Skip to content

Latest commit

 

History

History
30 lines (27 loc) · 898 Bytes

README.md

File metadata and controls

30 lines (27 loc) · 898 Bytes

Poject Description

Build a face recognition system

Goals

  • Implement the triplet loss function
  • Use a pretrained model to map face images into 128-dimensional encodings
  • Use these encodings to perform face verification and face recognition

Packages used

  • keras.models - Sequential-
  • keras.layers - Conv2D, ZeroPadding2D, Activation, Input, concatenate -
  • keras.models - Model -
  • keras.layers.normalization - BatchNormalization -
  • keras.layers.pooling - MaxPooling2D, AveragePooling2D -
  • keras.layers.merge - Concatenate -
  • keras.layers.core - Lambda, Flatten, Dense -
  • keras.initializers - glorot_uniform -
  • keras.engine.topology - Layer -
  • keras - backend - K.set_image_data_format('channels_first')
  • cv2
  • os
  • numpy
  • pandas
  • tensorflow
  • fr_utils import *
  • inception_blocks_v2 import *

Used data set

details inside the notebook