From 418da2e9411249f9636e8bd932eda675928b1257 Mon Sep 17 00:00:00 2001 From: MikeDMorgan Date: Wed, 8 Nov 2023 15:31:56 +0000 Subject: [PATCH] update version --- DESCRIPTION | 3 ++- man/plotDAbeeswarm.Rd | 3 ++- man/plotNhoodGraph.Rd | 2 +- man/plotNhoodGraphDA.Rd | 14 +------------- man/plotNhoodMA.Rd | 4 +++- 5 files changed, 9 insertions(+), 17 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index d3a1a2a..ebb85d8 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,9 +1,10 @@ Package: miloR Type: Package Title: Differential neighbourhood abundance testing on a graph -Version: 1.9.1 +Version: 1.9.99 Authors@R: c(person("Mike", "Morgan", role=c("aut", "cre"), email="michael.morgan@abdn.ac.uk"), + comment=c(ORCID="0000-0003-0757-0711"), person("Emma", "Dann", role=c("aut", "ctb"), email="ed6@sanger.ac.uk")) Description: Milo performs single-cell differential abundance testing. Cell states are modelled as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is performed using a diff --git a/man/plotDAbeeswarm.Rd b/man/plotDAbeeswarm.Rd index b3b0ce5..0e6bcc3 100644 --- a/man/plotDAbeeswarm.Rd +++ b/man/plotDAbeeswarm.Rd @@ -23,7 +23,8 @@ If \code{da.res[,group.by]} is a character or a numeric, the function will coerc a \code{ggplot} object } \description{ -Visualize DA results as a beeswarm plot +This function constructs a beeswarm plot using the ggplot engine to visualise the distribution of +log fold changes across neighbourhood annotations. } \details{ The group.by variable will be coerced to a factor. If you want the variables in group.by to be diff --git a/man/plotNhoodGraph.Rd b/man/plotNhoodGraph.Rd index 1df29a8..6d151df 100644 --- a/man/plotNhoodGraph.Rd +++ b/man/plotNhoodGraph.Rd @@ -23,7 +23,7 @@ plotNhoodGraph( \item{colour_by}{this can be a data.frame of milo results or a character corresponding to a column in colData} \item{subset.nhoods}{A logical, integer or character vector indicating a subset of nhoods to show in plot -(default: NULL, no subsetting)} +(default: NULL, no subsetting). This is necessary if \code{testNhoods} was run using \code{subset.nhoods=...}.} \item{size_range}{a numeric vector indicating the range of node sizes to use for plotting (to avoid overplotting in the graph)} diff --git a/man/plotNhoodGraphDA.Rd b/man/plotNhoodGraphDA.Rd index 0301c65..90b187b 100644 --- a/man/plotNhoodGraphDA.Rd +++ b/man/plotNhoodGraphDA.Rd @@ -2,43 +2,31 @@ % Please edit documentation in R/plotNhoods.R \name{plotNhoodGraphDA} \alias{plotNhoodGraphDA} -\alias{plotNhoodGroups} \title{Plot Milo results on graph of neighbourhood} \usage{ plotNhoodGraphDA(x, milo_res, alpha = 0.05, res_column = "logFC", ...) - -plotNhoodGroups(x, milo_res, show_groups = NULL, ...) } \arguments{ \item{x}{A \code{\linkS4class{Milo}} object} -\item{milo_res}{a data.frame of milo results containing the \code{nhoodGroup} column} +\item{milo_res}{a data.frame of milo results} \item{alpha}{significance level for Spatial FDR (default: 0.05)} \item{res_column}{which column of \code{milo_res} object to use for color (default: logFC)} \item{...}{arguments to pass to \code{plotNhoodGraph}} - -\item{show_groups}{a character vector indicating which groups to plot -all other neighbourhoods will be gray} } \value{ -a \code{ggplot} object - a \code{ggplot} object } \description{ Visualize log-FC estimated with differential nhood abundance testing on embedding of original single-cell dataset. - -Visualize grouping of neighbourhoods obtained with \code{groupNhoods} } \examples{ NULL -NULL - } \author{ Emma Dann diff --git a/man/plotNhoodMA.Rd b/man/plotNhoodMA.Rd index 0be3ae8..800ca6f 100644 --- a/man/plotNhoodMA.Rd +++ b/man/plotNhoodMA.Rd @@ -18,7 +18,9 @@ hypothesis. \code{default=0}.} a \code{ggplot} object } \description{ -Visualize DA results as an MAplot +Make an MAplot to visualise the relationship between DA log fold changes and neighbourhood abundance. This +is a useful way to diagnose issues with the DA testing, such as large compositional biases and/or issues +relating to large imbalances in numbers of cells between condition labels/levels. } \details{ MA plots provide a useful means to evaluate the distribution of log fold changes after differential