-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
406_conditional_GAN.py
95 lines (80 loc) · 4.93 KB
/
406_conditional_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Know more, visit my Python tutorial page: https://morvanzhou.github.io/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
tensorflow: 1.1.0
matplotlib
numpy
"""
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.set_random_seed(1)
np.random.seed(1)
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001 # learning rate for generator
LR_D = 0.0001 # learning rate for discriminator
N_IDEAS = 5 # think of this as number of ideas for generating an art work (Generator)
ART_COMPONENTS = 15 # it could be total point G can draw in the canvas
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])
# show our beautiful painting range
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + 1, c='#74BCFF', lw=3, label='upper bound')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + 0, c='#FF9359', lw=3, label='lower bound')
plt.legend(loc='upper right')
plt.show()
def artist_works(): # painting from the famous artist (real target)
a = np.random.uniform(1, 2, size=BATCH_SIZE)[:, np.newaxis]
paintings = a * np.power(PAINT_POINTS, 2) + (a-1)
labels = (a - 1) > 0.5 # upper paintings (1), lower paintings (0), two classes
labels = labels.astype(np.float32)
return paintings, labels
art_labels = tf.placeholder(tf.float32, [None, 1])
with tf.variable_scope('Generator'):
G_in = tf.placeholder(tf.float32, [None, N_IDEAS]) # random ideas (could from normal distribution)
G_art = tf.concat((G_in, art_labels), 1) # combine ideas with labels
G_l1 = tf.layers.dense(G_art, 128, tf.nn.relu)
G_out = tf.layers.dense(G_l1, ART_COMPONENTS) # making a painting from these random ideas
with tf.variable_scope('Discriminator'):
real_in = tf.placeholder(tf.float32, [None, ART_COMPONENTS], name='real_in') # receive art work from the famous artist + label
real_art = tf.concat((real_in, art_labels), 1) # art with labels
D_l0 = tf.layers.dense(real_art, 128, tf.nn.relu, name='l')
prob_artist0 = tf.layers.dense(D_l0, 1, tf.nn.sigmoid, name='out') # probability that the art work is made by artist
# reuse layers for generator
G_art = tf.concat((G_out, art_labels), 1) # art with labels
D_l1 = tf.layers.dense(G_art, 128, tf.nn.relu, name='l', reuse=True) # receive art work from a newbie like G
prob_artist1 = tf.layers.dense(D_l1, 1, tf.nn.sigmoid, name='out', reuse=True) # probability that the art work is made by artist
D_loss = -tf.reduce_mean(tf.log(prob_artist0) + tf.log(1-prob_artist1))
G_loss = tf.reduce_mean(tf.log(1-prob_artist1))
train_D = tf.train.AdamOptimizer(LR_D).minimize(
D_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator'))
train_G = tf.train.AdamOptimizer(LR_G).minimize(
G_loss, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator'))
sess = tf.Session()
sess.run(tf.global_variables_initializer())
plt.ion() # something about continuous plotting
for step in range(7000):
artist_paintings, labels = artist_works() # real painting from artist
G_ideas = np.random.randn(BATCH_SIZE, N_IDEAS)
G_paintings, pa0, Dl = sess.run([G_out, prob_artist0, D_loss, train_D, train_G], # train and get results
{G_in: G_ideas, real_in: artist_paintings, art_labels: labels})[:3]
if step % 50 == 0: # plotting
plt.cla()
plt.plot(PAINT_POINTS[0], G_paintings[0], c='#4AD631', lw=3, label='Generated painting',)
bound = [0, 0.5] if labels[0, 0] == 0 else [0.5, 1]
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound')
plt.text(-.5, 2.3, 'D accuracy=%.2f (0.5 for D to converge)' % pa0.mean(), fontdict={'size': 15})
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -Dl, fontdict={'size': 15})
plt.text(-.5, 1.7, 'Class = %i' % int(labels[0, 0]), fontdict={'size': 15})
plt.ylim((0, 3)); plt.legend(loc='upper right', fontsize=12); plt.draw(); plt.pause(0.1)
plt.ioff()
# plot a generated painting for upper class
plt.figure(2)
z = np.random.randn(1, N_IDEAS)
label = np.array([[1.]]) # for upper class
G_paintings = sess.run(G_out, {G_in: z, art_labels: label})
plt.plot(PAINT_POINTS[0], G_paintings[0], c='#4AD631', lw=3, label='G painting for upper class',)
plt.plot(PAINT_POINTS[0], 2 * np.power(PAINT_POINTS[0], 2) + bound[1], c='#74BCFF', lw=3, label='upper bound (class 1)')
plt.plot(PAINT_POINTS[0], 1 * np.power(PAINT_POINTS[0], 2) + bound[0], c='#FF9359', lw=3, label='lower bound (class 1)')
plt.ylim((0, 3)); plt.legend(loc='upper right', fontsize=12); plt.show()