forked from rosinality/vq-vae-2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
executable file
·51 lines (37 loc) · 1.38 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import pickle
from collections import namedtuple
import torch
from torch.utils.data import Dataset
from torchvision import datasets
import lmdb
CodeRow = namedtuple('CodeRow', ['top', 'bottom', 'filename'])
class ImageFileDataset(datasets.ImageFolder):
def __getitem__(self, index):
sample, target = super().__getitem__(index)
path, _ = self.samples[index]
dirs, filename = os.path.split(path)
_, class_name = os.path.split(dirs)
filename = os.path.join(class_name, filename)
return sample, target, filename
class LMDBDataset(Dataset):
def __init__(self, path):
self.env = lmdb.open(
path,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,
)
if not self.env:
raise IOError('Cannot open lmdb dataset', path)
with self.env.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
def __len__(self):
return self.length
def __getitem__(self, index):
with self.env.begin(write=False) as txn:
key = str(index).encode('utf-8')
row = pickle.loads(txn.get(key))
return torch.from_numpy(row.top), torch.from_numpy(row.bottom), row.filename