forked from alsinmr/Frames_Theory_archive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Fig7_methyl_frames.py
147 lines (115 loc) · 5.91 KB
/
Fig7_methyl_frames.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Copyright 2021 Albert Smith-Penzel
This file is part of Frames Theory Archive (FTA).
FTA is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
FTA is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FTA. If not, see <https://www.gnu.org/licenses/>.
Questions, contact me at:
Created on Tue Jul 13 13:42:37 2021
@author: albertsmith
"""
import numpy as np
import pyDIFRATE as DR
import matplotlib.pyplot as plt
import matplotlib
from scipy.optimize import least_squares
font = {'family' : 'normal',
'weight' : 'normal',
'size' : 8}
matplotlib.rc('font', **font)
"This loads the MD trajectory into pyDIFRATE"
mol=DR.molecule('HETs_ILE254.pdb','HETs_ILE254.xtc')
#%% Define the frames
"We store the frames in a list, and then later load them into the frame analysis"
frames=list()
"""
'Type': Name of the function used for generating the frame
(see pyDIFRATE/Struct/frames.py, pyDIFRATE/Struct/special_frames.py)
'Nuc': Shortcut for selecting a particular pair of nuclei.
ivlal selects one group on every Ile, Val, Leu, Ala
'resids': List of residues to include (not required here – only one residue in trajectory)
'segids': List of segments to include (not required here – only one segment in trajectory)
'sigma': Time constant for post-processing (averaging of frame direction with Gaussian)
'n_bonds': Number of bonds away from methyl C–C group to define frame
"""
"Frames without post-process smoothing"
frames.append({'Type':'methylCC','Nuc':'ivlal','sigma':0})
frames.append({'Type':'side_chain_chi','Nuc':'ivlal','n_bonds':1,'sigma':0})
frames.append({'Type':'side_chain_chi','Nuc':'ivlal','n_bonds':2,'sigma':0})
"Frames with post-process smoothing"
frames.append({'Type':'hops_3site','Nuc':'ivlal','sigma':5})
frames.append({'Type':'methylCC','Nuc':'ivlal','sigma':5})
frames.append({'Type':'chi_hop','Nuc':'ivlal','n_bonds':1,'sigma':50})
frames.append({'Type':'side_chain_chi','Nuc':'ivlal','n_bonds':1,'sigma':50})
frames.append({'Type':'chi_hop','Nuc':'ivlal','n_bonds':2,'sigma':50})
frames.append({'Type':'side_chain_chi','Nuc':'ivlal','n_bonds':2,'sigma':50})
#%% Create a figure for plotting
titles=[['Methyl rot.',r'$\chi_2$ rot.',r'$\chi_1$ rot.',r'C$\alpha$-C$\beta$ motion','Total'],
['Methyl rot.',r'$\chi_2$ rot.',r'$\chi_1$ rot.',r'C$\alpha$-C$\beta$ motion','Total'],
['Methyl lib.','Methyl hop.',r'$\chi_2$ lib.',r'$\chi_2$ hop.',
r'$\chi_1$ lib.',r'$\chi_1$ hop.',r'C$\alpha$-C$\beta$ motion','Total']]
fig=plt.figure('Methyl Dynamics')
fig.clear()
fig.set_size_inches([10.27, 9.03])
ax=[]
ax.append([fig.add_subplot(5,3,k+1) for k in range(0,15,3)])
ax.append([fig.add_subplot(5,3,k+1) for k in range(1,15,3)])
ax.append([fig.add_subplot(5,6,k+1) for k in [4,5,10,11,16,17,22]])
ax[-1].append(fig.add_subplot(5,3,15))
for a0,t0 in zip(ax,titles):
for a,t in zip(a0,t0):
a.set_title(t)
#%% Analyze with just one frame
tf=200000
mol.select_atoms(Nuc='ivlal') #Select 1 methyl group from all isoleucine, valine, leucine, and alanine residues
"""We could also specify the residue, but the provided trajectory just has one residue
A selection command populates mol.sel1 and mol.sel2 with atom groups, where sel1 and sel2
then define a list of bonds
"""
fr_obj=DR.frames.FrameObj(mol) #This creates a frame object based on the above molecule object
fr_obj.tensor_frame(sel1=1,sel2=2) #Here we specify to use the same bonds that were selected above in mol.select_atoms
#1,2 means we use for the first atom selection 1 in mol and for the second atom the second selection in mol
for f in frames:fr_obj.new_frame(**f) #This defines all frames in the frame object
#(arguments were previously stored in the frames list)
fr_obj.load_frames(tf=tf,n=-1) #This sweeps through the trajectory and collects the directions of all frames at each time point
fr_obj.post_process() #This applies post processing to the frames where it is defined (i.e. sigma!=0)
"""
For each calculation, we only include some of the 9 frames that were defined above.
1) 3 rotational frames without post procesing (frames 0-2)
2) 3 rotational frames with averaging (frames 4,6,8)
3) 6 frames (rotational+hopping frames, frames 3-8)
"""
include=np.zeros([3,9],dtype=bool)
include[0][:3]=True #Only methylCC,side_chain_chi frames without post processing
include[1][[4,6,8]]=True #Only methylCC,side_chain_chi frames with post processing
include[2][3:]=True #All frames with post processing
t=np.arange(int(tf/2))*.005 #Only plot the first half of the correlation function, where noise is lower
for inc,ax0 in zip(include,ax):
out=fr_obj.frames2ct(include=inc,mode='full')
for ct,a in zip(out['ct_finF'],ax0):
a.cla()
a.plot(t,ct.mean(0)[:int(tf/2)])
a.set_ylim([0,1.05])
S2=ct.mean(0)[int(tf/4):int(tf/2)].mean()
b=np.argwhere(ct.mean(0)-S2<0)[0,0]
# tc0=np.max([.001,((ct.mean(0)[:b]-S2)/(1-S2)).sum()*.005])
tc0=t[np.argmin(np.abs((ct.mean(0)[:b]-S2)/(1-S2)-np.exp(-1)))]
fun=lambda x:(((x[0]+(1-x[0])*np.exp(-t[:b]/x[1]))-ct.mean(0)[:b])**2).sum()
S2,tc=least_squares(fun,[S2,tc0]).x
a.plot(t,S2+(1-S2)*np.exp(-t/tc),color='grey',linestyle=':')
a.set_xlim([0,np.min([10*tc,fr_obj.t[int(tf/2)]])])
ax0[-1].semilogx(out['t'][:int(tf/2)],out['ct'].mean(0)[:int(tf/2)])
ax0[-1].semilogx(out['t'][:int(tf/2)],out['ct_prod'].mean(0)[:int(tf/2)])
ax0[-1].set_ylim([0,.5])
fig.set_size_inches([180/25.4,220/25.4])
plt.show()