-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.m
224 lines (196 loc) · 5.24 KB
/
main2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
%%main scripts
clc;%清屏
clear;%清除数据
close all;%关闭所有窗口
%%初始化变量
%人脸类别数
ifacenum=40;
%单人人脸总数
iperfacenum=10;
%训练人脸数
ifacetrain=4;%<iperfacenum
%灰度均一化参数
meangray=0;%都为零表示使用总体均值
thetagray=0;
%SVD投影参数
svdk=30;
isfft=1;
isfronorm=0;
netid=20;
%%获得所有图片路径
%获得所有随机图片序列
trainindexs=[];
testindexs=[];
for i=1:ifacenum
pnum=randnofm(iperfacenum,iperfacenum);
trainindexs=[trainindexs;pnum(1,1:ifacetrain)];
testindexs=[testindexs;pnum(1,ifacetrain+1:iperfacenum)];
end
%获得训练图片路径
trainpath=makepath(trainindexs);
%获得检测图片路径
testpath=makepath(testindexs);%如果进行单图测试将其修改为单图路径
%%获得所有像素
trainpool=getpiexpool(trainpath,'gray');
testpool=getpiexpool(testpath,'gray');
figure();
subplot(2,2,1);
imshow(trainpool{1,1});
title('原图');
subplot(2,2,2);
imshow(trainpool{1,1});
title('初始灰度图');
%%进行均一化
%计算各个图片的灰度均值与方差
graymt(1:ifacenum,1:iperfacenum,1:2)=0;
for i=1:ifacenum
for j=1:ifacetrain
graymt(i,j,:)=getgraymt(trainpool{i,j});
end
for j=ifacetrain+1:iperfacenum
graymt(i,j,:)=getgraymt(testpool{i,j-ifacetrain});
end
end
%获得总体图片的归一化均值与方差
if meangray==0||thetagray==0
amt=mean(mean(graymt,1),2);%获得均值作为新的灰度均值与方差
amt(1,1:2)=amt(1,1,1:2);%调用方便
else
amt=[meangray,thetagray];%设定值
end
%进行各个图片的灰度归一化
for i=1:ifacenum
for j=1:ifacetrain
trainpool{i,j}=graymeanstheta(trainpool{i,j},graymt(i,j,:),amt);
end
for j=ifacetrain+1:iperfacenum
testpool{i,j-ifacetrain}=graymeanstheta(testpool{i,j-ifacetrain},graymt(i,j,:),amt);
end
end
subplot(2,2,3);
imshow(trainpool{1,1});
title('归一化灰度图');
%%获得傅里叶谱
%进行傅立叶变换
if isfft==1
for i=1:ifacenum
for j=1:ifacetrain
ffttrainpool{i,j}=fft2(trainpool{i,j});
end
for j=1:iperfacenum-ifacetrain
ffttestpool{i,j}=fft2(testpool{i,j});
end
end
%获得振幅谱
for i=1:ifacenum
for j=1:ifacetrain
absffttrainpool{i,j}=abs(ffttrainpool{i,j});%对傅立叶变换矩阵元素求模获得傅立叶矩阵的振幅谱
end
for j=1:iperfacenum-ifacetrain
absffttestpool{i,j}=abs(ffttestpool{i,j});
end
end
dealtrainpool=absffttestpool;
else
dealtrainpool=trainpool;
absffttestpool=testpool;
end
subplot(2,2,4);
imshow(mat2gray(dealtrainpool{1,1}));
title('振幅谱图');
%获得标准振幅谱
%获得图片大小
[imrow,imcol]=size(dealtrainpool{1,1});
normalface(1:imrow,1:imcol)=0;
for i=1:ifacenum
for j=1:ifacetrain
normalface=normalface+double(dealtrainpool{i,j});
end
end
normalface=normalface/ifacenum/ifacetrain;
%%对标准脸进行SVD分解
[normalU,normalS,normalV]=svd(normalface);
if isfronorm==1
%%求得各个人脸的振幅谱
for i=1:ifacenum
perface{i,1}=zeros(imrow,imcol);
for j=1:ifacetrain
perface{i,1}=perface{i,1}+double(dealtrainpool{i,j});
end
perface{i,1}= perface{i,1}/ifacetrain;
end
else
perface=dealtrainpool;
end
%%对其他脸进行svd投影
[ifacenum,ifaceuse]=size(perface);
for i=1:ifacenum
for j=1:ifaceuse
perfaceproject{i,j}=normalU(1:svdk,:)*double(perface{i,j})*normalV(1:svdk,:)';
end
end
%%对测试的不同的脸进行进行svd投影
for i=1:ifacenum
for j=1:iperfacenum-ifacetrain
projecttest{i,j}=normalU(1:svdk,:)*double(absffttestpool{i,j})*normalV(1:svdk,:)';
end
end
%%求出测试的不同的脸的Frobenius范数
if isfronorm==1
Fronum(1:ifacenum,1:iperfacenum-ifacetrain,1:ifacenum)=0;
for i=1:ifacenum
for j=1:iperfacenum-ifacetrain
for k=1:ifacenum
Fronum(i,j,k)=norm(double(projecttest{i,j})-double(perfaceproject{k,1}),'fro');
end
end
end
%%对结果进行判断获得具体分类结果
FroIden(1:ifacenum,1:iperfacenum-ifacetrain)=0;
for i=1:ifacenum
for j=1:iperfacenum-ifacetrain
minFro=min(Fronum(i,j,:));
for k=1:ifacenum
if Fronum(i,j,k)==minFro
FroIden(i,j)=k;
end
end
end
end
else
Xtrain(1:svdk*svdk,1:ifacenum*ifaceuse)=0;
Xid(1,1:ifacenum*ifaceuse)=0;
Xtest(1:svdk*svdk,1:ifacenum*(iperfacenum-ifacetrain))=0;
Xid2(1,1:ifacenum*(iperfacenum-ifacetrain))=0;
for i=1:ifacenum
for j=1:ifaceuse
Xtrain(:,(i-1)*ifaceuse+j)=reshape(perfaceproject{i,j},svdk*svdk,1);
Xid(1,(i-1)*ifaceuse+j)=i;
end
for j=1:iperfacenum-ifacetrain
Xtest(:,(i-1)*(iperfacenum-ifacetrain)+j)=reshape(projecttest{i,j},svdk*svdk,1);
Xid2(1,(i-1)*(iperfacenum-ifacetrain)+j)=i;
end
end
FroIdenline=bpnet(Xtrain',Xid',netid,ifacenum,Xtest');
FroIden(1:ifacenum,1:iperfacenum-ifacetrain)=0;
for i=1:ifacenum
FroIden(i,:)=FroIdenline(1,(i-1)*(iperfacenum-ifacetrain)+1:i*(iperfacenum-ifacetrain));
end
end
%%输出结果
FroResult(1:ifacenum,1)=0;
fid=fopen('data.txt','w');
for i=1:ifacenum
for j=1:iperfacenum-ifacetrain
if FroIden(i,j)==i
FroResult(i,1)=FroResult(i,1)+1;
end
fprintf(fid,'%f\t',FroIden(i,j));
end
fprintf(fid,'\n');
end
fclose(fid);
FroResult=FroResult/(iperfacenum-ifacetrain);
FroResult
mean(FroResult)