-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
61 lines (55 loc) · 2.05 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// import '@tensorflow/tjsf-backend-cpu';
// import '@tensorflow/tjfs-backend-webgl';
// import * as cocoSsd from '@tensorflow-models/coco-ssd';
// import imageURL from 'test_input_images\glass.jpg';
// import image2URL from 'test_input_images\cardboard_recycling.jpg';
const cocoSsd = require('@tensorflow-models/coco-ssd');
const tf = require('@tensorflow/tfjs-node');
const fs = require('fs').promises;
// const cocoSsd = require('@tensorflow-models/coco-ssd');
// let modelPromise;
// modelPromise = cocoSsd.load();
const path = require("path");
const express = require("express");
const bodyParser = require("body-parser")
// const fs = require("fs");
const app = express();
app.get('/', (req, res) =>{
res.send('Welcome to the api')
})
app.use(bodyParser.urlencoded());
app.use(bodyParser.json({limit: "1000mb"}));
app.post("/add", (req, res) => {
console.log("Succesul recieve")
const base64 = req.body.val;
console.log(base64)
const buffer = Buffer.from(base64, "base64");
const t = tf.node.decodeImage(buffer);
var key = "test_input_images//image.jpg";
fs.writeFile("test_input_images//image.jpg", buffer);
Promise.all([cocoSsd.load(), fs.readFile(key)]) //600,600,3
.then((results) => {
// First result is the COCO-SSD model object.
const model = results[0];
// Second result is image buffer.
var imgTensor = tf.node.decodeImage(new Uint8Array(results[1]), 3);
// imgTensor = tf.image.resizeBilinear(imgTensor, size = [600,600])
console.log("Tensor shape: ");
console.log(imgTensor.shape);
// imgTensor.print()
// Call detect() to run inference.
return model.detect(imgTensor);
})
.then((predictions) => {
console.log("got predictions");
console.log(predictions);
console.log(JSON.stringify(predictions, null, 2));
res.send({
result: JSON.stringify(predictions, null, 2)
});
});
});
let PORT = process.env.PORT || 3000;
app.listen(PORT, ()=>{
console.log(`Server Up And Running At Port ${PORT}`);
});