-
Notifications
You must be signed in to change notification settings - Fork 0
/
ica_manual.py
146 lines (110 loc) · 4.45 KB
/
ica_manual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 8 14:45:02 2014.
@author: mje
"""
import mne
import socket
import numpy as np
import os
from mne.io import Raw
from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs
import matplotlib.pyplot as plt
# Setup paths and prepare raw data
hostname = socket.gethostname()
if hostname == "Wintermute":
data_path = "/home/mje/mnt/caa/scratch/"
else:
data_path = "/projects/MINDLAB2015_MEG-CorticalAlphaAttention/scratch/"
save_folder = data_path + "filter_ica_data/"
maxfiltered_folder = data_path + "maxfiltered_data/"
# SETTINGS
n_jobs = 1
reject = dict(grad=5000e-13, # T / m (gradiometers)
mag=5e-12, # T (magnetometers)
eeg=300e-6) # uVolts (EEG)
l_freq, h_freq = 1, 98 # High and low frequency setting for the band pass
n_freq = 50 # notch filter frequency
decim = 7 # decim value
subject = "0022"
os.chdir(save_folder)
# Functions #
"""Function will compute ICA on raw and apply the ICA.
params:
subject : str
the subject id to be loaded
"""
raw = Raw(save_folder + "%s_filtered_data_mc_raw_tsss.fif" % subject,
preload=True)
# ICA Part
ica = ICA(n_components=0.95, method='fastica', max_iter=256)
picks = mne.pick_types(raw.info, meg=True, eeg=True,
stim=False, exclude='bads')
ica.fit(raw, picks=picks, decim=decim, reject=reject)
# maximum number of components to reject
n_max_ecg, n_max_eog = 3, 1
##########################################################################
# 2) identify bad components by analyzing latent sources.
title = 'Sources related to %s artifacts (red) for sub: %s'
# generate ECG epochs use detection via phase statistics
ecg_epochs = create_ecg_epochs(raw, ch_name="ECG002",
tmin=-.5, tmax=.5, picks=picks)
n_ecg_epochs_found = len(ecg_epochs.events)
sel_ecg_epochs = np.arange(0, n_ecg_epochs_found, 10)
ecg_epochs = ecg_epochs[sel_ecg_epochs]
ecg_inds, scores = ica.find_bads_ecg(ecg_epochs, method='ctps')
fig = ica.plot_scores(scores, exclude=ecg_inds,
title=title % ('ecg', subject))
fig.savefig(save_folder + "pics/%s_ecg_scores.png" % subject)
if ecg_inds:
show_picks = np.abs(scores).argsort()[::-1][:5]
fig = ica.plot_sources(raw, show_picks, exclude=ecg_inds,
title=title % ('ecg', subject), show=False)
fig.savefig(save_folder + "pics/%s_ecg_sources.png" % subject)
fig = ica.plot_components(ecg_inds, title=title % ('ecg', subject),
colorbar=True)
fig.savefig(save_folder + "pics/%s_ecg_component.png" % subject)
ecg_inds = ecg_inds[:n_max_ecg]
ica.exclude += ecg_inds
# estimate average artifact
ecg_evoked = ecg_epochs.average()
del ecg_epochs
# plot ECG sources + selection
fig = ica.plot_sources(ecg_evoked, exclude=ecg_inds)
fig.savefig(save_folder + "pics/%s_ecg_sources_ave.png" % subject)
# plot ECG cleaning
ica.plot_overlay(ecg_evoked, exclude=ecg_inds)
fig.savefig(save_folder + "pics/%s_ecg_sources_clean_ave.png" % subject)
# DETECT EOG BY CORRELATION
# VERTICAL EOG
eog_epochs = create_eog_epochs(raw, ch_name="EOG001")
eog_inds, scores = ica.find_bads_eog(raw)
fig = ica.plot_scores(scores, exclude=eog_inds,
title=title % ('eog', subject))
fig.savefig(save_folder + "pics/%s_eog_scores.png" % subject)
fig = ica.plot_components(eog_inds, title=title % ('eog', subject),
colorbar=True)
fig.savefig(save_folder + "pics/%s_eog_component.png" % subject)
eog_inds = eog_inds[:n_max_eog]
ica.exclude += eog_inds
del eog_epochs
# HORIZONTAL EOG
eog_epochs = create_eog_epochs(raw, ch_name="EOG003")
eog_inds, scores = ica.find_bads_eog(raw)
fig = ica.plot_scores(scores, exclude=eog_inds,
title=title % ('eog', subject))
fig.savefig(save_folder + "pics/%s_heog_scores.png" % subject)
fig = ica.plot_components(eog_inds, title=title % ('heog', subject),
colorbar=True)
fig.savefig(save_folder + "pics/%s_eog_component.png" % subject)
eog_inds = eog_inds[:n_max_eog]
ica.exclude += eog_inds
del eog_epochs
##########################################################################
# Apply the solution to Raw, Epochs or Evoked like this:
raw_ica = ica.apply(raw, copy=False)
ica.save(save_folder + "%s-ica.fif" % subject) # save ICA componenets
# Save raw with ICA removed
raw_ica.save(save_folder + "%s_filtered_ica_mc_raw_tsss.fif" % subject,
overwrite=True)
plt.close("all")