-
Notifications
You must be signed in to change notification settings - Fork 1
/
eigen_value_diagnosis_plots.py
48 lines (46 loc) · 1.32 KB
/
eigen_value_diagnosis_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from utils.custom_run import *
nn_params = {
'layers_x': [10,10],
'cat_size_list': [],
'output_dim': 1,
}
VI_params={
'q_kernel':'r_param_scaling',#'r_param_simple',#'r_param_scaling'
'p_kernel':'rbf',
'm_p':0.0,
'reg':1e-2,
'r':50,
'APQ': True,
}
h_space={
'depth_x':[2],
'width_x':[10],
'bs':[2500],
'lr':[1e-2],
'm_P':[0.0],
'sigma':[1e-7],
'transformation':[torch.nn.Tanh()],
'm_factor':[1.],
'parametrize_Z': [False],
'use_all_m': [False],
'm_q_choice': ['mlp'],
}
training_params = {
'patience': 1000,
'device': 'cuda:0',
'epochs':1,
'lr':1e-2,
'model_name':'GWI',
'savedir':'regression_test_3',
'seed':0,
'hyperits':1,
'init_its':250
}
if __name__ == '__main__':
# ['boston', 'concrete', 'energy' ,'wine', 'yacht']
for ds in ['boston', 'concrete', 'energy' ,'wine', 'yacht']:
training_params['dataset'] = ds
training_params['fold'] = 0
for xs_size in [50,100,150,200,250]:
e = diagonse_eigenvalue_decay_regression(x_S_size=xs_size,hyper_param_space=h_space, VI_params=VI_params, train_params=training_params)
e.run()