forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ClosestPairOfPoints.java
121 lines (99 loc) · 3.21 KB
/
ClosestPairOfPoints.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/**
* This file contains code to find the closest pair of points given a list of points.
*
* <p>Time Complexity: O(nlog(n))
*
* @author William Fiset, [email protected]
*/
package com.williamfiset.algorithms.geometry;
import static java.lang.Math.*;
import java.util.*;
public class ClosestPairOfPoints {
private static final double EPS = 1e-9;
public class PT {
double x, y;
public PT(double xx, double yy) {
x = xx;
y = yy;
}
public double dist(PT pt) {
double dx = x - pt.x, dy = y - pt.y;
return sqrt(dx * dx + dy * dy);
}
}
// Sorts points by X coordinate
private static class X_Sort implements Comparator<PT> {
@Override
public int compare(PT pt1, PT pt2) {
if (abs(pt1.x - pt2.x) < EPS) return 0;
return (pt1.x < pt2.x) ? -1 : +1;
}
}
// Sorts points by Y coordinate first then X coordinate
private static class YX_Sort implements Comparator<PT> {
@Override
public int compare(PT pt1, PT pt2) {
if (abs(pt1.y - pt2.y) < EPS) {
if (abs(pt1.x - pt2.x) < EPS) return 0;
return (pt1.x < pt2.x) ? -1 : +1;
}
return (pt1.y < pt2.y) ? -1 : +1;
}
}
// Finds the closest pair of points in a list of points
public static PT[] closestPair(PT[] points) {
if (points == null || points.length < 2) return new PT[] {};
final int n = points.length;
int xQueueFront = 0, xQueueBack = 0;
// Sort all point by x-coordinate
Arrays.sort(points, new X_Sort());
TreeSet<PT> yWorkingSet = new TreeSet<>(new YX_Sort());
PT pt1 = null, pt2 = null;
double d = Double.POSITIVE_INFINITY;
for (int i = 0; i < n; i++) {
PT nextPoint = points[i];
// Remove all points (from both sets) where the distance to
// the new point is greater than d (the smallest window size yet)
while (xQueueFront != xQueueBack && nextPoint.x - points[xQueueFront].x > d) {
PT pt = points[xQueueFront++];
yWorkingSet.remove(pt);
}
// Look at all the points in our working set with a y-coordinate
// above nextPoint.y but within a window of nextPoint.y + d
double upperBound = nextPoint.y + d;
PT next = yWorkingSet.higher(nextPoint);
while (next != null && next.y <= upperBound) {
double dist = nextPoint.dist(next);
if (dist < d) {
pt1 = nextPoint;
pt2 = next;
d = dist;
}
next = yWorkingSet.higher(next);
}
// Look at all the points in our working set with a y-coordinate
// below nextPoint.y but within a window of nextPoint.y - d
double lowerBound = nextPoint.y - d;
next = yWorkingSet.lower(nextPoint);
while (next != null && next.y > lowerBound) {
double dist = nextPoint.dist(next);
if (dist < d) {
pt1 = nextPoint;
pt2 = next;
d = dist;
}
next = yWorkingSet.lower(next);
}
// Duplicate/stacked points
if (yWorkingSet.contains(nextPoint)) {
pt1 = pt2 = nextPoint;
d = 0;
break;
}
// Add the next point to the working set
yWorkingSet.add(nextPoint);
xQueueBack++;
}
return new PT[] {pt1, pt2};
}
}