forked from i-abr/HybridLearning
-
Notifications
You must be signed in to change notification settings - Fork 3
/
enjoy_hlt.py
151 lines (127 loc) · 5.24 KB
/
enjoy_hlt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
import random
import pickle
from datetime import datetime
import sys
import os
import yaml
# local imports
import envs
import gym
from gym import wrappers
from envs import Monitor
import torch
from sac_lib import SoftActorCritic
from sac_lib import PolicyNetwork
from sac_lib import ReplayBuffer
from sac_lib import NormalizedActions
from hlt_lib import StochPolicyWrapper, DetPolicyWrapper
from model import ModelOptimizer, Model, SARSAReplayBuffer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HopperEnv')
parser.add_argument('--method', type=str, default='hlt_stoch')
parser.add_argument('--frame', type=int, default=-1)
parser.add_argument('--seed', type=int, default=13)
parser.add_argument('--done_util', dest='done_util', action='store_true')
parser.add_argument('--no_done_util', dest='done_util', action='store_false')
parser.set_defaults(done_util=False)
parser.add_argument('--render', dest='render', action='store_true')
parser.add_argument('--no_render', dest='render', action='store_false')
parser.set_defaults(render=True)
parser.add_argument('--record', dest='record', action='store_true')
parser.add_argument('--no_record', dest='record', action='store_false')
parser.set_defaults(record=False)
args = parser.parse_args()
import pybullet as pb
if __name__ == '__main__':
config_path = './config/' + args.method + '.yaml'
with open(config_path, 'r') as f:
config_dict = yaml.safe_load(f)
config = config_dict['default']
if args.env in list(config_dict.keys()):
config.update(config_dict[args.env])
else:
raise ValueError('env not found config file')
env_name = args.env
try:
env = NormalizedActions(envs.env_list[env_name](render=args.render))
except TypeError as err:
print('no argument render, assuming env.render will just work')
env = NormalizedActions(envs.env_list[env_name]())
# if args.env == 'PendulumEnv':
# assert env.action_space.low == -env.action_space.high, 'Action space not symmetric'
# else:
assert np.any(np.abs(env.action_space.low) <= 1.) and np.any(np.abs(env.action_space.high) <= 1.), 'Action space not normalizd'
if args.record:
if args.render:
raise ValueError('cannot record while rendering, valid options are --render --no_record OR --no_record --render')
video_path = './data/vid/hlt'
if os.path.exists(video_path) == False:
os.makedirs(video_path)
if args.done_util:
env = gym.wrappers.Monitor(env, video_path+'/{}-{}'.format(env_name, args.frame), force=True)
else:
env = Monitor(env, video_path+'/{}-{}'.format(env_name, args.frame), force=True)
env.reset()
# pb.configureDebugVisualizer(pb.STATE_LOGGING_VIDEO_MP4)
env.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
hidden_dim = 128
device ='cpu'
if torch.cuda.is_available():
device = 'cuda:0'
print('Using GPU Accel')
policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim,AF=config['activation_fun']).to(device)
model = Model(state_dim, action_dim, def_layers=[200],AF=config['activation_fun']).to(device)
state_dict_path = './data/' + args.method + '/' + env_name + '/seed_{}/'.format(args.seed)
if args.frame == -1:
test_frame = 'final'
else:
test_frame = args.frame
policy_net.load_state_dict(torch.load(state_dict_path+'policy_{}.pt'.format(test_frame), map_location=device))
model.load_state_dict(torch.load(state_dict_path+'model_{}.pt'.format(test_frame), map_location=device))
if config['method'] == 'hlt_stoch':
hybrid_policy = StochPolicyWrapper(model, policy_net,
samples=config['trajectory_samples'],
t_H=config['horizon'],
lam=config['lam'])
elif config['method'] == 'hlt_deter':
hybrid_policy = DetPolicyWrapper(model, policy_net,
T=config['horizon'],
lr=config['planner_lr'])
else:
raise ValueError('method not found in config')
max_frames = config['max_frames']
max_steps = config['max_steps']
frame_skip = config['frame_skip']
state = env.reset()
hybrid_policy.reset()
episode_reward = 0
done = False
for step in range(max_steps):
action,_ = hybrid_policy(state)
for _ in range(frame_skip):
state, reward, done, _ = env.step(action.copy())
if args.done_util:
if done: break
episode_reward += reward
if args.render:
try:
# env.render(mode="rgb_array", width=320*2, height=240*2)
env.render(mode="human")
except TypeError as err:
env.render()
if args.done_util:
if done:
break
# print(episode_reward)
print(step)
env.close()