forked from Cornell-RelaxML/quip-sharp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_speed.py
45 lines (37 loc) · 1.52 KB
/
gen_speed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import os
import glog
import torch
from torch.profiler import profile, record_function, ProfilerActivity
from transformers import AutoTokenizer
from lib.utils.unsafe_import import model_from_hf_path
import time
torch.set_grad_enabled(False)
parser = argparse.ArgumentParser()
parser.add_argument('--hf_path', default='meta-llama/Llama-2-70b-hf', type=str)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--seqlen', default=1, type=int)
parser.add_argument('--samples', default=100, type=int)
parser.add_argument('--no_use_cuda_graph', action='store_true')
parser.add_argument('--no_use_flash_attn', action='store_true')
def main(args):
model, model_str = model_from_hf_path(args.hf_path,
use_cuda_graph=not args.no_use_cuda_graph,
use_flash_attn=not args.no_use_flash_attn)
tokenizer = AutoTokenizer.from_pretrained(model_str)
prompt = 'It is a truth universally acknowledged that'
inputs = tokenizer(prompt, return_tensors='pt')
token = inputs['input_ids'][0:1, 0:1].cuda().repeat(args.batch_size, args.seqlen)
model(token, use_cache=False)
torch.cuda.synchronize()
start = time.time()
for _ in range(args.samples):
model(token, use_cache=False)
torch.cuda.synchronize()
end = time.time()
print('TIME', (end - start) / args.samples)
if __name__ == '__main__':
torch.set_grad_enabled(False)
torch.manual_seed(0)
args = parser.parse_args()
main(args)