36,38,40,42,54,56,60,61,62,65,70],show:[2,10,61,69,70],shown:68,shrink:2,shrinkag:[22,62],shrout:9,shuffle_estim:10,shutil:61,siemen:66,sigma:[9,15,66],sign:[2,9],signal:15,signatur:[2,4,7,9,11,17,59],signific:[10,70],significantli:62,similar:[2,9,60,61,64,65,66,68,69,70],similarli:64,simpl:[6,60,65,66,68,69],simpleelastix:70,simpleitk:[50,60,62,70],simpler:68,simplest:70,simplevalid:18,simpleworc:[0,59,60,61,69,70],simpli:[24,59,61,62,65,69,70],simplifi:69,simultan:[2,68],sinc:65,singel:6,singl:[2,6,10,11,15,24,40,42,44,59,60,61,62,63,70],single_class_relief:9,singleclass:2,singlelabel:[2,17,45,46,62],singleton:2,sink:[0,17,61,64,68,70],sink_data:[0,13,17,70],site:[2,59],sitkbsplin:[51,52,62],six:66,size:[2,10,17,34,40,42,59,61,62,70],size_alpha:2,skew:66,skip:[36,61,62,69,70],skip_featur:[9,35,36,62],sklearn:[2,9,10,21,22,34,39,61,62,64],slack:[22,62],sleijfer:59,slice:[0,2,10,56,61,62,66,70],slicer:[0,10,59,61],slight:2,slightli:69,slow:61,small:[9,56,60,61,62,66],smaller:[54,62,66],smallest:2,smart:[10,62],smit:59,smote:[2,53,61,62],smoteen:2,smoteenn:[53,62],smotetomek:[53,62],snapshot:70,sne:[6,70],societi:59,soft:59,softwar:[24,59,62,68],sole:66,solid:66,solut:[2,65],solv:[65,68],solver:[22,61,62],some:[0,2,6,59,61,62,64,68,69,70],somenam:[62,70],someon:68,someotherrandandomfolderwith:65,sometim:61,sort:[2,15,61,69],sourc:[0,1,2,4,5,6,7,9,10,11,13,15,16,17,18,59,61,62,64,66,68,69],source_data:[0,13,70],space:[2,9,10,11,34,50,60,61,62,64,66,70],span:2,spars:[9,70],spawn:[0,2],spawner:0,spearman:70,specif:[2,9,22,48,62,64,65,66,68,69,70],specifi:[0,2,6,11,22,34,38,40,48,54,62],speed:[6,69],spend:2,spheric:66,split0_test_scor:2,split0_train_scor:2,split1_test_scor:2,split1_train_scor:2,split2_test_scor:2,split2_train_scor:2,split:[2,9,17,22,26,61,62,66,68,70],springer:66,squar:[2,10,70],squared_epsilon_insensit:[21,62],squared_hing:[21,62],squared_loss:[21,62],src:2,ssh:69,stabl:[0,9,21,22,34,54,61,62],stack:1,standalon:[17,61],standard:[6,9,42,59,61,62,66,69,70],standardis:59,standardscal:9,starman:59,start:[2,59,61,62,65,68],stat:[2,10,69],state:[0,2,28,61,62,64,69],statement:[11,64],staticmethod:18,statist:[0,2,9,10,16,34,59,61,62,66,69,70],statisticalsel:2,statisticaltest:61,statisticaltestfeatur:[0,59,61],statisticaltestmetr:[33,34,62],statisticaltestthreshold:[0,33,34,59,62],statisticaltestus:[33,34,62],statsticaltestthreshold:61,statu:[2,11,59],std:9,std_fit_tim:2,std_score_tim:2,std_test_scor:2,std_train_scor:2,stefan:59,step:[2,42,60,61,62,63,65,66,68,70],still:[61,65,69,70],stimul:59,stop:[11,61],store:[2,6,7,69,70],str:[2,61],straight:[60,68],strategi:[2,9,10,43,44,54,59,61,62],stratif:59,stratifi:[2,17],stratifiedkfold:2,strenght:[22,62],strength:[22,62,66],stretch:10,string:[0,1,2,6,9,10,11,21,23,35,39,40,41,45,47,61,62,70],stromal:59,strongli:69,struct:61,structer:66,structur:[65,66,69,70],stuck:69,student:[9,68,70],studi:[0,59,68],studio:69,stwstrategyhn1:69,sub:[0,66],subfold:[6,61,65,69],subgroup:66,subject:[2,5,6],subkei:[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,62],submit:59,subpackag:59,subset:69,substr:[9,24,36,48,62],subtract:[11,55,56,61,62],succeed:61,success:2,suffici:70,suggest:[2,64],suit:[0,2,11],suitabl:[59,66],sun2014fast:15,sun:15,suppli:[1,2,10,42,50,54,56,61,62,70],support:[2,9,26,50,59,61,62,65,66,68,70],suppos:62,sure:[6,64,65,70],surfac:66,surfsara:69,surgeri:59,surgic:59,surrog:2,surround:66,surveil:59,surviv:[6,10,59,70],svc:2,svd:[21,62],svm:[2,6,10,21,22,61,62],svmc:[21,22,62],svmcoef0:[21,22,62],svmdegre:[21,22,62],svmgamma:[21,22,62],svmkernel:[21,22,62],svr:[2,6,21,62],symlink:61,symmetri:66,symposium:59,synthet:[9,10],synthetictest:9,system:[0,2,62,66,70],tabl:[2,70],tadpol:[2,70],tag:[41,42,61,62,66,70],take:[2,9,40,61,62,64,70],taken:10,tandfonlin:9,target:2,task:68,techniqu:[62,66],tedious:68,tell:[6,64,70],tempdir:[61,69],tempfold:2,temporari:[0,6,61,69],tempsav:[2,37,38,62],term:[22,34,61,62,68],terminolog:59,test:[0,2,6,9,10,15,26,30,34,38,40,59,61,62,65,69,70],test_combat:[0,59],test_combat_fastr:16,test_data:2,test_help:[0,59],test_iccthreshold:[0,59],test_invalidlabelsvalidator_columnsubstr:16,test_invalidlabelsvalidator_patientcolumn:16,test_invalidlabelsvalidator_patientsubstr:16,test_invalidlabelsvalidator_validconfig:16,test_metr:10,test_plot_error:[0,59],test_rs_ensembl:2,test_sampl:10,test_sample_count:2,test_scor:[2,39,62],test_score_dict:2,test_siz:[2,17,25,26,39,40,62],test_target:2,test_valid:[0,59],tex:[10,61],text:2,textur:[42,58,59,62],texture_featur:9,texture_gabor:[41,42,62],texture_gabor_featur:[9,57,58,62],texture_glcm:[41,42,51,52,62],texture_glcm_featur:[9,57,58,62],texture_glcmm:[41,42,62],texture_glcmms_featur:[9,57,58,62],texture_gldm:[51,52,62],texture_gldm_featur:[57,58,62],texture_gldzm_featur:[9,57,58,62],texture_glrlm:[41,42,51,52,62],texture_glrlm_featur:[9,57,58,62],texture_glszm:[41,42,51,52,62],texture_glszm_featur:[9,57,58,62],texture_lbp:[41,42,62],texture_lbp_featur:[9,57,58,62],texture_ngldm_featur:[9,57,58,62],texture_ngtdm:[41,42,51,52,62],texture_ngtdm_featur:[9,57,58,62],tf_glcm_contrastd1:66,than:[2,54,61,62,65,69],thei:[2,61,62,63,66,69,70],them:[2,61,62,68,70],themselv:66,therebi:[59,61,68,70],therefor:[0,6,9,60,61,64,65,66,68,69,70],thi:[0,2,6,9,10,32,36,40,48,50,54,59,60,61,62,63,64,65,66,67,68,69,70],thick:66,thing:[61,62,65,69],third:9,thoma:59,thomeer:59,those:[2,6,9,64,66,70],thread:[37,61,62],three:[2,65,66],thresh:[9,10],threshold:[2,9,10,16,34,50,54,61,62,66],threshold_annot:10,threshold_clean:[2,53,54,62],through:[0,2,9,11,17,50,59,61,62,66,68,69,70],throughput:66,thu:[2,9,59,60,61,62,65,66,68,70],tibshirani:70,tiff:[11,70],tikzplotlib:61,timbergen:59,time:[2,10,26,34,40,54,61,62,66,68,69,70],timer:61,timo:66,tip:59,tissu:59,titl:15,tmp:6,tmpdir:[6,69],to_hdf:65,todo:[2,9],togeth:[61,64,69],tol:2,toler:2,tomek:2,tomographi:59,tone:59,too:66,tool:[0,6,37,38,59,60,61,62,64,67,68,69,70],toolbox:[9,57,58,59,61,62,65,66,70],top50:2,top:[10,61],topi:66,toshiba:66,total:[2,66],towardsdatasci:62,tpr:10,trace:[65,69],track:2,trade:2,train:[0,2,6,10,22,26,30,34,38,40,61,62,70],train_data:2,train_scor:2,train_score_dict:2,train_target:2,train_test_split:2,trainclassifi:[0,10,59,61,64],transact:[2,66],transform:[2,9,38,61,62,64,66,70],transformationnod:[37,38,62],transformermixin:9,transformix:[0,37,59,61,62],transpos:[11,60,61],transpose_imag:11,travi:61,treat:62,tree:[22,34,62,70],tri:[2,68],trick:59,trigger:66,truth:[2,10,61,70],tsampl:10,ttest:[9,33,61,62],tube:66,tubular:66,tumor:[59,69,70],tumour:59,tune:[2,62,68],tupl:2,turn:[61,65],tutori:[16,59,62,65],two:[0,2,9,10,15,21,33,41,43,53,61,62,66,69,70],txt:[0,1,2,6,9,10,61,62,70],type:[0,2,4,7,9,10,11,17,22,25,26,34,38,59,61,62,64,66,68,70],typeerror:[0,2],typegroup:61,typic:70,typo:61,udr:2,unadjust:15,unaffect:[24,62],unag:11,uncorrect:70,under:[2,15,59,61,62,66,70],underli:2,underscor:70,understand:68,unfit:2,unfortun:65,uniform:[2,22,54,61,62,64,66],uniformli:2,uniqu:[2,66],unit:[61,62],univari:[2,6,61,70],univers:[2,59],unless:2,unreleas:[],unround:61,unsuccesful:61,unsuit:61,unsupervis:2,until:2,updat:61,upgrad:61,upon:[6,62],upper:[34,62],upperbound:[11,50,62],uri:61,url:[11,45,46,61,62],urltyp:61,usabl:2,usag:[2,40,61,62,66,70],usd:9,use:[0,2,6,9,10,11,17,20,22,24,26,28,30,32,34,38,43,44,48,50,52,58,59,60,61,62,64,66,68,69,70],use_fastr:2,useag:9,used:[0,1,2,6,9,10,11,22,26,28,30,34,38,40,42,44,46,50,52,54,56,58,59,61,62,64,66,68,69,70],useful:[2,9,38,62,70],usemask:11,usepca:[33,34,62],user:[2,6,60,66,67,69],usersmynamefeaturefold:6,usersmynameimagefold:6,usersmynamemaskfold:6,usersmynamesegmentationfold:6,uses:[2,6,9,61,64,65,66,67],using:[0,2,6,9,17,22,24,26,28,34,40,44,50,52,59,60,61,62,64,65,66,68,69,70],usual:66,util:2,v600e:59,val:0,valid:[0,2,6,9,10,17,26,38,40,59,61,62,70],validationm:[26,62],validatorsfactori:18,valu:[0,2,6,9,10,11,15,34,39,42,44,48,52,60,61,62,64,65,66,69,70],value1:62,value2:62,valueerror:0,van:[59,66],vari:[2,52,61,62,66,68],variabl:[0,10,24,60,61,62,65,69],varianc:[2,9,15,33,34,61,62,66],variancethreshold:[0,34,59,61,62],variancethresholdmean:9,variant:68,variat:[24,62],varieti:[6,59,66],variou:[2,10,59,61,62,64,67,68,70],varsel:2,vector:[2,9],veenland:59,veldt:59,vendor:59,verbos:[2,5,9,10,61],verhoef:59,veri:[2,68],vermeulen:59,version:[15,24,61,62,65,66],verson:61,versu:59,vessel:[41,42,58,59,62],vessel_featur:[9,57,58,62],vessel_radiu:[41,42,62,66],vessel_scale_rang:[41,42,62,66],vessel_scale_step:[41,42,62,66],vf_:9,vfs:[0,61],via:69,vincent:59,virtual:65,virtualenv:69,vishwa:66,visit:64,visser:59,visual:[66,69],vizual:61,vol:70,volum:[15,59,66],voort:59,voxel:[56,62,66],voxelarrayshift:[51,52,62],wai:[62,66,70],want:[0,6,11,59,60,62,66,69,70],warn:[2,61],warp:70,wavelength:[42,62],wavelet:[51,52,58,59,61,62],wavelet_featur:[9,57,58,62],weak:[0,2,4,6,7,9,11,17,18],week:65,weichao:15,weight:[2,22,61,62],weigth:[34,62],welch:[9,33,62,70],well:[11,59,61,62,64,66,68,69,70],were:[61,64,65,66,68,70],weus:70,what:[64,66],when:[0,2,6,9,10,17,22,26,28,34,36,40,44,60,61,62,64,65,66,68,69,70],whenev:2,where:[2,10,59,61,68,69],wheter:[30,62],whether:[1,2,6,9,10,11,20,28,38,42,46,48,50,52,56,61,62,63,66,69],which:[0,2,6,7,9,10,11,24,34,36,38,40,48,52,60,61,62,63,64,65,66,68,69,70],whitnei:70,whole:[40,62,68],why:62,wich:2,wide:[59,66],width:[52,59,62,70],wijnenga:59,wiki:[1,2,9,10,11],wilcoxon:[2,9,33,62,70],wildcard:[6,65],willemssen:59,window:[22,61,62,69],wip:[9,10,45,46,59,60,62,63,64],with_mean:9,with_std:9,within:[61,63,65,66,68,70],withing:[50,62],without:[2,61],wonder:68,worc:[1,2,4,5,6,7,9,10,11,13,15,16,17,18,22,37,39,42,48,60,61,62,63,64,66,67,68,69],worc_:69,worc_config:[0,59,61,62],worcassertionerror:0,worccastconvert:61,worccastcovert:61,worcdirectorydetector:4,worcerror:0,worcflow:59,worcindexerror:0,worcioerror:0,worckeyerror:[0,59],worcnotimplementederror:0,worcscal:9,worctutori:[6,59,65,69,70],worctutorialsimple_travis_multiclass:[0,59],worctutorialsimple_travis_regress:[0,59],worctypeerror:0,worcvalueerror:[0,59],worcworc:64,work:[11,59,61,66,68],workaround:2,workflow:[0,2,6,10,40,61,62,63,64,66,68,69,70],would:[59,62,66,68,69,70],wrap:[2,60,61,64,68],wrapper:[2,60,64,70],write:10,written:[2,9,10],wtype:0,www:[9,62],x_test:[2,9],x_train:[2,9,10],xgb:[22,62],xgb_boosting_round:[21,22,62],xgb_colsample_bytre:[21,22,62],xgb_gamma:[21,22,62],xgb_learning_r:[21,22,62],xgb_max_depth:[21,22,62],xgb_min_child_weight:[21,22,62],xgbclassifi:[21,62],xgboost:[60,61,62],xgbregressor:[21,62],xgdboost:[60,61],xlsx:[2,7],xml:64,xnat:[11,61,69],xnat_url:5,y_predict:[2,10],y_score:[2,10],y_test:2,y_train:[2,9,10],y_truth:[2,10],yandexdataschool:15,year:15,yet:[6,11,61],yield:2,yml:61,you:[0,2,6,11,17,48,54,59,60,61,62,64,65,66,68,69,70],your:[0,2,6,30,37,38,40,46,52,59,61,62,64,69],yourself:[59,68],yspace:9,z_score:[9,11,35,49,62],zero:[9,44,61,62],zij:9,zip:[10,61,69],zone:59,zoomfactor:10,zwanenburg:66},titles:["WORC Package","IOparser Package","classification Package","<no title>","detectors Package","exampledata Package","facade Package","helpers Package","fastrconfig Package","featureprocessing Package","plotting Package","processing Package","resources Package","fastr_tests Package","fastr_tools Package","statistics Package","tests Package","tools Package","validators Package","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","<no title>","WORC: Workflow for Optimal Radiomics Classification","Additional functionality","Changelog","Configuration","Data Mining Methods","Developer documentation","FAQ","Radiomics Features","Resource File Formats","Introduction","Quick start guide","User Manual"],titleterms:{"0rc1":61,"boolean":65,"class":11,"default":65,"function":60,"import":69,Added:61,Adding:64,The:[69,70],actual:69,addexcept:[0,65],addit:60,advancedsampl:2,alter:65,analysi:[63,69],arrai:65,attribut:70,basicworc:6,begin:65,bigr:65,bin:66,binari:66,bootstrap:62,calcfeatures_test:13,can:65,chang:61,changelog:61,choic:66,classif:[2,59,62,63],classifi:60,cluster:65,column:65,combat:[9,60,62],command:70,compon:63,comput:65,compute_ci:10,config_io_classifi:1,config_io_combat:1,config_io_pyradiom:1,config_preprocess:1,config_segmentix:1,config_worc:1,configbuild:7,configur:62,construct:70,construct_classifi:2,content:62,convert:65,crash:65,create_example_data:5,createfixedsplit:[2,17],creation:62,crossval:2,crossvalid:62,data:[63,64,70],datadownload:5,debug:70,decomposit:9,definit:70,delet:65,delong:15,depend:66,detector:4,develop:[59,64],dicom:66,differ:[65,66],dimension:63,document:[59,64],elastix:17,elastix_para:70,elastix_test:13,ensembl:62,entri:65,error:65,estim:2,evalu:[17,62,70],exampl:[64,70],exampledata:5,except:7,execut:[65,70],experi:[65,69],extract:66,extractnlargestblobsn:11,facad:6,fals:65,faq:65,fastr:68,fastr_test:13,fastr_tool:14,fastrconfig:8,feat_out_0:65,featpreprocess:62,featsel:62,featur:[63,64,65,66,70],featureconvert:9,featureprocess:9,featuresc:62,file:[65,67,70],file_io:1,filter:66,first:65,fitandscor:2,fix:[61,66],format:[65,67],found:65,from:63,full:66,function_bas:65,gabor:66,gaussian:66,gener:62,given:65,glcm:66,gldm:66,glrlm:66,glszm:66,grai:66,groupwis:63,guid:69,hdf5:65,helper:[7,11],histogram:66,hyperoptim:[62,64],icc:60,iccthreshold:9,imag:[60,66,70],imagefeatur:62,imput:[9,62,63],indexerror:65,indic:[59,65],infer:17,input:[69,70],instal:[65,69],instead:65,integ:65,interact:[62,70],introduct:[62,68],iopars:1,job:65,keep:65,label:[62,65,70],label_process:11,labels_from_this_fil:65,laplacian:66,lbp:66,learn:63,length:66,level:66,lib:65,like:65,line:65,linstretch:10,local:66,log:66,look:65,machin:63,manual:70,mask:70,matrix:66,metadata:70,method:[63,64],metric:2,mine:63,model:63,modul:[0,1,2,4,5,6,7,8,9,10,11,13,15,16,17,18,59,65],modular:68,modulenotfounderror:65,must:65,name:65,need:65,neighborhood:66,network:70,ngtdm:66,numpi:65,obj:65,object:70,objectsampl:2,occur:66,onehotencod:[62,63],onehotencoderwrapp:9,ones:65,optim:[59,68],orient:66,other:[65,66],own:65,packag:[0,1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,65,69],paramet:66,parameter_optim:2,patient:65,pattern:66,pca:63,phase:66,plot:10,plot_barchart:10,plot_boxplot_featur:10,plot_boxplot_perform:10,plot_error:10,plot_estimator_perform:10,plot_hyperparamet:10,plot_imag:10,plot_pvalues_featur:10,plot_ranked_scor:10,plot_roc:10,plotminmaxrespons:10,preflightcheck:18,preprocess:[11,60,62],preprocessor:9,princip:63,process:[7,11,64],pyradiom:62,queue:65,quick:69,radiom:[59,66,68],rankedsvm:2,reduct:63,refer:59,registr:60,regress:63,regressor:2,relief:[9,63],resampl:[62,63],resourc:[12,67],result:69,roi:66,run:[66,69],scale:63,scaler:9,scatterplot:10,searchcv:2,segment:70,segmentix:[11,62],segmentix_test:13,select:[63,65,66],selectfeatgroup:62,selectgroup:9,selectindividu:9,semant:[66,70],shape:66,simpleworc:[6,65],site:65,size:66,slicer:17,some:65,sourc:70,standard:[65,68],start:69,statist:[15,63],statisticaltestfeatur:9,statisticaltestthreshold:9,submit:65,subpackag:[0,6,12],surviv:63,tabl:59,tell:65,terminolog:68,test:[16,63,64],test_combat:16,test_help:16,test_iccthreshold:16,test_plot_error:16,test_valid:16,textur:66,tip:69,tone:66,tool:17,toolbox:64,trainclassifi:2,transformix:17,trick:69,tutori:69,type:65,univari:63,unreleas:[],use:65,used:65,user:[59,70],valid:18,varianc:63,variancethreshold:9,vessel:66,wavelet:66,welcom:59,where:65,width:66,worc:[0,59,65,70],worc_config:8,worckeyerror:65,worctutorialsimple_travis_multiclass:16,worctutorialsimple_travis_regress:16,worcvalueerror:65,work:65,workflow:59,would:65,your:[65,70],zone:66}}) \ No newline at end of file diff --git a/WORC/doc/_build/html/static/changelog.html b/WORC/doc/_build/html/static/changelog.html index 19f60235..d275ad08 100644 --- a/WORC/doc/_build/html/static/changelog.html +++ b/WORC/doc/_build/html/static/changelog.html @@ -8,7 +8,7 @@ - Changelog — WORC 3.4.3 documentation + Changelog — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
                                                      - 3.4.3 + 3.4.4
                                                      @@ -99,145 +99,151 @@
                                                    • Developer documentation
                                                    • Resource File Formats
                                                    • Changelog
  • @@ -306,13 +308,17 @@

    Input label_file = os.path.join(data_path, 'Examplefiles', 'pinfo_HN.csv') # Name of the label you want to predict -if modus == 'classification': +if modus == 'binary_classification': # Classification: predict a binary (0 or 1) label - label_name = 'imaginary_label_1' + label_name = ['imaginary_label_1'] elif modus == 'regression': # Regression: predict a continuous label - label_name = 'Age' + label_name = ['Age'] + +elif modus == 'multiclass_classification': + # Multiclass classification: predict several mutually exclusive binaru labels together + label_name = ['imaginary_label_1', 'complement_label_1'] # Determine whether we want to do a coarse quick experiment, or a full lengthy # one. Again, change this accordingly if you use your own data. @@ -339,13 +345,15 @@

    The actual experimentexperiment.segmentations_from_this_directory(imagedatadir, segmentation_file_name=segmentation_file_name) experiment.labels_from_this_file(label_file) -experiment.predict_labels([label_name]) +experiment.predict_labels(label_name) -# Use the standard workflow for binary classification or regression -if modus == 'classification': +# Use the standard workflow for your specific modus +if modus == 'binary_classification': experiment.binary_classification(coarse=coarse) elif modus == 'regression': experiment.regression(coarse=coarse) +elif modus == 'multiclass_classification': + experiment.multiclass_classification(coarse=coarse) # Set the temporary directory experiment.set_tmpdir(tmpdir) @@ -408,7 +416,10 @@

    Analysis of the resultsTips and Tricks

    For tips and tricks on running a full experiment instead of this simple example, adding more evaluation options, debugging a crashed network etcetera, -please go to User Manual chapter.

    +please go to User Manual chapter. +We advice you to look at the docstrings of the SimpleWORC functions +introduced in this tutorial, and explore the other SimpleWORC functions, +s SimpleWORC offers much more functionality than presented here.

    Some things we would advice to always do:

    • Run actual experiments on the full settings (coarse=False):

    • diff --git a/WORC/doc/_build/html/static/user_manual.html b/WORC/doc/_build/html/static/user_manual.html index fb0cc40e..c001f69a 100644 --- a/WORC/doc/_build/html/static/user_manual.html +++ b/WORC/doc/_build/html/static/user_manual.html @@ -8,7 +8,7 @@ - User Manual — WORC 3.4.3 documentation + User Manual — WORC 3.4.4 documentation @@ -64,7 +64,7 @@
      - 3.4.3 + 3.4.4
      diff --git a/WORC/doc/autogen/config/WORC.config_Classification_defopts.rst b/WORC/doc/autogen/config/WORC.config_Classification_defopts.rst index b60a471c..8e7ee435 100644 --- a/WORC/doc/autogen/config/WORC.config_Classification_defopts.rst +++ b/WORC/doc/autogen/config/WORC.config_Classification_defopts.rst @@ -32,7 +32,7 @@ AdaBoost_learning_rate 0.01, 0.99 XGB_boosting_rounds 10, 90 Two Integers: loc and scale XGB_max_depth 3, 12 Two Integers: loc and scale XGB_learning_rate 0.01, 0.99 Two Floats: loc and scale -XGB_gamma 0.01, 0.99 Two Floats: loc and scale +XGB_gamma 0.01, 9.99 Two Floats: loc and scale XGB_min_child_weight 1, 6 Two Integers: loc and scale XGB_colsample_bytree 0.3, 0.7 Two Floats: loc and scale ====================== ===================================================================== ================================================================================================================================================================================================================================================== \ No newline at end of file diff --git a/WORC/doc/autogen/config/WORC.config_Featsel_defopts.rst b/WORC/doc/autogen/config/WORC.config_Featsel_defopts.rst index 8965d17e..1c2b1282 100644 --- a/WORC/doc/autogen/config/WORC.config_Featsel_defopts.rst +++ b/WORC/doc/autogen/config/WORC.config_Featsel_defopts.rst @@ -3,16 +3,16 @@ Subkey Default Options =========================== ======================= ==================================== Variance 1.0 Float GroupwiseSearch True Boolean(s) -SelectFromModel 0.2 Float +SelectFromModel 0.275 Float SelectFromModel_estimator Lasso, LR, RF Lasso, LR, RF SelectFromModel_lasso_alpha 0.1, 1.4 Two Floats: loc and scale SelectFromModel_n_trees 10, 90 Two Integers: loc and scale -UsePCA 0.2 Float +UsePCA 0.275 Float PCAType 95variance, 10, 50, 100 Integer(s), 95variance -StatisticalTestUse 0.2 Float +StatisticalTestUse 0.275 Float StatisticalTestMetric MannWhitneyU ttest, Welch, Wilcoxon, MannWhitneyU StatisticalTestThreshold -3, 2.5 Two Integers: loc and scale -ReliefUse 0.2 Float +ReliefUse 0.275 Float ReliefNN 2, 4 Two Integers: loc and scale ReliefSampleSize 0.75, 0.2 Two Floats: loc and scale ReliefDistanceP 1, 3 Two Integers: loc and scale diff --git a/WORC/doc/static/faq.rst b/WORC/doc/static/faq.rst index 121fb8de..b2be377a 100644 --- a/WORC/doc/static/faq.rst +++ b/WORC/doc/static/faq.rst @@ -11,8 +11,8 @@ PyRadiomics, require numpy during their installation. To solve this issue, simply first install numpy before installing WORC or any of the dependencies , i.e. ``pip install numpy`` or ``conda install numpy`` when using Anaconda. -Execution -------------- +Execution errors +---------------- My experiment crashed, where to begin looking for errors? ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -54,8 +54,11 @@ for the NGTDM: See also my fork of PyRadiomics, which you can also install to fix the issue: https://github.com/MStarmans91/pyradiomics. +Other +----- + I am working on the BIGR cluster and would like some jobs to be submitted to different queues -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Unfortunately, fastr does not support giving a queue argument per job. In general, we assume you would like all your jobs to be run on the day queue, which you can set as the default, and only the classify job on the week queue. @@ -77,3 +80,69 @@ The only solution we currently have is to manually hack this into fastr: queue = 'week' else: queue = self.default_queue + +Can I use my own features instead of the standard ``WORC`` features? +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +``WORC`` also includes an option to use your own features instead of the default +features included. ``WORC`` will than simply start at the data mining +(e.g. classification, regression) step, and thus after the normal +feature extraction. This requires three things + + +1. Convert your features to the default ``WORC`` format +""""""""""""""""""""""""""""""""""""""""""""""""""""""""" +``WORC`` expects your features per patient in a .hdf5 file, containing a ``pandas`` series +with at least a ``feature_values`` and a ``feature_labels`` object. The +``feature_values`` object should be a list containing your feature values, +the ``feature_labels`` object a list with the corresponding featuree labels. +Below an example on how to create such a series. + +.. code-block:: python + + # Dummy variables + feature_values = [1, 1.5, 25, 8] + feature_labels ['label_feature_1', 'label_feature_2', 'label_feature_3', + 'label_feature_4'] + + # Output filename + output = 'test.hdf5' + + # Converting features to pandas series and saving + panda_data = pd.Series([feature_values, + feature_labels], + index=['feature_values', 'feature_labels'], + name='Image features' + ) + + panda_data.to_hdf(output, 'image_features') + +2. Alter feature selection on the feature labels +""""""""""""""""""""""""""""""""""""""""""""""""""" +``WORC`` by default includes groupwise feature selection, were groups of +features are randomly turned on or off. Since your feature labels are probably +not in the default included values, you should turn this of. This can be done +by setting the ``config['Featsel']['GroupwiseSearch']`` to ``"False"``. + +Alternatively, you can use default feature labels in ``WORC`` and still use +the groupwise feature selection. This is relatively simple: for example, +shape features are recognized by looking for ``"sf_"`` in the feature label +name. To see which labels are exactly used, please see +:py:mod:`WORC.featureprocessing.SelectGroups` and the SelectFeatGroup section in the +:ref:`Config chapter `. + +3. Tell ``WORC`` to use your feature and not compute the default ones +""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" +To this end, ``SimpleWORC``, and therefore also ``BasicWORC``, include the +function ``features_from_this_directory()``. See also the +:ref:`quick start guide `. As explained in the WORCTutorial, +a default structure of your ``featuresdatadir`` folder is expected in this +function: there should be a subfolder for each patient, in which the feature +file should be. The feature file can have a fixed name, but wildcard are +allowed in the search, see also the documentation of the ``features_from_this_directory()`` +function. + +Altneratively, when using ``BasicWORC``, you can append dictionaries to the +``features_train`` object. Each dictionary you append should have as keys +the patient names, and as values the paths to the feature files, e.g. +``feature_dict = {'Patient1': '/path/to/featurespatient1.hdf5', +'Patient2': '/path/to/someotherrandandomfolderwith/featurespatient2.hdf5'...}``. diff --git a/WORC/doc/static/quick_start.rst b/WORC/doc/static/quick_start.rst index b77c9ab0..a1cca080 100644 --- a/WORC/doc/static/quick_start.rst +++ b/WORC/doc/static/quick_start.rst @@ -1,7 +1,10 @@ +.. _quickstart-chapter: + Quick start guide ================= This manual will show users how to install WORC, configure WORC and construct and run a simple experiment. +It's exactly the same as the `WORC Tutorial `_. .. _installation-chapter: @@ -11,7 +14,6 @@ Installation You can install WORC either using pip, or from the source code. We strongly advice you to install ``WORC`` in a `virtualenv `_. - **Installing via pip** @@ -89,8 +91,9 @@ First, import WORC and some additional python packages. # Define the folder this script is in, so we can easily find the example data script_path = os.path.dirname(os.path.abspath(__file__)) - # Determine whether you would like to use WORC for classification or regression - modus = 'classification' + # Determine whether you would like to use WORC for binary_classification, + # multiclass_classification or regression + modus = 'binary_classification' Input ````` @@ -139,13 +142,17 @@ Identify our data structure: change the fields below accordingly if you use your label_file = os.path.join(data_path, 'Examplefiles', 'pinfo_HN.csv') # Name of the label you want to predict - if modus == 'classification': + if modus == 'binary_classification': # Classification: predict a binary (0 or 1) label - label_name = 'imaginary_label_1' + label_name = ['imaginary_label_1'] elif modus == 'regression': # Regression: predict a continuous label - label_name = 'Age' + label_name = ['Age'] + + elif modus == 'multiclass_classification': + # Multiclass classification: predict several mutually exclusive binaru labels together + label_name = ['imaginary_label_1', 'complement_label_1'] # Determine whether we want to do a coarse quick experiment, or a full lengthy # one. Again, change this accordingly if you use your own data. @@ -174,13 +181,15 @@ After defining the inputs, the following code can be used to run your first expe experiment.segmentations_from_this_directory(imagedatadir, segmentation_file_name=segmentation_file_name) experiment.labels_from_this_file(label_file) - experiment.predict_labels([label_name]) + experiment.predict_labels(label_name) - # Use the standard workflow for binary classification or regression - if modus == 'classification': + # Use the standard workflow for your specific modus + if modus == 'binary_classification': experiment.binary_classification(coarse=coarse) elif modus == 'regression': experiment.regression(coarse=coarse) + elif modus == 'multiclass_classification': + experiment.multiclass_classification(coarse=coarse) # Set the temporary directory experiment.set_tmpdir(tmpdir) @@ -241,6 +250,9 @@ Tips and Tricks For tips and tricks on running a full experiment instead of this simple example, adding more evaluation options, debugging a crashed network etcetera, please go to :ref:`User Manual ` chapter. +We advice you to look at the docstrings of the SimpleWORC functions +introduced in this tutorial, and explore the other SimpleWORC functions, +s SimpleWORC offers much more functionality than presented here. Some things we would advice to always do: diff --git a/WORC/facade/helpers/configbuilder.py b/WORC/facade/helpers/configbuilder.py index a42f824a..25245782 100644 --- a/WORC/facade/helpers/configbuilder.py +++ b/WORC/facade/helpers/configbuilder.py @@ -191,7 +191,7 @@ def _debug_config_overrides(self): 'n_jobspercore': '10', 'n_splits': '2' }, - 'Ensemble': {'Use': '1'} + 'Ensemble': {'Use': '2'} } # Additionally, turn queue reporting system on diff --git a/WORC/facade/simpleworc.py b/WORC/facade/simpleworc.py index a3efe3e4..241c9191 100644 --- a/WORC/facade/simpleworc.py +++ b/WORC/facade/simpleworc.py @@ -366,6 +366,9 @@ def predict_labels(self, label_names: list): raise TypeError(f'label_names is of type {type(label_names)} while list is expected') for label in label_names: + if not isinstance(label, str): + raise TypeError(f'label {label} is of type {type(label)} while str is expected') + if len(label.strip()) == 0: raise ValueError('Invalid label, length = 0') @@ -392,7 +395,7 @@ def _set_and_validate_estimators(self, estimators, scoring_method, method, coars """ # validate if 'classification' in method: - valid_estimators = ['SVM', 'RF', 'SGD', 'LR', 'LDA', 'QDA', 'GaussianNB', 'ComplementNB', 'AdaBoostClassifier', 'XGBClassifier', 'RankedSVM'] + valid_estimators = ['SVM', 'RF', 'SGD', 'LR', 'LDA', 'QDA', 'GaussianNB', 'ComplementNB', 'AdaBoostClassifier', 'XGBClassifier'] elif method == 'regression': valid_estimators = ['SVR', 'RFR', 'ElasticNet', 'Lasso', 'SGDR', 'XGBRegressor', 'AdaBoostRegressor', 'LinR', 'Ridge'] else: @@ -471,7 +474,7 @@ def binary_classification(self, estimators=None, if coarse and estimators is None: estimators = ['SVM'] elif estimators is None: - estimators = ['SVM', 'RF', 'SGD', 'LR', 'LDA', 'QDA', 'GaussianNB', 'ComplementNB', 'AdaBoostClassifier', 'XGBClassifier', 'RankedSVM'] + estimators = ['SVM', 'RF', 'LR', 'LDA', 'QDA', 'GaussianNB', 'AdaBoostClassifier', 'XGBClassifier'] self._set_and_validate_estimators(estimators, scoring_method, 'binary_classification', coarse) @@ -498,7 +501,7 @@ def multiclass_classification(self, estimators=None, if coarse and estimators is None: estimators = ['SVM'] elif estimators is None: - estimators = ['SVM', 'RF', 'SGD', 'LR', 'LDA', 'QDA', 'GaussianNB', 'ComplementNB', 'AdaBoostClassifier', 'XGBClassifier', 'RankedSVM'] + estimators = ['SVM', 'RF', 'LR', 'LDA', 'QDA', 'GaussianNB', 'AdaBoostClassifier', 'XGBClassifier'] self._set_and_validate_estimators(estimators, scoring_method, 'multiclass_classification', coarse) diff --git a/WORC/featureprocessing/ICCThreshold.py b/WORC/featureprocessing/ICCThreshold.py index 2ab45df9..b08c81bb 100644 --- a/WORC/featureprocessing/ICCThreshold.py +++ b/WORC/featureprocessing/ICCThreshold.py @@ -1,6 +1,6 @@ #!/usr/bin/env python -# Copyright 2016-2020 Biomedical Imaging Group Rotterdam, Departments of +# Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -16,7 +16,7 @@ # limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np from WORC.classification.metrics import ICC import WORC.IOparser.file_io as wio diff --git a/WORC/featureprocessing/Relief.py b/WORC/featureprocessing/Relief.py index 649ce64a..2872d964 100644 --- a/WORC/featureprocessing/Relief.py +++ b/WORC/featureprocessing/Relief.py @@ -1,6 +1,6 @@ #!/usr/bin/env python -# Copyright 2016-2019 Biomedical Imaging Group Rotterdam, Departments of +# Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -16,7 +16,7 @@ # limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np import sklearn.neighbors as nn # from skrebate import ReliefF diff --git a/WORC/featureprocessing/SelectGroups.py b/WORC/featureprocessing/SelectGroups.py index 9dbb616c..36e18911 100644 --- a/WORC/featureprocessing/SelectGroups.py +++ b/WORC/featureprocessing/SelectGroups.py @@ -1,6 +1,6 @@ #!/usr/bin/env python -# Copyright 2016-2020 Biomedical Imaging Group Rotterdam, Departments of +# Copyright 2016-2021 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); @@ -16,7 +16,7 @@ # limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np @@ -24,6 +24,29 @@ class SelectGroups(BaseEstimator, SelectorMixin): ''' Object to fit feature selection based on the type group the feature belongs to. The label for the feature is used for this procedure. + + The following groups can be selected, and are detected through looking for + the following substrings in the feature label: + - histogram_features: hf_ + - shape_features: sf_ + - orientation_features: of_ + - semantic_features: semf_ + - dicom_features: df_ + - coliage_features_ cf_ + - phase_features: phasef_ + - vessel_features: vf_ + - texture_Gabor_features: Gabor + - texture_GLCM_features: GLCM_ + - texture_GLCMMS_features: GLCMMS_ + - texture_GLRLM_features: GLRLM_ + - texture_GLSZM_features: GLSZM_ + - texture_GLDZM_features: GLDZM_ + - texture_NGTDM_features: NGTDM_ + - texture_NGLDM_features: NGLDM_ + - texture_LBP_features: LBP_ + - fractal_features: fracf_ + - location_features: locf_ + - RGRD_features: rgrdf_ ''' def __init__(self, parameters, toolboxes=['PREDICT']): ''' diff --git a/WORC/featureprocessing/SelectIndividuals.py b/WORC/featureprocessing/SelectIndividuals.py index d66748bf..284f8a3d 100644 --- a/WORC/featureprocessing/SelectIndividuals.py +++ b/WORC/featureprocessing/SelectIndividuals.py @@ -16,7 +16,7 @@ # limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np diff --git a/WORC/featureprocessing/StatisticalTestThreshold.py b/WORC/featureprocessing/StatisticalTestThreshold.py index c6550d88..79f5a53c 100644 --- a/WORC/featureprocessing/StatisticalTestThreshold.py +++ b/WORC/featureprocessing/StatisticalTestThreshold.py @@ -16,7 +16,7 @@ # limitations under the License. from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np from scipy.stats import ttest_ind, ranksums, mannwhitneyu diff --git a/WORC/featureprocessing/VarianceThreshold.py b/WORC/featureprocessing/VarianceThreshold.py index 23b83d5b..9fc0f5d0 100644 --- a/WORC/featureprocessing/VarianceThreshold.py +++ b/WORC/featureprocessing/VarianceThreshold.py @@ -17,7 +17,7 @@ from sklearn.feature_selection import VarianceThreshold from sklearn.base import BaseEstimator -from sklearn.feature_selection.base import SelectorMixin +from sklearn.feature_selection import SelectorMixin import numpy as np import WORC.addexceptions as ae diff --git a/WORC/plotting/plot_images.py b/WORC/plotting/plot_images.py index 00e9e221..92d3e92b 100644 --- a/WORC/plotting/plot_images.py +++ b/WORC/plotting/plot_images.py @@ -52,18 +52,25 @@ def extract_boundary(contour, radius=2): def slicer(image, mask=None, output_name=None, output_name_zoom=None, thresholds=[-240, 160], zoomfactor=4, dpi=500, normalize=False, - expand=False, boundary=False, square=False, flip=True, - alpha=0.40, index=None, color='cyan'): + expand=False, boundary=False, square=False, flip=True, rot90=0, + alpha=0.40, axis='axial', index=None, color='cyan'): """Plot slice of image where mask is largest, with mask as overlay. image and mask should both be arrays """ # Determine figure size by spacing - spacing = float(image.GetSpacing()[0]) - imsize = [float(image.GetSize()[0]), float(image.GetSize()[1])] - figsize = (imsize[0]*spacing/100.0, imsize[1]*spacing/100.0) + spacing = [float(image.GetSpacing()[0]), float(image.GetSpacing()[1]), float(image.GetSpacing()[2])] + imsize = [float(image.GetSize()[0]), float(image.GetSize()[1]), float(image.GetSize()[2])] + + if axis == 'axial': + figsize = (imsize[0]*spacing[0]/100.0, imsize[1]*spacing[1]/100.0) + elif axis == 'coronal': + figsize = (imsize[0]*spacing[0]/100.0, imsize[2]*spacing[2]/100.0) + elif axis == 'transversal': + figsize = (imsize[1]*spacing[1]/100.0, imsize[2]*spacing[2]/100.0) # Convert images to numpy arrays + figsize = (30, 1) image = sitk.GetArrayFromImage(image) if mask is not None: mask = sitk.GetArrayFromImage(mask) @@ -76,18 +83,49 @@ def slicer(image, mask=None, output_name=None, output_name_zoom=None, # Determine which axial slice has the largest area if index is None: if mask is not None: - areas = np.sum(mask, axis=1).tolist() + if axis == 'axial': + areas = np.sum(mask, axis=2).tolist() + elif axis == 'coronal': + areas = np.sum(mask, axis=1).tolist() + elif axis == 'transversal': + areas = np.sum(mask, axis=0).tolist() + index = areas.index(max(areas)) else: - index = int(image.shape[0]/2) + if axis == 'axial': + index = int(image.shape[2]/2) + elif axis == 'coronal': + index = int(image.shape[1]/2) + elif axis == 'transversal': + index = int(image.shape[0]/2) + + if axis == 'axial': + imslice = image[index, :, :] + elif axis == 'coronal': + imslice = image[:, index, :] + elif axis == 'transversal': + imslice = image[:, :, index] + else: + raise ValueError(f'{axis} is not a valid value for the axis, should be axial, coronal, or transversal.') - imslice = image[index, :, :] if mask is not None: - maskslice = mask[index, :, :] + if axis == 'axial': + maskslice = mask[index, :, :] + elif axis == 'coronal': + maskslice = mask[:, index, :] + elif axis == 'transversal': + maskslice = mask[:, :, index] + else: + raise ValueError(f'{axis} is not a valid value for the axis, should be axial, coronal, or transversal.') else: maskslice = None - # Rotate, as this is not done automatically + if rot90 != 0: + print(f'\t Rotating {rot90 * 90} degrees.') + imslice = np.rot90(imslice, rot90) + if mask is not None: + maskslice = np.rot90(maskslice, rot90) + if flip: print('\t Flipping up-down.') imslice = np.flipud(imslice) @@ -142,9 +180,12 @@ def slicer(image, mask=None, output_name=None, output_name_zoom=None, maskslice = sitk.Expand(maskslice, newsize) # Adjust the size - spacing = float(imslice.GetSpacing()[0]) - imsize = [float(imslice.GetSize()[0]), float(imslice.GetSize()[1])] - figsize = (imsize[0]*spacing/100.0, imsize[1]*spacing/100.0) + if axis == 'axial': + figsize = (imsize[0]*spacing[0]/100.0, imsize[1]*spacing[1]/100.0) + elif axis == 'coronal': + figsize = (imsize[0]*spacing[0]/100.0, imsize[2]*spacing[2]/100.0) + elif axis == 'transversal': + figsize = (imsize[1]*spacing[1]/100.0, imsize[2]*spacing[2]/100.0) imslice = sitk.GetArrayFromImage(imslice) if mask is not None: @@ -206,6 +247,10 @@ def plot_im_and_overlay(image, mask=None, figsize=(3, 3), alpha=0.40, if mask is not None: ax.imshow(mask, cmap=cmap, norm=normO, alpha=alpha, interpolation="bilinear") + # Alter aspect ratio according to figure size + aspect = figsize[0]/figsize[1] + ax.set_aspect(aspect) + # Set locator to zero to make sure padding is removed upon saving ax.xaxis.set_major_locator(NullLocator()) ax.yaxis.set_major_locator(NullLocator()) diff --git a/WORC/tests/WORCTutorialSimple_travis_multiclass.py b/WORC/tests/WORCTutorialSimple_travis_multiclass.py index a8184b0c..42ba545c 100644 --- a/WORC/tests/WORCTutorialSimple_travis_multiclass.py +++ b/WORC/tests/WORCTutorialSimple_travis_multiclass.py @@ -80,7 +80,7 @@ def main(): label_file = os.path.join(data_path, 'Examplefiles', 'pinfo_HN.csv') # Name of the label you want to predict - if modus == 'classification': + if modus == 'binary_classification': # Classification: predict a binary (0 or 1) label label_name = ['imaginary_label_1'] @@ -132,8 +132,8 @@ def main(): experiment.labels_from_this_file(label_file) experiment.predict_labels(label_name) - # Use the standard workflow for binary classification - if modus == 'classification': + # Use the standard workflow for your specific modus + if modus == 'binary_classification': experiment.binary_classification(coarse=coarse) elif modus == 'regression': experiment.regression(coarse=coarse) diff --git a/WORC/tests/WORCTutorialSimple_travis_regression.py b/WORC/tests/WORCTutorialSimple_travis_regression.py index 4f8dbf1d..b97375af 100644 --- a/WORC/tests/WORCTutorialSimple_travis_regression.py +++ b/WORC/tests/WORCTutorialSimple_travis_regression.py @@ -80,13 +80,17 @@ def main(): label_file = os.path.join(data_path, 'Examplefiles', 'pinfo_HN.csv') # Name of the label you want to predict - if modus == 'classification': + if modus == 'binary_classification': # Classification: predict a binary (0 or 1) label - label_name = 'imaginary_label_1' + label_name = ['imaginary_label_1'] elif modus == 'regression': # Regression: predict a continuous label - label_name = 'Age' + label_name = ['Age'] + + elif modus == 'multiclass_classification': + # Multiclass classification: predict several mutually exclusive binaru labels together + label_name = ['imaginary_label_1', 'complement_label_1'] # Determine whether we want to do a coarse quick experiment, or a full lengthy # one. Again, change this accordingly if you use your own data. @@ -126,7 +130,7 @@ def main(): # Labels experiment.labels_from_this_file(label_file) - experiment.predict_labels([label_name]) + experiment.predict_labels(label_name) # Use the standard workflow for binary classification if modus == 'classification': diff --git a/setup.py b/setup.py index cf9f99c0..16309019 100644 --- a/setup.py +++ b/setup.py @@ -93,7 +93,7 @@ def run_tests(self): setup( name='WORC', - version='3.4.3', + version='3.4.4', description='Workflow for Optimal Radiomics Classification.', long_description=_description, url='https://github.com/MStarmans91/WORC', diff --git a/version b/version index 6cb9d3dd..f9892605 100644 --- a/version +++ b/version @@ -1 +1 @@ -3.4.3 +3.4.4