-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.html
844 lines (832 loc) · 33.7 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<style type="text/css">
@font-face {
font-family: octicons-link;
src: url(data:font/woff;charset=utf-8;base64,d09GRgABAAAAAAZwABAAAAAACFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEU0lHAAAGaAAAAAgAAAAIAAAAAUdTVUIAAAZcAAAACgAAAAoAAQAAT1MvMgAAAyQAAABJAAAAYFYEU3RjbWFwAAADcAAAAEUAAACAAJThvmN2dCAAAATkAAAABAAAAAQAAAAAZnBnbQAAA7gAAACyAAABCUM+8IhnYXNwAAAGTAAAABAAAAAQABoAI2dseWYAAAFsAAABPAAAAZwcEq9taGVhZAAAAsgAAAA0AAAANgh4a91oaGVhAAADCAAAABoAAAAkCA8DRGhtdHgAAAL8AAAADAAAAAwGAACfbG9jYQAAAsAAAAAIAAAACABiATBtYXhwAAACqAAAABgAAAAgAA8ASm5hbWUAAAToAAABQgAAAlXu73sOcG9zdAAABiwAAAAeAAAAME3QpOBwcmVwAAAEbAAAAHYAAAB/aFGpk3jaTY6xa8JAGMW/O62BDi0tJLYQincXEypYIiGJjSgHniQ6umTsUEyLm5BV6NDBP8Tpts6F0v+k/0an2i+itHDw3v2+9+DBKTzsJNnWJNTgHEy4BgG3EMI9DCEDOGEXzDADU5hBKMIgNPZqoD3SilVaXZCER3/I7AtxEJLtzzuZfI+VVkprxTlXShWKb3TBecG11rwoNlmmn1P2WYcJczl32etSpKnziC7lQyWe1smVPy/Lt7Kc+0vWY/gAgIIEqAN9we0pwKXreiMasxvabDQMM4riO+qxM2ogwDGOZTXxwxDiycQIcoYFBLj5K3EIaSctAq2kTYiw+ymhce7vwM9jSqO8JyVd5RH9gyTt2+J/yUmYlIR0s04n6+7Vm1ozezUeLEaUjhaDSuXHwVRgvLJn1tQ7xiuVv/ocTRF42mNgZGBgYGbwZOBiAAFGJBIMAAizAFoAAABiAGIAznjaY2BkYGAA4in8zwXi+W2+MjCzMIDApSwvXzC97Z4Ig8N/BxYGZgcgl52BCSQKAA3jCV8CAABfAAAAAAQAAEB42mNgZGBg4f3vACQZQABIMjKgAmYAKEgBXgAAeNpjYGY6wTiBgZWBg2kmUxoDA4MPhGZMYzBi1AHygVLYQUCaawqDA4PChxhmh/8ODDEsvAwHgMKMIDnGL0x7gJQCAwMAJd4MFwAAAHjaY2BgYGaA4DAGRgYQkAHyGMF8NgYrIM3JIAGVYYDT+AEjAwuDFpBmA9KMDEwMCh9i/v8H8sH0/4dQc1iAmAkALaUKLgAAAHjaTY9LDsIgEIbtgqHUPpDi3gPoBVyRTmTddOmqTXThEXqrob2gQ1FjwpDvfwCBdmdXC5AVKFu3e5MfNFJ29KTQT48Ob9/lqYwOGZxeUelN2U2R6+cArgtCJpauW7UQBqnFkUsjAY/kOU1cP+DAgvxwn1chZDwUbd6CFimGXwzwF6tPbFIcjEl+vvmM/byA48e6tWrKArm4ZJlCbdsrxksL1AwWn/yBSJKpYbq8AXaaTb8AAHja28jAwOC00ZrBeQNDQOWO//sdBBgYGRiYWYAEELEwMTE4uzo5Zzo5b2BxdnFOcALxNjA6b2ByTswC8jYwg0VlNuoCTWAMqNzMzsoK1rEhNqByEyerg5PMJlYuVueETKcd/89uBpnpvIEVomeHLoMsAAe1Id4AAAAAAAB42oWQT07CQBTGv0JBhagk7HQzKxca2sJCE1hDt4QF+9JOS0nbaaYDCQfwCJ7Au3AHj+LO13FMmm6cl7785vven0kBjHCBhfpYuNa5Ph1c0e2Xu3jEvWG7UdPDLZ4N92nOm+EBXuAbHmIMSRMs+4aUEd4Nd3CHD8NdvOLTsA2GL8M9PODbcL+hD7C1xoaHeLJSEao0FEW14ckxC+TU8TxvsY6X0eLPmRhry2WVioLpkrbp84LLQPGI7c6sOiUzpWIWS5GzlSgUzzLBSikOPFTOXqly7rqx0Z1Q5BAIoZBSFihQYQOOBEdkCOgXTOHA07HAGjGWiIjaPZNW13/+lm6S9FT7rLHFJ6fQbkATOG1j2OFMucKJJsxIVfQORl+9Jyda6Sl1dUYhSCm1dyClfoeDve4qMYdLEbfqHf3O/AdDumsjAAB42mNgYoAAZQYjBmyAGYQZmdhL8zLdDEydARfoAqIAAAABAAMABwAKABMAB///AA8AAQAAAAAAAAAAAAAAAAABAAAAAA==) format('woff');
}
body {
-webkit-text-size-adjust: 100%;
text-size-adjust: 100%;
color: #333;
font-family: "Helvetica Neue", Helvetica, "Segoe UI", Arial, freesans, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
font-size: 16px;
line-height: 1.6;
word-wrap: break-word;
}
a {
background-color: transparent;
}
a:active,
a:hover {
outline: 0;
}
strong {
font-weight: bold;
}
h1 {
font-size: 2em;
margin: 0.67em 0;
}
img {
border: 0;
}
hr {
box-sizing: content-box;
height: 0;
}
pre {
overflow: auto;
}
code,
kbd,
pre {
font-family: monospace, monospace;
font-size: 1em;
}
input {
color: inherit;
font: inherit;
margin: 0;
}
html input[disabled] {
cursor: default;
}
input {
line-height: normal;
}
input[type="checkbox"] {
box-sizing: border-box;
padding: 0;
}
table {
border-collapse: collapse;
border-spacing: 0;
}
td,
th {
padding: 0;
}
* {
box-sizing: border-box;
}
input {
font: 13px / 1.4 Helvetica, arial, nimbussansl, liberationsans, freesans, clean, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
a {
color: #4078c0;
text-decoration: none;
}
a:hover,
a:active {
text-decoration: underline;
}
hr {
height: 0;
margin: 15px 0;
overflow: hidden;
background: transparent;
border: 0;
border-bottom: 1px solid #ddd;
}
hr:before {
display: table;
content: "";
}
hr:after {
display: table;
clear: both;
content: "";
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 15px;
margin-bottom: 15px;
line-height: 1.1;
}
h1 {
font-size: 30px;
}
h2 {
font-size: 21px;
}
h3 {
font-size: 16px;
}
h4 {
font-size: 14px;
}
h5 {
font-size: 12px;
}
h6 {
font-size: 11px;
}
blockquote {
margin: 0;
}
ul,
ol {
padding: 0;
margin-top: 0;
margin-bottom: 0;
}
ol ol,
ul ol {
list-style-type: lower-roman;
}
ul ul ol,
ul ol ol,
ol ul ol,
ol ol ol {
list-style-type: lower-alpha;
}
dd {
margin-left: 0;
}
code {
font-family: Consolas, "Liberation Mono", Menlo, Courier, monospace;
font-size: 12px;
}
pre {
margin-top: 0;
margin-bottom: 0;
font: 12px Consolas, "Liberation Mono", Menlo, Courier, monospace;
}
.select::-ms-expand {
opacity: 0;
}
.octicon {
font: normal normal normal 16px/1 octicons-link;
display: inline-block;
text-decoration: none;
text-rendering: auto;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
-webkit-user-select: none;
-moz-user-select: none;
-ms-user-select: none;
user-select: none;
}
.octicon-link:before {
content: '\f05c';
}
.markdown-body:before {
display: table;
content: "";
}
.markdown-body:after {
display: table;
clear: both;
content: "";
}
.markdown-body>*:first-child {
margin-top: 0 !important;
}
.markdown-body>*:last-child {
margin-bottom: 0 !important;
}
a:not([href]) {
color: inherit;
text-decoration: none;
}
.anchor {
display: inline-block;
padding-right: 2px;
margin-left: -18px;
}
.anchor:focus {
outline: none;
}
h1,
h2,
h3,
h4,
h5,
h6 {
margin-top: 1em;
margin-bottom: 16px;
font-weight: bold;
line-height: 1.4;
}
h1 .octicon-link,
h2 .octicon-link,
h3 .octicon-link,
h4 .octicon-link,
h5 .octicon-link,
h6 .octicon-link {
color: #000;
vertical-align: middle;
visibility: hidden;
}
h1:hover .anchor,
h2:hover .anchor,
h3:hover .anchor,
h4:hover .anchor,
h5:hover .anchor,
h6:hover .anchor {
text-decoration: none;
}
h1:hover .anchor .octicon-link,
h2:hover .anchor .octicon-link,
h3:hover .anchor .octicon-link,
h4:hover .anchor .octicon-link,
h5:hover .anchor .octicon-link,
h6:hover .anchor .octicon-link {
visibility: visible;
}
h1 {
padding-bottom: 0.3em;
font-size: 2.25em;
line-height: 1.2;
border-bottom: 1px solid #eee;
}
h1 .anchor {
line-height: 1;
}
h2 {
padding-bottom: 0.3em;
font-size: 1.75em;
line-height: 1.225;
border-bottom: 1px solid #eee;
}
h2 .anchor {
line-height: 1;
}
h3 {
font-size: 1.5em;
line-height: 1.43;
}
h3 .anchor {
line-height: 1.2;
}
h4 {
font-size: 1.25em;
}
h4 .anchor {
line-height: 1.2;
}
h5 {
font-size: 1em;
}
h5 .anchor {
line-height: 1.1;
}
h6 {
font-size: 1em;
color: #777;
}
h6 .anchor {
line-height: 1.1;
}
p,
blockquote,
ul,
ol,
dl,
table,
pre {
margin-top: 0;
margin-bottom: 16px;
}
hr {
height: 4px;
padding: 0;
margin: 16px 0;
background-color: #e7e7e7;
border: 0 none;
}
ul,
ol {
padding-left: 2em;
}
ul ul,
ul ol,
ol ol,
ol ul {
margin-top: 0;
margin-bottom: 0;
}
li>p {
margin-top: 16px;
}
dl {
padding: 0;
}
dl dt {
padding: 0;
margin-top: 16px;
font-size: 1em;
font-style: italic;
font-weight: bold;
}
dl dd {
padding: 0 16px;
margin-bottom: 16px;
}
blockquote {
padding: 0 15px;
color: #777;
border-left: 4px solid #ddd;
}
blockquote>:first-child {
margin-top: 0;
}
blockquote>:last-child {
margin-bottom: 0;
}
table {
display: block;
width: 100%;
overflow: auto;
word-break: normal;
word-break: keep-all;
}
table th {
font-weight: bold;
}
table th,
table td {
padding: 6px 13px;
border: 1px solid #ddd;
}
table tr {
background-color: #fff;
border-top: 1px solid #ccc;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
img {
max-width: 100%;
box-sizing: content-box;
background-color: #fff;
}
code {
padding: 0;
padding-top: 0.2em;
padding-bottom: 0.2em;
margin: 0;
font-size: 85%;
background-color: rgba(0,0,0,0.04);
border-radius: 3px;
}
code:before,
code:after {
letter-spacing: -0.2em;
content: "\00a0";
}
pre>code {
padding: 0;
margin: 0;
font-size: 100%;
word-break: normal;
white-space: pre;
background: transparent;
border: 0;
}
.highlight {
margin-bottom: 16px;
}
.highlight pre,
pre {
padding: 16px;
overflow: auto;
font-size: 85%;
line-height: 1.45;
background-color: #f7f7f7;
border-radius: 3px;
}
.highlight pre {
margin-bottom: 0;
word-break: normal;
}
pre {
word-wrap: normal;
}
pre code {
display: inline;
max-width: initial;
padding: 0;
margin: 0;
overflow: initial;
line-height: inherit;
word-wrap: normal;
background-color: transparent;
border: 0;
}
pre code:before,
pre code:after {
content: normal;
}
kbd {
display: inline-block;
padding: 3px 5px;
font-size: 11px;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.pl-c {
color: #969896;
}
.pl-c1,
.pl-s .pl-v {
color: #0086b3;
}
.pl-e,
.pl-en {
color: #795da3;
}
.pl-s .pl-s1,
.pl-smi {
color: #333;
}
.pl-ent {
color: #63a35c;
}
.pl-k {
color: #a71d5d;
}
.pl-pds,
.pl-s,
.pl-s .pl-pse .pl-s1,
.pl-sr,
.pl-sr .pl-cce,
.pl-sr .pl-sra,
.pl-sr .pl-sre {
color: #183691;
}
.pl-v {
color: #ed6a43;
}
.pl-id {
color: #b52a1d;
}
.pl-ii {
background-color: #b52a1d;
color: #f8f8f8;
}
.pl-sr .pl-cce {
color: #63a35c;
font-weight: bold;
}
.pl-ml {
color: #693a17;
}
.pl-mh,
.pl-mh .pl-en,
.pl-ms {
color: #1d3e81;
font-weight: bold;
}
.pl-mq {
color: #008080;
}
.pl-mi {
color: #333;
font-style: italic;
}
.pl-mb {
color: #333;
font-weight: bold;
}
.pl-md {
background-color: #ffecec;
color: #bd2c00;
}
.pl-mi1 {
background-color: #eaffea;
color: #55a532;
}
.pl-mdr {
color: #795da3;
font-weight: bold;
}
.pl-mo {
color: #1d3e81;
}
kbd {
display: inline-block;
padding: 3px 5px;
font: 11px Consolas, "Liberation Mono", Menlo, Courier, monospace;
line-height: 10px;
color: #555;
vertical-align: middle;
background-color: #fcfcfc;
border: solid 1px #ccc;
border-bottom-color: #bbb;
border-radius: 3px;
box-shadow: inset 0 -1px 0 #bbb;
}
.task-list-item {
list-style-type: none;
}
.task-list-item+.task-list-item {
margin-top: 3px;
}
.task-list-item input {
margin: 0 0.35em 0.25em -1.6em;
vertical-align: middle;
}
:checked+.radio-label {
z-index: 1;
position: relative;
border-color: #4078c0;
}
.sourceLine {
display: inline-block;
}
code .kw { color: #000000; }
code .dt { color: #ed6a43; }
code .dv { color: #009999; }
code .bn { color: #009999; }
code .fl { color: #009999; }
code .ch { color: #009999; }
code .st { color: #183691; }
code .co { color: #969896; }
code .ot { color: #0086b3; }
code .al { color: #a61717; }
code .fu { color: #63a35c; }
code .er { color: #a61717; background-color: #e3d2d2; }
code .wa { color: #000000; }
code .cn { color: #008080; }
code .sc { color: #008080; }
code .vs { color: #183691; }
code .ss { color: #183691; }
code .im { color: #000000; }
code .va {color: #008080; }
code .cf { color: #000000; }
code .op { color: #000000; }
code .bu { color: #000000; }
code .ex { color: #000000; }
code .pp { color: #999999; }
code .at { color: #008080; }
code .do { color: #969896; }
code .an { color: #008080; }
code .cv { color: #008080; }
code .in { color: #008080; }
</style>
<style>
body {
box-sizing: border-box;
min-width: 200px;
max-width: 980px;
margin: 0 auto;
padding: 45px;
padding-top: 0px;
}
</style>
</head>
<body>
<!-- README.md is generated from README.Rmd. Please edit that file -->
<h1 id="icikendalltau">ICIKendallTau</h1>
<!-- badges: start -->
<p><a href="https://moseleybioinformaticslab.r-universe.dev"><img role="img" aria-label="ICIKendallTau status badge" src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB3aWR0aD0iMTA1LjgiIGhlaWdodD0iMjAiIHZpZXdCb3g9IjAgMCAxMDU4IDIwMCIgeG1sbnM9Imh0dHA6Ly93d3cudzMub3JnLzIwMDAvc3ZnIiByb2xlPSJpbWciIGFyaWEtbGFiZWw9InItdW5pdmVyc2U6IDEuMi4xIj4KICA8YSBocmVmPSJodHRwczovL21vc2VsZXliaW9pbmZvcm1hdGljc2xhYi5yLXVuaXZlcnNlLmRldi9JQ0lLZW5kYWxsVGF1IiBhbHQ9InItdW5pdmVyc2UiPgogIDx0aXRsZT5yLXVuaXZlcnNlOiAxLjIuMTwvdGl0bGU+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJwSkpRRCIgeDI9IjAiIHkyPSIxMDAlIj4KICAgIDxzdG9wIG9mZnNldD0iMCIgc3RvcC1vcGFjaXR5PSIuMSIgc3RvcC1jb2xvcj0iI0VFRSIvPgogICAgPHN0b3Agb2Zmc2V0PSIxIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgPC9saW5lYXJHcmFkaWVudD4KICA8bWFzayBpZD0ibkFxTGEiPjxyZWN0IHdpZHRoPSIxMDU4IiBoZWlnaHQ9IjIwMCIgcng9IjMwIiBmaWxsPSIjRkZGIi8+PC9tYXNrPgogIDxnIG1hc2s9InVybCgjbkFxTGEpIj4KICAgIDxyZWN0IHdpZHRoPSI2NjgiIGhlaWdodD0iMjAwIiBmaWxsPSIjNTU1Ii8+CiAgICA8cmVjdCB3aWR0aD0iMzkwIiBoZWlnaHQ9IjIwMCIgZmlsbD0iIzNDMSIgeD0iNjY4Ii8+CiAgICA8cmVjdCB3aWR0aD0iMTA1OCIgaGVpZ2h0PSIyMDAiIGZpbGw9InVybCgjcEpKUUQpIi8+CiAgPC9nPgogIDxnIGFyaWEtaGlkZGVuPSJ0cnVlIiBmaWxsPSIjZmZmIiB0ZXh0LWFuY2hvcj0ic3RhcnQiIGZvbnQtZmFtaWx5PSJWZXJkYW5hLERlamFWdSBTYW5zLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEwIj4KICAgIDx0ZXh0IHg9IjYwIiB5PSIxNDgiIHRleHRMZW5ndGg9IjU2OCIgZmlsbD0iIzAwMCIgb3BhY2l0eT0iMC4yNSI+ci11bml2ZXJzZTwvdGV4dD4KICAgIDx0ZXh0IHg9IjUwIiB5PSIxMzgiIHRleHRMZW5ndGg9IjU2OCI+ci11bml2ZXJzZTwvdGV4dD4KICAgIDx0ZXh0IHg9IjcyMyIgeT0iMTQ4IiB0ZXh0TGVuZ3RoPSIyOTAiIGZpbGw9IiMwMDAiIG9wYWNpdHk9IjAuMjUiPjEuMi4xPC90ZXh0PgogICAgPHRleHQgeD0iNzEzIiB5PSIxMzgiIHRleHRMZW5ndGg9IjI5MCI+MS4yLjE8L3RleHQ+CiAgPC9nPgogIAogIDwvYT4KPC9zdmc+" alt="ICIKendallTau status badge" /></a></p>
<!-- badges: end -->
<p>You can see the pkgdown site <a href="https://moseleybioinformaticslab.github.io/ICIKendallTau/">here</a>.</p>
<h2 id="installation">Installation</h2>
<p>You can install the current version of ICIKendallTau via GitHub:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a>remotes<span class="sc">::</span><span class="fu">install_github</span>(<span class="st">"MoseleyBioinformaticsLab/ICIKendallTau"</span>)</span></code></pre></div>
<p>You can also install Windows or Mac binaries using our
r-universe:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">options</span>(<span class="at">repos =</span> <span class="fu">c</span>(</span>
<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a> <span class="at">moseleybioinformaticslab =</span> <span class="st">'https://moseleybioinformaticslab.r-universe.dev'</span>,</span>
<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a> <span class="at">CRAN =</span> <span class="st">"https://cloud.r-project.org"</span>))</span>
<span id="cb2-4"><a href="#cb2-4" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"ICIKendallTau"</span>)</span></code></pre></div>
<h2 id="problem">Problem</h2>
<ul>
<li>How to handle missing data (i.e. <code>NA</code>’s) in calculating a
correlation between two variables.</li>
<li>Current calculations of correlation are based on having all pairs of
observations for two variables.
<ul>
<li>However, whether an observation is present or missing is
semi-quantitative information for many analytical measurements with
sensitivity limits.</li>
<li>i.e. in many cases, missing observations are not
“missing-at-random”, but “missing-not-at-random” due to falling below
the detection limit.</li>
<li>In these cases, NA is informative.</li>
<li>Therefore, in <strong>most</strong> analytical measurements (gene
expression, proteomics, metabolomics), missing measurements should be
included, and contribute to the correlation.</li>
</ul></li>
</ul>
<p>If you want to read more on <strong>how</strong> we solve this
problem, see the package <a href="https://moseleybioinformaticslab.github.io/ICIKendallTau/articles/ici-kendalltau.html">vignette</a>.</p>
<h2 id="package-functions">Package Functions</h2>
<p>The functions that implement this include:</p>
<ul>
<li><code>ici_kt</code>: the C++ workhorse, actually calculating a
correlation between an X and Y.
<ul>
<li>The option <code>perspective</code> will control how the
<code>NA</code> values influence ties.</li>
<li>When comparing samples, you likely want to use
<code>perspective = "global"</code>.</li>
</ul></li>
<li><code>ici_kendallt</code>: Handles comparisons for a large matrix.
<ul>
<li>Rows are features, columns are samples.</li>
<li>Implicitly parallel, but have to call:
<ul>
<li><code>library(furrr)</code></li>
<li><code>plan(multiprocess)</code></li>
</ul></li>
<li>Otherwise will only use a single core.</li>
</ul></li>
</ul>
<p>We’ve also included a function for testing if the missingness in your
data comes from left-censorship, <code>test_left_censorship</code>. We
walk through creating example data and testing it in the vignette <a href="https://moseleybioinformaticslab.github.io/ICIKendallTau/articles/testing-for-left-censorship">Testing
for Left Censorship</a>. In addition to testing, you can also visualize
the missing data pattern by feature rank using the
<code>rank_order_data</code> function, and use
<code>visdat::vis_miss()</code> on the original and reordered missing
data.</p>
<h2 id="examples">Examples</h2>
<p>The most common case is a large matrix of independent samples
(columns) and measured features in each of the samples (i.e. gene
expression).</p>
<p>Here we will make some artificial data to show how the correlation
changes as we introduce missingness.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">set.seed</span>(<span class="dv">1234</span>)</span>
<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="fu">library</span>(ICIKendallTau)</span>
<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a></span>
<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a>s1 <span class="ot">=</span> <span class="fu">sort</span>(<span class="fu">rnorm</span>(<span class="dv">1000</span>, <span class="at">mean =</span> <span class="dv">100</span>, <span class="at">sd =</span> <span class="dv">10</span>))</span>
<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a>s2 <span class="ot">=</span> s1 <span class="sc">+</span> <span class="dv">10</span> </span>
<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a></span>
<span id="cb3-7"><a href="#cb3-7" tabindex="-1"></a>matrix_1 <span class="ot">=</span> <span class="fu">cbind</span>(s1, s2)</span>
<span id="cb3-8"><a href="#cb3-8" tabindex="-1"></a></span>
<span id="cb3-9"><a href="#cb3-9" tabindex="-1"></a>r_1 <span class="ot">=</span> <span class="fu">ici_kendalltau</span>(matrix_1)</span>
<span id="cb3-10"><a href="#cb3-10" tabindex="-1"></a>r_1<span class="sc">$</span>cor</span>
<span id="cb3-11"><a href="#cb3-11" tabindex="-1"></a><span class="co">#> s1 s2</span></span>
<span id="cb3-12"><a href="#cb3-12" tabindex="-1"></a><span class="co">#> s1 1 1</span></span>
<span id="cb3-13"><a href="#cb3-13" tabindex="-1"></a><span class="co">#> s2 1 1</span></span></code></pre></div>
<p>Now we introduce some missing values at the low end of each one. We
will just do the simplest thing and introduce <code>NA</code> values in
the bottom set.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a>s3 <span class="ot">=</span> s1</span>
<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a>s3[<span class="fu">sample</span>(<span class="dv">100</span>, <span class="dv">50</span>)] <span class="ot">=</span> <span class="cn">NA</span></span>
<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a></span>
<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a>s4 <span class="ot">=</span> s2</span>
<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a>s4[<span class="fu">sample</span>(<span class="dv">100</span>, <span class="dv">50</span>)] <span class="ot">=</span> <span class="cn">NA</span></span>
<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a></span>
<span id="cb4-7"><a href="#cb4-7" tabindex="-1"></a>matrix_2 <span class="ot">=</span> <span class="fu">cbind</span>(s3, s4)</span>
<span id="cb4-8"><a href="#cb4-8" tabindex="-1"></a>r_2 <span class="ot">=</span> <span class="fu">ici_kendalltau</span>(matrix_2)</span>
<span id="cb4-9"><a href="#cb4-9" tabindex="-1"></a>r_2<span class="sc">$</span>cor</span>
<span id="cb4-10"><a href="#cb4-10" tabindex="-1"></a><span class="co">#> s3 s4</span></span>
<span id="cb4-11"><a href="#cb4-11" tabindex="-1"></a><span class="co">#> s3 1.0000000 0.9944616</span></span>
<span id="cb4-12"><a href="#cb4-12" tabindex="-1"></a><span class="co">#> s4 0.9944616 1.0000000</span></span></code></pre></div>
<h2 id="is-it-fast">Is It Fast?</h2>
<p>The C++ code implementation (thanks {Rcpp}!) is based on the SciPy
implementation, which uses two merge sorts of the ranks of each vector,
and then looks for differences between them. This is the fastest method
we know of, and has a complexity of O(nlogn). The naive way of computing
it, which explicitly examines all of the pairs, has a complexity of n^2.
Our implementation was compared to the {pcaPP::cov.fk} function, and the
use of {Rcpp} and our inefficient copying of vectors makes ours 3X
slower than that one. Which honestly isn’t too bad.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">library</span>(microbenchmark)</span>
<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a>x <span class="ot">=</span> <span class="fu">rnorm</span>(<span class="dv">1000</span>)</span>
<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a>y <span class="ot">=</span> <span class="fu">rnorm</span>(<span class="dv">1000</span>)</span>
<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a></span>
<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a>x2 <span class="ot">=</span> <span class="fu">rnorm</span>(<span class="dv">40000</span>)</span>
<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a>y2 <span class="ot">=</span> <span class="fu">rnorm</span>(<span class="dv">40000</span>)</span>
<span id="cb5-7"><a href="#cb5-7" tabindex="-1"></a></span>
<span id="cb5-8"><a href="#cb5-8" tabindex="-1"></a><span class="fu">microbenchmark</span>(</span>
<span id="cb5-9"><a href="#cb5-9" tabindex="-1"></a> <span class="fu">cor</span>(x, y, <span class="at">method =</span> <span class="st">"kendall"</span>),</span>
<span id="cb5-10"><a href="#cb5-10" tabindex="-1"></a> <span class="fu">ici_kt</span>(x, y, <span class="st">"global"</span>),</span>
<span id="cb5-11"><a href="#cb5-11" tabindex="-1"></a> <span class="fu">ici_kt</span>(x2, y2, <span class="st">"global"</span>),</span>
<span id="cb5-12"><a href="#cb5-12" tabindex="-1"></a> <span class="at">times =</span> <span class="dv">5</span></span>
<span id="cb5-13"><a href="#cb5-13" tabindex="-1"></a>)</span>
<span id="cb5-14"><a href="#cb5-14" tabindex="-1"></a><span class="co">#> Unit: microseconds</span></span>
<span id="cb5-15"><a href="#cb5-15" tabindex="-1"></a><span class="co">#> expr min lq mean median</span></span>
<span id="cb5-16"><a href="#cb5-16" tabindex="-1"></a><span class="co">#> cor(x, y, method = "kendall") 12299.117 12617.607 13300.3072 13214.135</span></span>
<span id="cb5-17"><a href="#cb5-17" tabindex="-1"></a><span class="co">#> ici_kt(x, y, "global") 366.796 370.173 530.6206 401.068</span></span>
<span id="cb5-18"><a href="#cb5-18" tabindex="-1"></a><span class="co">#> ici_kt(x2, y2, "global") 19343.691 19680.732 20578.4926 19799.741</span></span>
<span id="cb5-19"><a href="#cb5-19" tabindex="-1"></a><span class="co">#> uq max neval</span></span>
<span id="cb5-20"><a href="#cb5-20" tabindex="-1"></a><span class="co">#> 13767.479 14603.198 5</span></span>
<span id="cb5-21"><a href="#cb5-21" tabindex="-1"></a><span class="co">#> 405.009 1110.057 5</span></span>
<span id="cb5-22"><a href="#cb5-22" tabindex="-1"></a><span class="co">#> 20533.946 23534.353 5</span></span></code></pre></div>
<p>In the case of 40,000 features, the average time on a modern CPU is
14 milliseconds.</p>
<p>Of course, if you want to use it to calculate Kendall-tau-b without
incorporating missingness, it can do that just fine as well.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a>k_tau <span class="ot">=</span> <span class="fu">ici_kt</span>(x, y, <span class="st">"global"</span>)</span>
<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="fu">all.equal</span>(k_tau[[<span class="dv">1</span>]] ,<span class="fu">cor</span>(x, y, <span class="at">method =</span> <span class="st">"kendall"</span>))</span>
<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> [1] TRUE</span></span></code></pre></div>
<p>We also provide the <code>kt_fast</code> function, if you want
something that treats <code>NA</code> values similarly to
<code>stats::cor</code>.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a>k_tau_fast <span class="ot">=</span> <span class="fu">kt_fast</span>(x, y)</span>
<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a>k_tau_fast</span>
<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> $tau</span></span>
<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> x y</span></span>
<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> x 1.000000000 -0.003411411</span></span>
<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#> y -0.003411411 1.000000000</span></span>
<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#> $pvalue</span></span>
<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#> x y</span></span>
<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#> x 0.0000000 0.8716723</span></span>
<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="co">#> y 0.8716723 0.0000000</span></span>
<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb7-13"><a href="#cb7-13" tabindex="-1"></a><span class="co">#> $run_time</span></span>
<span id="cb7-14"><a href="#cb7-14" tabindex="-1"></a><span class="co">#> [1] 0.02207708</span></span></code></pre></div>
<h2 id="p-values">P-Values</h2>
<p>ICI-Kt functions only calculates the tau-b variant that handles ties.
P-value calculations use the asymptotic approximation in all cases, and
thus may vary slightly from the p-values returned by R’s
<code>cor.test</code> and Python’s <code>scipy.stats.kendalltau</code>
depending on the number of values in <em>x</em> and <em>y</em>.</p>
<h2 id="parallelism">Parallelism</h2>
<p>If you have {future} and the {furrr} packages installed, then it is
also possible to split up the a set of matrix comparisons across compute
resources for any multiprocessing engine registered with {future}.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" tabindex="-1"></a><span class="fu">library</span>(furrr)</span>
<span id="cb8-2"><a href="#cb8-2" tabindex="-1"></a>future<span class="sc">::</span><span class="fu">plan</span>(multicore, <span class="at">workers =</span> <span class="dv">4</span>)</span>
<span id="cb8-3"><a href="#cb8-3" tabindex="-1"></a>r_3 <span class="ot">=</span> <span class="fu">ici_kendalltau</span>(matrix_2)</span></code></pre></div>
<h2 id="many-many-comparisons">Many Many Comparisons</h2>
<p>In the case of hundreds of thousands of comparisons to be done, the
result matrices can become very, very large, and require lots of memory
for storage. They are also inefficient, as both the lower and upper
triangular components are stored. An alternative storage format is as a
<code>data.frame</code>, where there is a single row for each comparison
performed. This is actually how the results are stored internally, and
then they are converted to a matrix form if requested (the default). To
keep the <code>data.frame</code> output, add the argument
<code>return_matrix=FALSE</code> to the call of
<code>ici_kendalltau</code>.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" tabindex="-1"></a>r_4 <span class="ot">=</span> <span class="fu">ici_kendalltau</span>(matrix_2, <span class="at">return_matrix =</span> <span class="cn">FALSE</span>)</span>
<span id="cb9-2"><a href="#cb9-2" tabindex="-1"></a>r_4</span>
<span id="cb9-3"><a href="#cb9-3" tabindex="-1"></a><span class="co">#> $cor</span></span>
<span id="cb9-4"><a href="#cb9-4" tabindex="-1"></a><span class="co">#> s1 s2 core raw pvalue taumax completeness cor</span></span>
<span id="cb9-5"><a href="#cb9-5" tabindex="-1"></a><span class="co">#> 1 s3 s4 1 0.9924359 0 0.997963 0.921 0.9944616</span></span>
<span id="cb9-6"><a href="#cb9-6" tabindex="-1"></a><span class="co">#> 2 s3 s3 0 1.0000000 0 1.000000 0.950 1.0000000</span></span>
<span id="cb9-7"><a href="#cb9-7" tabindex="-1"></a><span class="co">#> 3 s4 s4 0 1.0000000 0 1.000000 0.950 1.0000000</span></span>
<span id="cb9-8"><a href="#cb9-8" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb9-9"><a href="#cb9-9" tabindex="-1"></a><span class="co">#> $run_time</span></span>
<span id="cb9-10"><a href="#cb9-10" tabindex="-1"></a><span class="co">#> [1] 0.02029967</span></span></code></pre></div>
<h2 id="other-correlations">Other Correlations</h2>
<p><code>ici_kendalltau</code> and <code>ici_kt</code> calculate the
p-value of the correlation as part of the overall calculation.
<code>stats::cor</code> does not, and <code>stats::cor.test</code> can
only calculate the p-value for a single comparison of two vectors. It is
sometimes advantageous to obtain p-values for a large number of
correlations. We provide <code>cor_fast</code>, which works analogously
to <code>kt_fast</code>, with the ability to choose <code>pearson</code>
or <code>spearman</code> as the method. Note that if a matrix is
provided, the columns must be named.</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" tabindex="-1"></a>r_5 <span class="ot">=</span> <span class="fu">cor_fast</span>(x, y, <span class="at">method =</span> <span class="st">"pearson"</span>)</span>
<span id="cb10-2"><a href="#cb10-2" tabindex="-1"></a>r_5</span>
<span id="cb10-3"><a href="#cb10-3" tabindex="-1"></a><span class="co">#> $rho</span></span>
<span id="cb10-4"><a href="#cb10-4" tabindex="-1"></a><span class="co">#> x y</span></span>
<span id="cb10-5"><a href="#cb10-5" tabindex="-1"></a><span class="co">#> x 1.00000000 0.00720612</span></span>
<span id="cb10-6"><a href="#cb10-6" tabindex="-1"></a><span class="co">#> y 0.00720612 1.00000000</span></span>
<span id="cb10-7"><a href="#cb10-7" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb10-8"><a href="#cb10-8" tabindex="-1"></a><span class="co">#> $pvalue</span></span>
<span id="cb10-9"><a href="#cb10-9" tabindex="-1"></a><span class="co">#> x y</span></span>
<span id="cb10-10"><a href="#cb10-10" tabindex="-1"></a><span class="co">#> x 0.0000000 0.8199608</span></span>
<span id="cb10-11"><a href="#cb10-11" tabindex="-1"></a><span class="co">#> y 0.8199608 0.0000000</span></span>
<span id="cb10-12"><a href="#cb10-12" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb10-13"><a href="#cb10-13" tabindex="-1"></a><span class="co">#> $run_time</span></span>
<span id="cb10-14"><a href="#cb10-14" tabindex="-1"></a><span class="co">#> [1] 0.02324367</span></span></code></pre></div>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" tabindex="-1"></a>m_3 <span class="ot">=</span> <span class="fu">cbind</span>(x, y, x)</span>
<span id="cb11-2"><a href="#cb11-2" tabindex="-1"></a><span class="fu">colnames</span>(m_3) <span class="ot">=</span> <span class="fu">c</span>(<span class="st">"s1"</span>, <span class="st">"s2"</span>, <span class="st">"s3"</span>)</span>
<span id="cb11-3"><a href="#cb11-3" tabindex="-1"></a>r_6 <span class="ot">=</span> <span class="fu">cor_fast</span>(m_3)</span>
<span id="cb11-4"><a href="#cb11-4" tabindex="-1"></a>r_6</span>
<span id="cb11-5"><a href="#cb11-5" tabindex="-1"></a><span class="co">#> $rho</span></span>
<span id="cb11-6"><a href="#cb11-6" tabindex="-1"></a><span class="co">#> s1 s2 s3</span></span>
<span id="cb11-7"><a href="#cb11-7" tabindex="-1"></a><span class="co">#> s1 1.00000000 0.00720612 1.00000000</span></span>
<span id="cb11-8"><a href="#cb11-8" tabindex="-1"></a><span class="co">#> s2 0.00720612 1.00000000 0.00720612</span></span>
<span id="cb11-9"><a href="#cb11-9" tabindex="-1"></a><span class="co">#> s3 1.00000000 0.00720612 1.00000000</span></span>
<span id="cb11-10"><a href="#cb11-10" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb11-11"><a href="#cb11-11" tabindex="-1"></a><span class="co">#> $pvalue</span></span>
<span id="cb11-12"><a href="#cb11-12" tabindex="-1"></a><span class="co">#> s1 s2 s3</span></span>
<span id="cb11-13"><a href="#cb11-13" tabindex="-1"></a><span class="co">#> s1 0.0000000 0.8199608 0.0000000</span></span>
<span id="cb11-14"><a href="#cb11-14" tabindex="-1"></a><span class="co">#> s2 0.8199608 0.0000000 0.8199608</span></span>
<span id="cb11-15"><a href="#cb11-15" tabindex="-1"></a><span class="co">#> s3 0.0000000 0.8199608 0.0000000</span></span>
<span id="cb11-16"><a href="#cb11-16" tabindex="-1"></a><span class="co">#> </span></span>
<span id="cb11-17"><a href="#cb11-17" tabindex="-1"></a><span class="co">#> $run_time</span></span>
<span id="cb11-18"><a href="#cb11-18" tabindex="-1"></a><span class="co">#> [1] 0.0229435</span></span></code></pre></div>
<h2 id="code-of-conduct">Code of Conduct</h2>
<p>Please note that the ICIKendallTau project is released with a <a href="https://contributor-covenant.org/version/2/0/CODE_OF_CONDUCT.html">Contributor
Code of Conduct</a>. By contributing to this project, you agree to abide
by its terms.</p>
</body>
</html>