-
Notifications
You must be signed in to change notification settings - Fork 41
/
eval_conditional_qm9.py
232 lines (191 loc) · 10.2 KB
/
eval_conditional_qm9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import argparse
from os.path import join
import torch
import pickle
from qm9.models import get_model, get_autoencoder, get_latent_diffusion
from configs.datasets_config import get_dataset_info
from qm9 import dataset
from qm9.utils import compute_mean_mad
from qm9.sampling import sample
from qm9.property_prediction.main_qm9_prop import test
from qm9.property_prediction import main_qm9_prop
from qm9.sampling import sample_chain, sample, sample_sweep_conditional
import qm9.visualizer as vis
def get_classifier(dir_path='', device='cpu'):
with open(join(dir_path, 'args.pickle'), 'rb') as f:
args_classifier = pickle.load(f)
args_classifier.device = device
args_classifier.model_name = 'egnn'
classifier = main_qm9_prop.get_model(args_classifier)
classifier_state_dict = torch.load(join(dir_path, 'best_checkpoint.npy'), map_location=torch.device('cpu'))
classifier.load_state_dict(classifier_state_dict)
return classifier
def get_args_gen(dir_path):
with open(join(dir_path, 'args.pickle'), 'rb') as f:
args_gen = pickle.load(f)
assert args_gen.dataset == 'qm9_second_half'
# Add missing args!
if not hasattr(args_gen, 'normalization_factor'):
args_gen.normalization_factor = 1
if not hasattr(args_gen, 'aggregation_method'):
args_gen.aggregation_method = 'sum'
return args_gen
def get_generator(dir_path, dataloaders, device, args_gen, property_norms):
dataset_info = get_dataset_info(args_gen.dataset, args_gen.remove_h)
model, nodes_dist, prop_dist = get_latent_diffusion(args_gen, device, dataset_info, dataloaders['train'])
fn = 'generative_model_ema.npy' if args_gen.ema_decay > 0 else 'generative_model.npy'
model_state_dict = torch.load(join(dir_path, fn), map_location='cpu')
model.load_state_dict(model_state_dict)
# The following function be computes the normalization parameters using the 'valid' partition
if prop_dist is not None:
prop_dist.set_normalizer(property_norms)
return model.to(device), nodes_dist, prop_dist, dataset_info
def get_dataloader(args_gen):
dataloaders, charge_scale = dataset.retrieve_dataloaders(args_gen)
return dataloaders
class DiffusionDataloader:
def __init__(self, args_gen, model, nodes_dist, prop_dist, device, unkown_labels=False,
batch_size=1, iterations=200):
self.args_gen = args_gen
self.model = model
self.nodes_dist = nodes_dist
self.prop_dist = prop_dist
self.batch_size = batch_size
self.iterations = iterations
self.device = device
self.unkown_labels = unkown_labels
self.dataset_info = get_dataset_info(self.args_gen.dataset, self.args_gen.remove_h)
self.i = 0
def __iter__(self):
return self
def sample(self):
nodesxsample = self.nodes_dist.sample(self.batch_size)
context = self.prop_dist.sample_batch(nodesxsample).to(self.device)
one_hot, charges, x, node_mask = sample(self.args_gen, self.device, self.model,
self.dataset_info, self.prop_dist, nodesxsample=nodesxsample,
context=context)
node_mask = node_mask.squeeze(2)
context = context.squeeze(1)
# edge_mask
bs, n_nodes = node_mask.size()
edge_mask = node_mask.unsqueeze(1) * node_mask.unsqueeze(2)
diag_mask = ~torch.eye(edge_mask.size(1), dtype=torch.bool).unsqueeze(0)
diag_mask = diag_mask.to(self.device)
edge_mask *= diag_mask
edge_mask = edge_mask.view(bs * n_nodes * n_nodes, 1)
prop_key = self.prop_dist.properties[0]
if self.unkown_labels:
context[:] = self.prop_dist.normalizer[prop_key]['mean']
else:
context = context * self.prop_dist.normalizer[prop_key]['mad'] + self.prop_dist.normalizer[prop_key]['mean']
data = {
'positions': x.detach(),
'atom_mask': node_mask.detach(),
'edge_mask': edge_mask.detach(),
'one_hot': one_hot.detach(),
prop_key: context.detach()
}
return data
def __next__(self):
if self.i <= self.iterations:
self.i += 1
return self.sample()
else:
self.i = 0
raise StopIteration
def __len__(self):
return self.iterations
def main_quantitative(args):
# Get classifier
#if args.task == "numnodes":
# class_dir = args.classifiers_path[:-6] + "numnodes_%s" % args.property
#else:
class_dir = args.classifiers_path
classifier = get_classifier(class_dir).to(args.device)
# Get generator and dataloader used to train the generator and evalute the classifier
args_gen = get_args_gen(args.generators_path)
# Careful with this -->
if not hasattr(args_gen, 'diffusion_noise_precision'):
args_gen.normalization_factor = 1e-4
if not hasattr(args_gen, 'normalization_factor'):
args_gen.normalization_factor = 1
if not hasattr(args_gen, 'aggregation_method'):
args_gen.aggregation_method = 'sum'
dataloaders = get_dataloader(args_gen)
property_norms = compute_mean_mad(dataloaders, args_gen.conditioning, args_gen.dataset)
model, nodes_dist, prop_dist, _ = get_generator(args.generators_path, dataloaders,
args.device, args_gen, property_norms)
# Create a dataloader with the generator
mean, mad = property_norms[args.property]['mean'], property_norms[args.property]['mad']
if args.task == 'edm':
diffusion_dataloader = DiffusionDataloader(args_gen, model, nodes_dist, prop_dist,
args.device, batch_size=args.batch_size, iterations=args.iterations)
print("EDM: We evaluate the classifier on our generated samples")
loss = test(classifier, 0, diffusion_dataloader, mean, mad, args.property, args.device, 1, args.debug_break)
print("Loss classifier on Generated samples: %.4f" % loss)
elif args.task == 'qm9_second_half':
print("qm9_second_half: We evaluate the classifier on QM9")
loss = test(classifier, 0, dataloaders['train'], mean, mad, args.property, args.device, args.log_interval,
args.debug_break)
print("Loss classifier on qm9_second_half: %.4f" % loss)
elif args.task == 'naive':
print("Naive: We evaluate the classifier on QM9")
length = dataloaders['train'].dataset.data[args.property].size(0)
idxs = torch.randperm(length)
dataloaders['train'].dataset.data[args.property] = dataloaders['train'].dataset.data[args.property][idxs]
loss = test(classifier, 0, dataloaders['train'], mean, mad, args.property, args.device, args.log_interval,
args.debug_break)
print("Loss classifier on naive: %.4f" % loss)
#elif args.task == 'numnodes':
# print("Numnodes: We evaluate the numnodes classifier on EDM samples")
# diffusion_dataloader = DiffusionDataloader(args_gen, model, nodes_dist, prop_dist, device,
# batch_size=args.batch_size, iterations=args.iterations)
# loss = test(classifier, 0, diffusion_dataloader, mean, mad, args.property, args.device, 1, args.debug_break)
# print("Loss numnodes classifier on EDM generated samples: %.4f" % loss)
def save_and_sample_conditional(args, device, model, prop_dist, dataset_info, epoch=0, id_from=0):
one_hot, charges, x, node_mask = sample_sweep_conditional(args, device, model, dataset_info, prop_dist)
vis.save_xyz_file(
'outputs/%s/analysis/run%s/' % (args.exp_name, epoch), one_hot, charges, x, dataset_info,
id_from, name='conditional', node_mask=node_mask)
vis.visualize_chain("outputs/%s/analysis/run%s/" % (args.exp_name, epoch), dataset_info,
wandb=None, mode='conditional', spheres_3d=True)
return one_hot, charges, x
def main_qualitative(args):
args_gen = get_args_gen(args.generators_path)
dataloaders = get_dataloader(args_gen)
property_norms = compute_mean_mad(dataloaders, args_gen.conditioning, args_gen.dataset)
model, nodes_dist, prop_dist, dataset_info = get_generator(args.generators_path,
dataloaders, args.device, args_gen,
property_norms)
for i in range(args.n_sweeps):
print("Sampling sweep %d/%d" % (i+1, args.n_sweeps))
save_and_sample_conditional(args_gen, device, model, prop_dist, dataset_info, epoch=i, id_from=0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--exp_name', type=str, default='debug_alpha')
parser.add_argument('--generators_path', type=str, default='outputs/exp_cond_alpha_pretrained')
parser.add_argument('--classifiers_path', type=str, default='qm9/property_prediction/outputs/exp_class_alpha_pretrained')
parser.add_argument('--property', type=str, default='alpha',
help="'alpha', 'homo', 'lumo', 'gap', 'mu', 'Cv'")
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--debug_break', type=eval, default=False,
help='break point or not')
parser.add_argument('--log_interval', type=int, default=5,
help='break point or not')
parser.add_argument('--batch_size', type=int, default=1,
help='break point or not')
parser.add_argument('--iterations', type=int, default=20,
help='break point or not')
parser.add_argument('--task', type=str, default='qualitative',
help='naive, edm, qm9_second_half, qualitative')
parser.add_argument('--n_sweeps', type=int, default=10,
help='number of sweeps for the qualitative conditional experiment')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = device
if args.task == 'qualitative':
main_qualitative(args)
else:
main_quantitative(args)