forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
165 lines (129 loc) · 5.99 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import gzip
import json
import logging
import os
import io
import struct
import mxnet as mx
import numpy as np
from collections import namedtuple
def load_data(path):
with gzip.open(find_file(path, "labels.gz")) as flbl:
struct.unpack(">II", flbl.read(8))
labels = np.fromstring(flbl.read(), dtype=np.int8)
with gzip.open(find_file(path, "images.gz")) as fimg:
_, _, rows, cols = struct.unpack(">IIII", fimg.read(16))
images = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(labels), rows, cols)
images = images.reshape(images.shape[0], 1, 28, 28).astype(np.float32) / 255
return labels, images
def find_file(root_path, file_name):
for root, dirs, files in os.walk(root_path):
if file_name in files:
return os.path.join(root, file_name)
def build_graph():
data = mx.sym.var('data')
data = mx.sym.flatten(data=data)
fc1 = mx.sym.FullyConnected(data=data, num_hidden=128)
act1 = mx.sym.Activation(data=fc1, act_type="relu")
fc2 = mx.sym.FullyConnected(data=act1, num_hidden=64)
act2 = mx.sym.Activation(data=fc2, act_type="relu")
fc3 = mx.sym.FullyConnected(data=act2, num_hidden=10)
return mx.sym.SoftmaxOutput(data=fc3, name='softmax')
def get_training_context(num_gpus):
if num_gpus:
return [mx.gpu(i) for i in range(num_gpus)]
else:
return mx.cpu()
def train(batch_size, epochs, learning_rate, num_gpus, training_channel, testing_channel,
hosts, current_host, model_dir):
(train_labels, train_images) = load_data(training_channel)
(test_labels, test_images) = load_data(testing_channel)
# Data parallel training - shard the data so each host
# only trains on a subset of the total data.
shard_size = len(train_images) // len(hosts)
for i, host in enumerate(hosts):
if host == current_host:
start = shard_size * i
end = start + shard_size
break
train_iter = mx.io.NDArrayIter(train_images[start:end], train_labels[start:end], batch_size,
shuffle=True)
val_iter = mx.io.NDArrayIter(test_images, test_labels, batch_size)
logging.getLogger().setLevel(logging.DEBUG)
kvstore = 'local' if len(hosts) == 1 else 'dist_sync'
mlp_model = mx.mod.Module(symbol=build_graph(),
context=get_training_context(num_gpus))
mlp_model.fit(train_iter,
eval_data=val_iter,
kvstore=kvstore,
optimizer='sgd',
optimizer_params={'learning_rate': learning_rate},
eval_metric='acc',
batch_end_callback=mx.callback.Speedometer(batch_size, 100),
num_epoch=epochs)
if current_host == hosts[0]:
save(model_dir, mlp_model)
def save(model_dir, model):
model.symbol.save(os.path.join(model_dir, 'model-symbol.json'))
model.save_params(os.path.join(model_dir, 'model-0000.params'))
signature = [{'name': data_desc.name, 'shape': [dim for dim in data_desc.shape]}
for data_desc in model.data_shapes]
with open(os.path.join(model_dir, 'model-shapes.json'), 'w') as f:
json.dump(signature, f)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=100)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--learning-rate', type=float, default=0.1)
parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR'])
parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN'])
parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TEST'])
parser.add_argument('--current-host', type=str, default=os.environ['SM_CURRENT_HOST'])
parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS']))
return parser.parse_args()
### NOTE: model_fn and transform_fn are used to load the model and serve inference
def model_fn(model_dir):
import neomxnet # noqa: F401
logging.info('Invoking user-defined model_fn')
# change context to mx.gpu() when optimizing and deploying with Neo for GPU endpoints
ctx = mx.cpu()
Batch = namedtuple('Batch', ['data'])
sym, arg_params, aux_params = mx.model.load_checkpoint(os.path.join(model_dir, 'compiled'), 0)
mod = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
exe = mod.bind(for_training=False,
data_shapes=[('data', (1,784))],
label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)
# run warm-up inference on empty data
data = mx.nd.empty((1,784), ctx=ctx)
mod.forward(Batch([data]))
return mod
def transform_fn(mod, payload, input_content_type, output_content_type):
logging.info('Invoking user-defined transform_fn')
Batch = namedtuple('Batch', ['data'])
# change context to mx.gpu() when optimizing and deploying with Neo for GPU endpoints
ctx = mx.cpu()
if input_content_type != 'application/x-npy':
raise RuntimeError('Input content type must be application/x-npy')
# pre-processing
io_bytes_obj = io.BytesIO(payload)
npy_payload = np.load(io_bytes_obj)
mx_ndarray = mx.nd.array(npy_payload)
inference_payload = mx_ndarray.as_in_context(ctx)
# prediction/inference
mod.forward(Batch([inference_payload]))
# post-processing
result = mod.get_outputs()[0].asnumpy()
result = np.squeeze(result)
result_exp = np.exp(result - np.max(result))
result = result_exp / np.sum(result_exp)
output_json = json.dumps(result.tolist())
output_content_type = 'application/json'
return output_json, output_content_type
if __name__ == '__main__':
args = parse_args()
num_gpus = int(os.environ['SM_NUM_GPUS'])
train(args.batch_size, args.epochs, args.learning_rate,
num_gpus, args.train, args.test, args.hosts,
args.current_host, args.model_dir)