-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgRNA_calling.Rmd
174 lines (140 loc) · 5.77 KB
/
gRNA_calling.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
title: "gRNA and iBAR calling for perturb-seq data"
author: "Magdalena Strauss"
output:
html_document:
number_sections: yes
toc: yes
keep_md: yes
---
This script assignes gRNAs and iBAR barcodes to cells for the perturb-seq data.
# Setup
```{r,output=FALSE,message=FALSE,warning=FALSE}
knitr::opts_chunk$set(
echo = FALSE,
message = FALSE,
warning = FALSE,
message = FALSE,
dev = c("pdf"),
dpi=300
)
chooseCRANmirror(ind=69)
core_function_file <- "../../core_functions.R"
source(core_function_file)
library(dplyr)
library(stringr)
set.seed(12345)
folders_cellranger_gRNA <- c("../cellranger/CBE_gRNA/outs","../cellranger/ABE_gRNA/outs")
folders_cellranger_iBAR <- c("../cellranger/CBE_iBAR/outs","../cellranger/ABE_iBAR/outs")
file_name_gRNA_assignment <- "gRNA_assignment.rds"
file_name_iBAR_assignment <- "iBAR_assignment.rds"
file_name_sce_list_after_QC <- "sce_list.rds"
file_name_sce_list_after_gRNA_iBAR_assignment <- "sce_list_gRNA_iBAR.rds"
ids <- c("CBE","ABE")
gRNA_number_file_CBE <- "validation_lib_CBE_with_gRNA_numbers.csv"
gRNA_number_file_ABE <- "validation_lib_ABE_with_gRNA_numbers.csv"
read_in_raw_matrix <- function(name_path)
{# for cellranger output
matrix_dir = paste(name_path,"/raw_feature_bc_matrix/",sep="")
barcode_path <- paste0(matrix_dir, "barcodes.tsv.gz")
features_path <- paste0(matrix_dir, "features.tsv.gz")
matrix_path <- paste0(matrix_dir, "matrix.mtx.gz")
mat_raw <- readMM(file = matrix_path)
feature_names = read.delim(features_path,
header = FALSE,
stringsAsFactors = FALSE)
barcode_names = read.delim(barcode_path,
header = FALSE,
stringsAsFactors = FALSE)
colnames(mat_raw) = barcode_names$V1
rownames(mat_raw) = feature_names$V1
return(mat_raw)
}
```
Read in the SingleCellExperiments after QC.
```{r}
sce_list <- readRDS(file_name_sce_list_after_QC)
colnames(sce_list[[2]]) <- paste0(substring(colnames(sce_list[[2]]),1,17),"2")
```
Reading in the gRNA matrices.
```{r}
gRNA_matrices <- list()
for (k in 1:length(folders_cellranger_gRNA)){
matrix_temp <- read_in_raw_matrix(folders_cellranger_gRNA[k])
gRNA_matrices[[k]] <- matrix_temp[!(grepl("ENS",rownames(matrix_temp))),]
colnames(gRNA_matrices[[k]]) <- paste0(substring(colnames(gRNA_matrices[[k]]),1,16),"-",toString(k))
gRNA_matrices[[k]] <- gRNA_matrices[[k]][,colnames(gRNA_matrices[[k]])%in%colnames(sce_list[[k]])]
}
```
# gRNA assignment
We perform gRNA assignment using a mixture of skewed normal distributions as Cooper, Coelho, Strauss, et. al. (2023). https://doi.org/10.1101/2023.05.22.541777
```{r,fig.width=13,fig.height=7}
gRNA_assignment <- list()
for (j in 1:length(ids)){
gRNA_assignment[[j]] <- barcode_calling( gRNA_matrices[[j]],paste0("gRNA ",ids[j]))
}
names(gRNA_assignment) <- ids
saveRDS(gRNA_assignment,file=file_name_gRNA_assignment)
```
Assigning gRNAs the SingleCellExperiment
```{r}
sce_list_all_cells <- sce_list #sces with all cells, not only those assigned gRNAs
for (j in 1:2){
sce_list[[j]]$gRNA <- NA
sce_list[[j]]$iBAR <- NA
}
for (j in 1:length(sce_list)){
xx <- intersect(colnames(sce_list[[j]]),names(gRNA_assignment[[j]]$barcode_assignment$barcode_assignment))
sce_list[[j]] <- sce_list[[j]][,xx]
sce_list[[j]]$gRNA <- gRNA_assignment[[j]]$barcode_assignment$barcode_assignment[xx]
}
for (j in 1:length(sce_list)){
sce_list[[j]]$nr_gRNAs <- sapply(sce_list[[j]]$gRNA,function(x) str_count(x,"-")+1)
}
```
# iBAR assignment
Reading in the iBAR matrices
```{r}
iBAR_matrices <- list()
for (k in 1:length(folders_cellranger_iBAR)){
matrix_temp <- read_in_raw_matrix(folders_cellranger_iBAR[k])
iBAR_matrices[[k]] <- matrix_temp[!(grepl("ENS",rownames(matrix_temp))),]
colnames(iBAR_matrices[[k]]) <- paste0(substring(colnames(iBAR_matrices[[k]]),1,16),"-",toString(k))
iBAR_matrices[[k]] <- iBAR_matrices[[k]][,colnames(iBAR_matrices[[k]])%in%colnames(sce_list[[k]])]
}
```
As the noise levels for the gRNA umi counts are much lower then for the iBAR counts, we assign iBARs to cells with a unique gRNA assigned by using the iBAR with the highest umi count in the cell. Similarly, we assign n iBARs with the highest UMI counts to a cell with n gRNAs.
```{r}
assign_iBAR <- function(k,j){
a <- names(sort(iBAR_matrices[[j]][,colnames(sce_list[[j]])[k]],decreasing=TRUE)[1:(sce_list[[j]]$nr_gRNAs[k])])
if (length(a) > 1){
b <- a
a <- b[1]
for (jk in 2:length(b)){
a <- paste0(a,"-",b[jk])
}
}
return(a)
}
for (j in 1:2){
sce_list[[j]]$iBAR <- sapply(1:ncol(sce_list[[j]]),function(x) assign_iBAR(x,j))
}
```
Save the SingleCellExperiment.
```{r}
saveRDS(sce_list,file_name_sce_list_after_gRNA_iBAR_assignment)
```
Numbers of cells called for each gRNA before and after QC.
```{r}
gRNA_assignment <- readRDS(file_name_gRNA_assignment)
validation_lib <- read.table("../../validation_lib_annotated_230223.csv",sep=",",header=TRUE)
validation_lib_CBE <- validation_lib[validation_lib$editor=="CBE",]
validation_lib_ABE <- rbind(validation_lib[validation_lib$editor=="ABE",],
validation_lib[validation_lib$Gene=="N/A",])
validation_lib_CBE$nr_cells_after_QC <- gRNA_assignment$CBE$barcode_assignment$barcode_distribution_unique[validation_lib_CBE$sgRNA_ID]
validation_lib_ABE$nr_cells_after_QC <- gRNA_assignment$ABE$barcode_assignment$barcode_distribution_unique[validation_lib_ABE$sgRNA_ID]
validation_lib_ABE$nr_cells_after_QC[is.na(validation_lib_ABE$nr_cells_after_QC)] <- 0
validation_lib_CBE$nr_cells_after_QC[is.na(validation_lib_CBE$nr_cells_after_QC)] <- 0
write.table(validation_lib_CBE,file=gRNA_number_file_CBE,sep=",",col.names=TRUE,row.names=FALSE)
write.table(validation_lib_ABE,file=gRNA_number_file_ABE,sep=",",col.names=TRUE,row.names=FALSE)
```