forked from sschube6/OLID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholid_1colour.py
146 lines (119 loc) · 4.42 KB
/
olid_1colour.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''
Optical lock-in detection
This script reads a (x,y,t) .dv file and lets the user select a region of interest from which a reference waveform is calculated. This reference is used to calculate the time-correlation pixel-by-pixel. The final output the correlation-weighed image is stored as a .tiff file.
'''
import matplotlib.pyplot as pyplot
from matplotlib.widgets import RectangleSelector
import numpy as np
from filehandling import *
filename = 'data/2015-09-A-C127_VimN205S_post20min_2x50nM_3_R3D.dv'
# filename = 'data/2015-09-A-C127_VimN205S_post20min_2x50nM_6_R3D.dv'
# filename = 'data/2015-09-A-C127_VimN205S_post20min_2x50nM_10_R3D.dv'
# filename = 'data/2015-09-A-C127_VimN205S_post20min_2x50nM_9_R3D.dv'
corr_threshold = 0.0 # 0.7
timepts = [] # set time points used for correlation, use all if empty
def onselect(eclick, erelease):
'eclick and erelease are matplotlib events at press and release'
if eclick.xdata < erelease.xdata:
xstart, xend = eclick.xdata, erelease.xdata
elif eclick.xdata > erelease.xdata:
xend, xstart = eclick.xdata, erelease.xdata
if eclick.ydata < erelease.ydata:
ystart, yend = eclick.ydata, erelease.ydata
elif eclick.ydata > erelease.ydata:
yend, ystart = eclick.ydata, erelease.ydata
try:
# image and plot reverse axes
RS.coords = np.array([ystart, xstart, yend, xend])
pyplot.close()
except:
return
start_java_bridge()
image4d = readfile(filename)
[nx, ny, nz, nt] = image4d.shape
if timepts == []:
timepts = range(0, nt) # set time points used for correlation
''' select area used as reference waveform '''
fig = pyplot.figure(2)
ax = pyplot.gca()
REFimg = ax.imshow(np.mean(image4d[:, :, 0, :], axis=2), interpolation='none')
RS = RectangleSelector(ax, onselect)
RS.coords = np.array([0, 0, ny-1, nx-1]) # image and plot reverse axes
pyplot.show()
RS.coords = RS.coords.astype(int)
RS.dims = np.array([RS.coords[2]-RS.coords[0], RS.coords[3]-RS.coords[1]])
# generate signal wave
Ipxtimeseries = np.reshape(image4d[:, :, 0, :], (nx*ny, nt))
I = Ipxtimeseries[:, timepts]
mI = np.mean(I, axis=1)
sI = np.std(I, axis=1)
# generate reference wave
REFimg = image4d[RS.coords[0]:RS.coords[2], RS.coords[1]:RS.coords[3], 0, :]
REFpxtimeseries = np.reshape(REFimg, (RS.dims[0]*RS.dims[1], nt))
# REF = np.percentile(REFpxtimeseries[:,timepts], 90, axis=0)
REF = np.mean(REFpxtimeseries[:, timepts], axis=0)
mREF = np.mean(REF, axis=0)
sREF = np.std(REF, axis=0)
''' calculate correlation corr(x,y) '''
corr = np.zeros(I.shape[0])
for t in range(I.shape[1]):
corr += (I[:, t]-mI)*(REF[t]-mREF)/(sI*sREF)
corr /= I.shape[1]
corr[corr < corr_threshold] = 0
Icorr = np.reshape(np.mean(Ipxtimeseries, axis=1)*corr, (nx, ny))
corr = np.reshape(corr, (nx, ny))
writefile(filename[:-3]+'_corr.tiff', 1000*corr)
writefile(filename[:-3]+'.tiff', Icorr)
end_java_bridge()
'''plotting'''
fig = pyplot.figure(1, figsize=(12, 3), frameon=False)
fig.width = 12.0
fig.height = 3.0
ncols = 4 # number of subplots
nrows = 1
spacing = 0.15
spacingx = spacing / ncols
spacingy = spacing / nrows
lengthx = (1.0-(ncols+1)*spacingx)/ncols
lengthy = (1.0-(nrows+1)*spacingy)/nrows
# plot sum image
x1 = 0+spacingx
y1 = 0+spacingy
ax1 = fig.add_axes([x1, y1, lengthx, lengthy])
imgplot = ax1.imshow(np.reshape(np.mean(Ipxtimeseries, axis=1),
(nx, ny)), interpolation='none')
imgplot.set_cmap('gray')
pyplot.xticks([])
pyplot.yticks([])
# plot selection
x2 = (spacingx+lengthx) + x1
y2 = y1
ax2 = fig.add_axes([x2, y2, lengthx, lengthy])
imgplot = ax2.imshow(
np.reshape(np.mean(REFpxtimeseries, axis=1), (RS.dims[0], RS.dims[1])),
interpolation='none')
pyplot.xticks([])
pyplot.yticks([])
# plot ref waveform
pyplot.rc('xtick', labelsize='6', direction='in')
pyplot.rc('ytick', labelsize='6', direction='in')
x3 = (spacingx+lengthx) + x2
y3 = y2
ax3 = fig.add_axes([x3, y3, lengthx, lengthy])
REFplot = ax3.plot(REF)
ax3.set_aspect(1./ax3.get_data_ratio())
# plot corr
x4 = (spacingx+lengthx) + x3
y4 = y3
ax4 = fig.add_axes([x4, y4, lengthx, lengthy])
corrplot = ax4.imshow(Icorr, interpolation='none')
corrplot.set_cmap('gray')
pyplot.xticks([])
pyplot.yticks([])
def onresize(event):
width = fig.get_figwidth() - 0.125
height = fig.get_figheight() - 0.125
if width/height < fig.width/fig.height:
fig.set_figheight(width*fig.height/fig.width-0.00001)
cid = fig.canvas.mpl_connect('resize_event', onresize)
pyplot.show()