From 97d70c804e2756a9bfcf04999a52580d673f4f47 Mon Sep 17 00:00:00 2001 From: n-m-g Date: Thu, 31 Oct 2024 08:17:13 -0300 Subject: [PATCH] Update AbstractSimplicialComplexes.m2 --- M2/Macaulay2/packages/AbstractSimplicialComplexes.m2 | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/M2/Macaulay2/packages/AbstractSimplicialComplexes.m2 b/M2/Macaulay2/packages/AbstractSimplicialComplexes.m2 index e4360a9d64..5da3b6e296 100644 --- a/M2/Macaulay2/packages/AbstractSimplicialComplexes.m2 +++ b/M2/Macaulay2/packages/AbstractSimplicialComplexes.m2 @@ -396,7 +396,7 @@ inducedSimplicialChainComplexMap(AbstractSimplicialComplex,AbstractSimplicialCom ( h := simplicialChainComplex H; l := simplicialChainComplex L; - if ((abstractSimplicialComplex {{}}) == H)==true then return map(l,h,zero) + if ((abstractSimplicialComplex {{}}) == H) then return map(l,h,zero) else( f := hashTable apply(spots h, i -> if i == -1 then i => map(l_(-1),h_(-1),zero) else i => inducedKFaceSimplicialChainComplexMap(i,L,H)); return map(l,h,f); @@ -410,7 +410,7 @@ inducedReducedSimplicialChainComplexMap = method() inducedReducedSimplicialChainComplexMap(AbstractSimplicialComplex,AbstractSimplicialComplex) := (L,H) -> ( h := reducedSimplicialChainComplex H; l := reducedSimplicialChainComplex L; - if ((abstractSimplicialComplex {{}}) == H) == true then return map(l,h, hashTable {-2 => map(l_(-2),h_(-2),zero), -1 => map(l_(-1),h_(-1),id_(h_(-1)))}) + if ((abstractSimplicialComplex {{}}) == H) then return map(l,h, hashTable {-2 => map(l_(-2),h_(-2),zero), -1 => map(l_(-1),h_(-1),id_(h_(-1)))}) else( f := hashTable apply(spots h, i -> if i == -1 then i => map(l_(-1),h_(-1),id_(h_(-1))) else i => inducedKFaceSimplicialChainComplexMap(i,L,H)); return map(l,h,f); @@ -604,7 +604,7 @@ doc /// (randomAbstractSimplicialComplex,ZZ,ZZ) (randomAbstractSimplicialComplex,ZZ,ZZ,ZZ) Headline - Create a random abstract simplicial complex + Create a random simplicial set Description Text Create a random abstract simplicial complex with vertices supported on a subset of [n] = {1,...,n}.