Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

The reproduced results are relatively poor #28

Open
liuxingyu123 opened this issue Sep 10, 2022 · 6 comments
Open

The reproduced results are relatively poor #28

liuxingyu123 opened this issue Sep 10, 2022 · 6 comments
Labels
good first issue Good for newcomers

Comments

@liuxingyu123
Copy link

Hello, the pretrained model I use for vit is vit_ large_ patch16_ 384, but the results of the first stage of training are ODS: 0.74116, OIS: 0.761012, AP: 0.736421. In the paper, ODS: 0.817, OIS: 0.835, AP: 0.867, the parameter of code has not changed. What is the problem?

@liuxingyu123
Copy link
Author

Is it a problem of environment configuration? My environment is python3.8,pytorch1.7.0 cuda11.0 mmcv1.2.3.

@MengyangPu
Copy link
Owner

Python: 3.7.7 [GCC 7.3.0]
CUDA available: True
GPU: Tesla V100-PCIE-32GB
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.6.0
PyTorch compiling details: PyTorch built with:

GCC 7.3
C++ Version: 201402
Intel(R) Math Kernel Library Version 2020.0.1 Product Build 20200208 for Intel(R) 64 architecture applications
Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
OpenMP 201511 (a.k.a. OpenMP 4.5)
NNPACK is enabled
CPU capability usage: AVX2
CUDA Runtime 10.1
NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
CuDNN 7.6.3
Magma 2.5.2
TorchVision: 0.7.0
OpenCV: 4.5.1
MMCV: 1.2.4
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 10.1
MMSegmentation: 0.6.0+

@MengyangPu
Copy link
Owner

We fixed and updated the codes, please redownload and run, thanks~

@yun-liu
Copy link

yun-liu commented Mar 11, 2023

Have anyone reproduced the results? Could you share how to do it?

@hhqweasd
Copy link
Collaborator

hhqweasd commented Aug 27, 2023

I reproduced the first stage of training with vit large_ patch16_ 384_ backbone, the ODS and OIS are 0.813 and 0.830 respectively on the tesing set of BSDS at iter_10k, which are similar to the reported results: ODS: 0.817, OIS: 0.835

---pip envs---
addict 2.4.0
appdirs 1.4.4
certifi 2022.12.7
cityscapesScripts 2.2.1
clip 1.0
coloredlogs 15.0.1
contourpy 1.0.7
cycler 0.11.0
fonttools 4.39.3
ftfy 6.1.1
future 0.18.3
h5py 3.8.0
humanfriendly 10.0
importlib-resources 5.12.0
kiwisolver 1.4.4
matplotlib 3.7.1
mmcv-full 1.2.2
mmsegmentation 0.6.0 /root/EDTER-main
numpy 1.24.2
opencv-python 4.7.0.72
packaging 23.0
Pillow 9.5.0
pip 23.0.1
pyparsing 3.0.9
pyquaternion 0.9.9
python-dateutil 2.8.2
PyYAML 6.0
regex 2023.3.23
scipy 1.10.1
setuptools 65.6.3
six 1.16.0
torch 1.6.0+cu101
torchvision 0.7.0+cu101
tqdm 4.65.0
typing 3.7.4.3
wcwidth 0.2.6
wheel 0.38.4
yapf 0.32.0
zipp 3.15.0

---conda envs---
_libgcc_mutex 0.1 main https://mirrors.aliyun.com/anaconda/pkgs/main
_openmp_mutex 5.1 1_gnu https://mirrors.aliyun.com/anaconda/pkgs/main
addict 2.4.0 pypi_0 pypi
appdirs 1.4.4 pypi_0 pypi
ca-certificates 2023.01.10 h06a4308_0 https://mirrors.aliyun.com/anaconda/pkgs/main
certifi 2022.12.7 py38h06a4308_0 https://mirrors.aliyun.com/anaconda/pkgs/main
cityscapesscripts 2.2.1 pypi_0 pypi
clip 1.0 pypi_0 pypi
coloredlogs 15.0.1 pypi_0 pypi
contourpy 1.0.7 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
fonttools 4.39.3 pypi_0 pypi
ftfy 6.1.1 pypi_0 pypi
future 0.18.3 pypi_0 pypi
h5py 3.8.0 pypi_0 pypi
humanfriendly 10.0 pypi_0 pypi
importlib-resources 5.12.0 pypi_0 pypi
kiwisolver 1.4.4 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1 https://mirrors.aliyun.com/anaconda/pkgs/main
libffi 3.4.2 h6a678d5_6 https://mirrors.aliyun.com/anaconda/pkgs/main
libgcc-ng 11.2.0 h1234567_1 https://mirrors.aliyun.com/anaconda/pkgs/main
libgomp 11.2.0 h1234567_1 https://mirrors.aliyun.com/anaconda/pkgs/main
libstdcxx-ng 11.2.0 h1234567_1 https://mirrors.aliyun.com/anaconda/pkgs/main
matplotlib 3.7.1 pypi_0 pypi
mmcv-full 1.2.2 pypi_0 pypi
mmsegmentation 0.6.0 dev_0
ncurses 6.4 h6a678d5_0 https://mirrors.aliyun.com/anaconda/pkgs/main
numpy 1.24.2 pypi_0 pypi
opencv-python 4.7.0.72 pypi_0 pypi
openssl 1.1.1t h7f8727e_0 https://mirrors.aliyun.com/anaconda/pkgs/main
packaging 23.0 pypi_0 pypi
pillow 9.5.0 pypi_0 pypi
pip 23.0.1 py38h06a4308_0 https://mirrors.aliyun.com/anaconda/pkgs/main
pyparsing 3.0.9 pypi_0 pypi
pyquaternion 0.9.9 pypi_0 pypi
python 3.8.16 h7a1cb2a_3 https://mirrors.aliyun.com/anaconda/pkgs/main
python-dateutil 2.8.2 pypi_0 pypi
pyyaml 6.0 pypi_0 pypi
readline 8.2 h5eee18b_0 https://mirrors.aliyun.com/anaconda/pkgs/main
regex 2023.3.23 pypi_0 pypi
scipy 1.10.1 pypi_0 pypi
setuptools 65.6.3 py38h06a4308_0 https://mirrors.aliyun.com/anaconda/pkgs/main
six 1.16.0 pypi_0 pypi
sqlite 3.41.1 h5eee18b_0 https://mirrors.aliyun.com/anaconda/pkgs/main
tk 8.6.12 h1ccaba5_0 https://mirrors.aliyun.com/anaconda/pkgs/main
torch 1.6.0+cu101 pypi_0 pypi
torchvision 0.7.0+cu101 pypi_0 pypi
tqdm 4.65.0 pypi_0 pypi
typing 3.7.4.3 pypi_0 pypi
wcwidth 0.2.6 pypi_0 pypi
wheel 0.38.4 py38h06a4308_0 https://mirrors.aliyun.com/anaconda/pkgs/main
xz 5.2.10 h5eee18b_1 https://mirrors.aliyun.com/anaconda/pkgs/main
yapf 0.32.0 pypi_0 pypi
zipp 3.15.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0 https://mirrors.aliyun.com/anaconda/pkgs/main

---gpustat---
[0] Tesla V100-PCIE-32GB | 70'C, 94 % | 25398 / 32768 MB |
[1] Tesla V100-PCIE-32GB | 68'C, 88 % | 25398 / 32768 MB |
Note that all the GPUs must be on the same machine, not distributed.

---samples_per_gpu---
samples_per_gpu=4

---training command---
./tools/dist_train.sh configs/bsds/EDTER_BIMLA_320x320_80k_bsds_bs_8.py 2

Feel free to contact me if you need more information. @liuxingyu123 @yun-liu

---update---
Note that all the GPUs must be on the same machine, not distributed.
iter_20k: ODS=0.816 OIS=0.832 AP=0.865.

@hhqweasd hhqweasd added the good first issue Good for newcomers label Aug 28, 2023
@MengyangPu
Copy link
Owner

We update the reproduced results in https://github.com/MengyangPu/EDTER#4-the-original-results-vs-the-reproduced-results and provide all results.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
good first issue Good for newcomers
Projects
None yet
Development

No branches or pull requests

4 participants