-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathEddyCoDataDownloadTREE.R
119 lines (96 loc) · 4.98 KB
/
EddyCoDataDownloadTREE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
##install required packages
#install.packages("neonUtilities")
#install.packages("tidyverse")
#install.packages("BiocManager")
#BiocManager::install('rhdf5')
##Download eddy co bundled data package
##zipsByProduct(dpID="DP4.00200.001", package="expanded",
# site=c("TREE"),
# startdate="2019-01", enddate="2019-12",
# savepath="C:/Users/cslemmons/Documents/ExploreNEON",
# check.size=F)
##Stack and save to list of data frames
##flux <- stackEddy("C:/Users/cslemmons/Documents/ExploreNEON/filesToStack00200",
# level = "dp04")
##save to data frame
##TREEflux <- flux$TREE
##Save flux data frame locally
##saveRDS(TREEflux, "C:/Users/cslemmons/Documents/ExploreNEON/filesToStack00200/TREEflux.rds")
##strings not automatically assigned to factor and load packages
options(stringsAsFactors=F)
library(neonUtilities)
library(ggplot2)
library(tidyverse)
library(lubridate)
##Load flux data
flux <- readRDS(file="C:/Users/cslemmons/Documents/ExploreNEON/filesToStack00200/TREEflux.rds")
##Convert time stamp to R date - time format, add to data frame
flux$TimeB <- as.POSIXct(flux$timeBgn,
format="%Y-%m-%dT%H:%M:%S",
tz="GMT")
##Add year and month column for summary
flux$YearMonth <- substr(flux$TimeB,0,7)
##Add year, month, day column for summary
flux$YearMonthDay = substr(flux$TimeB,0,10)
##Evaluate fluxCor and fluxRaw column for NAs, calculate % NAs by month
NAsPerMonth <- flux %>%
mutate(FluxCorNA=is.na(data.fluxCo2.turb.fluxCor)) %>%
mutate(FluxRawNA=is.na(data.fluxCo2.turb.fluxRaw)) %>%
group_by(YearMonth) %>%
summarise(FluxCorNAPercent = mean(FluxCorNA*100), FluxRawNAPercent = mean(FluxRawNA*100))
##Evaluate fluxCor and fluxRaw column for NAs, calculate % NAs by day
NAsPerDay <- flux %>%
mutate(FluxCorNA=is.na(data.fluxCo2.turb.fluxCor)) %>%
mutate(FluxRawNA=is.na(data.fluxCo2.turb.fluxRaw)) %>%
group_by(YearMonthDay) %>%
summarise(FluxCorNAPercent = mean(FluxCorNA*100), FluxRawNAPercent = mean(FluxRawNA*100))
##calculate difference between raw and corrected flux, save to data frame. Calculate mean difference by month
flux$DiffCor <- flux$data.fluxCo2.turb.fluxRaw - flux$data.fluxCo2.turb.fluxCor
flux$DiffCor %>%
group_by(YearMonth) %>%
summarise(DiffCor = mean(DiffCor, na.rm=TRUE))
fluxDiffbyMonth <- flux %>%
mutate(DiffCor=data.fluxCo2.turb.fluxRaw-data.fluxCo2.turb.fluxCor) %>%
group_by(YearMonth) %>%
summarise(DiffCor = mean(DiffCor, na.rm=TRUE))
##calculate difference between raw and corrected flux and calculate mean difference grouped by day
fluxDiffbyDay <- flux %>%
mutate(DiffCor=data.fluxCo2.turb.fluxRaw-data.fluxCo2.turb.fluxCor) %>%
group_by(YearMonthDay) %>%
summarise(DiffCor = mean(DiffCor, na.rm=TRUE))
##calculate number of final Turb QF by Month and Day
finQFbyMonth<-flux %>%
group_by(YearMonth) %>%
summarise(QFPercent=mean(qfqm.fluxCo2.turb.qfFinl*100))
finQFbyDay<-flux %>%
group_by(YearMonthDay) %>%
summarise(QFPercent=mean(qfqm.fluxCo2.turb.qfFinl*100))
##Plot raw and corrected turbulent flux data for whole dataset
ggplot(flux) +geom_point(aes(x=TimeB, y=data.fluxCo2.turb.fluxRaw, color="blue"))+
geom_point(aes(x=TimeB, y=data.fluxCo2.turb.fluxCor, color="green"))+
labs(title="2019 TREE Turbulent Flux", x="Date", y="CO2 umol m2/s-1")+
scale_color_identity(name=" ",
breaks = c("blue", "green"),
labels = c("Raw Flux","Corrected Flux"),
guide = "legend")+ theme(plot.title = element_text(hjust=0.5),legend.position = c(.9,.1), legend.background = element_rect(color=NULL, fill="transparent"))
##Plot mean difference between raw and corrected flux per Month
ggplot(fluxDiffbyMonth) +geom_point(aes(x=YearMonth, y=DiffCor))+
theme(axis.text.x=element_text(angle=90))+
labs(title="2019 TREE Difference Between Raw and Corrected Flux", x="Date", y="CO2 umol m2/s-1")
##Plot mean difference between raw and corrected flux per day
ggplot(fluxDiffbyDay) +geom_point(aes(x=YearMonthDay, y=DiffCor))+
theme(axis.text.x=element_text(angle=90))+
scale_x_discrete(breaks=c("2019-01-02","2019-02-02","2019-03-01","2019-04-01","2019-05-01", "2019-06-01", "2019-07-01", "2019-08-01", "2019-09-01", "2019-10-01", "2019-11-01", "2019-12-01"))+
labs(title="2019 TREE Mean Daily Difference Between Raw and Corrected Flux", x="Date", y="CO2 umol m2/s-1")
##Plot Percent NA and Percent QF by Month
ggplot(NAsPerMonth) + aes(x=YearMonth, y=FluxCorNAPercent)+
geom_col()+
ylim(0,100)+
labs(x = "Date", y = "Percent", title = "TREE 2019 - Mean Percent of Missing Corrected Turbulent Flux")
ggplot(finQFbyMonth) + aes(x=YearMonth, y=QFPercent)+
geom_col()+
ylim(0,100)+
labs(x = "Date", y = "Percent", title = "TREE 2019 - Mean Percent of Quality Flags Turbulent Flux")
##save to CSV
#savefilename <- "C:/Users/cslemmons/Documents/ExploreNEON/filesToStack00200/TREEFlux.csv"
#write.table(flux, "C:/Users/cslemmons/Documents/ExploreNEON/filesToStack00200/TREEFlux.csv", sep=",")