forked from Canjie-Luo/MORAN_v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
264 lines (229 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from __future__ import print_function
import argparse
import random
import torch
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import numpy as np
import os
import tools.utils as utils
import tools.dataset as dataset
import time
from collections import OrderedDict
from models.moran import MORAN
parser = argparse.ArgumentParser()
parser.add_argument('--train_nips', required=True, help='path to dataset')
parser.add_argument('--train_cvpr', required=True, help='path to dataset')
parser.add_argument('--valroot', required=True, help='path to dataset')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=2)
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imgH', type=int, default=64, help='the height of the input image to network')
parser.add_argument('--imgW', type=int, default=200, help='the width of the input image to network')
parser.add_argument('--targetH', type=int, default=32, help='the width of the input image to network')
parser.add_argument('--targetW', type=int, default=100, help='the width of the input image to network')
parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state')
parser.add_argument('--niter', type=int, default=10, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate for Critic, default=0.00005')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use')
parser.add_argument('--MORAN', default='', help="path to model (to continue training)")
parser.add_argument('--alphabet', type=str, default='0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:$')
parser.add_argument('--sep', type=str, default=':')
parser.add_argument('--experiment', default=None, help='Where to store samples and models')
parser.add_argument('--displayInterval', type=int, default=500, help='Interval to be displayed')
parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display when test')
parser.add_argument('--valInterval', type=int, default=500, help='Interval to be displayed')
parser.add_argument('--saveInterval', type=int, default=10000, help='Interval to be displayed')
parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--adadelta', action='store_true', help='Whether to use adadelta (default is rmsprop)')
parser.add_argument('--sgd', action='store_true', help='Whether to use sgd (default is rmsprop)')
parser.add_argument('--BidirDecoder', action='store_true', help='Whether to use BidirDecoder')
opt = parser.parse_args()
print(opt)
assert opt.ngpu == 1, "Multi-GPU training is not supported yet, due to the variant lengths of the text in a batch."
if opt.experiment is None:
opt.experiment = 'expr'
os.system('mkdir {0}'.format(opt.experiment))
opt.manualSeed = random.randint(1, 10000) # fix seed
print("Random Seed: ", opt.manualSeed)
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if not torch.cuda.is_available():
assert not opt.cuda, 'You don\'t have a CUDA device.'
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
train_nips_dataset = dataset.lmdbDataset(root=opt.train_nips,
transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder)
assert train_nips_dataset
train_cvpr_dataset = dataset.lmdbDataset(root=opt.train_cvpr,
transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder)
assert train_cvpr_dataset
train_dataset = torch.utils.data.ConcatDataset([train_nips_dataset, train_cvpr_dataset])
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=opt.batchSize,
shuffle=False, sampler=dataset.randomSequentialSampler(train_dataset, opt.batchSize),
num_workers=int(opt.workers))
test_dataset = dataset.lmdbDataset(root=opt.valroot,
transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder)
nclass = len(opt.alphabet.split(opt.sep))
nc = 1
converter = utils.strLabelConverterForAttention(opt.alphabet, opt.sep)
criterion = torch.nn.CrossEntropyLoss()
if opt.cuda:
MORAN = MORAN(nc, nclass, opt.nh, opt.targetH, opt.targetW, BidirDecoder=opt.BidirDecoder, CUDA=opt.cuda)
else:
MORAN = MORAN(nc, nclass, opt.nh, opt.targetH, opt.targetW, BidirDecoder=opt.BidirDecoder, inputDataType='torch.FloatTensor', CUDA=opt.cuda)
if opt.MORAN != '':
print('loading pretrained model from %s' % opt.MORAN)
if opt.cuda:
state_dict = torch.load(opt.MORAN)
else:
state_dict = torch.load(opt.MORAN, map_location='cpu')
MORAN_state_dict_rename = OrderedDict()
for k, v in state_dict.items():
name = k.replace("module.", "") # remove `module.`
MORAN_state_dict_rename[name] = v
MORAN.load_state_dict(MORAN_state_dict_rename, strict=True)
image = torch.FloatTensor(opt.batchSize, nc, opt.imgH, opt.imgW) #64*1*64*200
text = torch.LongTensor(opt.batchSize * 5)
text_rev = torch.LongTensor(opt.batchSize * 5)
length = torch.IntTensor(opt.batchSize)
if opt.cuda:
MORAN.cuda()
MORAN = torch.nn.DataParallel(MORAN, device_ids=range(opt.ngpu))
image = image.cuda()
text = text.cuda()
text_rev = text_rev.cuda()
criterion = criterion.cuda()
image = Variable(image)
text = Variable(text)
text_rev = Variable(text_rev)
length = Variable(length)
# loss averager
loss_avg = utils.averager()
# setup optimizer
if opt.adam:
optimizer = optim.Adam(MORAN.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
elif opt.adadelta:
optimizer = optim.Adadelta(MORAN.parameters(), lr=opt.lr)
elif opt.sgd:
optimizer = optim.SGD(MORAN.parameters(), lr=opt.lr, momentum=0.9)
else:
optimizer = optim.RMSprop(MORAN.parameters(), lr=opt.lr)
def val(dataset, criterion, max_iter=1000):
print('Start val')
data_loader = torch.utils.data.DataLoader(
dataset, shuffle=False, batch_size=opt.batchSize, num_workers=int(opt.workers)) # opt.batchSize
val_iter = iter(data_loader)
max_iter = min(max_iter, len(data_loader))
n_correct = 0
n_total = 0
loss_avg = utils.averager()
for i in range(max_iter):
data = val_iter.next()
if opt.BidirDecoder:
cpu_images, cpu_texts, cpu_texts_rev = data
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts, scanned=True)
t_rev, _ = converter.encode(cpu_texts_rev, scanned=True)
utils.loadData(text, t)
utils.loadData(text_rev, t_rev)
utils.loadData(length, l)
preds0, preds1 = MORAN(image, length, text, text_rev, test=True)
cost = criterion(torch.cat([preds0, preds1], 0), torch.cat([text, text_rev], 0))
preds0_prob, preds0 = preds0.max(1)
preds0 = preds0.view(-1)
preds0_prob = preds0_prob.view(-1)
sim_preds0 = converter.decode(preds0.data, length.data)
preds1_prob, preds1 = preds1.max(1)
preds1 = preds1.view(-1)
preds1_prob = preds1_prob.view(-1)
sim_preds1 = converter.decode(preds1.data, length.data)
sim_preds = []
for j in range(cpu_images.size(0)):
text_begin = 0 if j == 0 else length.data[:j].sum()
if torch.mean(preds0_prob[text_begin:text_begin+len(sim_preds0[j].split('$')[0]+'$')]).data[0] >\
torch.mean(preds1_prob[text_begin:text_begin+len(sim_preds1[j].split('$')[0]+'$')]).data[0]:
sim_preds.append(sim_preds0[j].split('$')[0]+'$')
else:
sim_preds.append(sim_preds1[j].split('$')[0][-1::-1]+'$')
else:
cpu_images, cpu_texts = data
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts, scanned=True)
utils.loadData(text, t)
utils.loadData(length, l)
preds = MORAN(image, length, text, text_rev, test=True)
cost = criterion(preds, text)
_, preds = preds.max(1)
preds = preds.view(-1)
sim_preds = converter.decode(preds.data, length.data)
loss_avg.add(cost)
for pred, target in zip(sim_preds, cpu_texts):
if pred == target.lower():
n_correct += 1
n_total += 1
print("correct / total: %d / %d, " % (n_correct, n_total))
accuracy = n_correct / float(n_total)
print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy))
return accuracy
def trainBatch():
data = train_iter.next()
if opt.BidirDecoder:
cpu_images, cpu_texts, cpu_texts_rev = data #读取标签数据
utils.loadData(image, cpu_images) #将图像数据赋值给image
t, l = converter.encode(cpu_texts, scanned=True) #将文本编码成类别标签
t_rev, _ = converter.encode(cpu_texts_rev, scanned=True) #将反向文本编码成类别标签
utils.loadData(text, t) #将正向文本标签赋予t
utils.loadData(text_rev, t_rev) #将反向文本标签赋予t_rev
utils.loadData(length, l)
preds0, preds1 = MORAN(image, length, text, text_rev) #输出正向和反向识别概率
cost = criterion(torch.cat([preds0, preds1], 0), torch.cat([text, text_rev], 0)) #计算交叉熵损失
else:
cpu_images, cpu_texts = data
utils.loadData(image, cpu_images)
t, l = converter.encode(cpu_texts, scanned=True)
utils.loadData(text, t)
utils.loadData(length, l)
preds = MORAN(image, length, text, text_rev)
cost = criterion(preds, text)
MORAN.zero_grad()
cost.backward()
optimizer.step()
return cost
t0 = time.time()
acc = 0
acc_tmp = 0
for epoch in range(opt.niter):
train_iter = iter(train_loader)
i = 0
while i < len(train_loader):
if i % opt.valInterval == 0:
for p in MORAN.parameters():
p.requires_grad = False
MORAN.eval()
acc_tmp = val(test_dataset, criterion)
if acc_tmp > acc:
acc = acc_tmp
torch.save(MORAN.state_dict(), '{0}/{1}_{2}.pth'.format(
opt.experiment, i, str(acc)[:6]))
if i % opt.saveInterval == 0:
torch.save(MORAN.state_dict(), '{0}/{1}_{2}.pth'.format(
opt.experiment, epoch, i))
for p in MORAN.parameters():
p.requires_grad = True
MORAN.train()
cost = trainBatch()
loss_avg.add(cost)
if i % opt.displayInterval == 0:
t1 = time.time()
print ('Epoch: %d/%d; iter: %d/%d; Loss: %f; time: %.2f s;' %
(epoch, opt.niter, i, len(train_loader), loss_avg.val(), t1-t0)),
loss_avg.reset()
t0 = time.time()
i += 1