-
Notifications
You must be signed in to change notification settings - Fork 3
/
CONFIG_PREDICT.yaml
72 lines (65 loc) · 2.21 KB
/
CONFIG_PREDICT.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
###########################################
###########################################
##### CONFIG FOR DCASE CHALLENGE 2023 #####
###########################################
###########################################
##################################
# PARAMETERS FOR DATA PROCESSING #
##################################
data:
n_task_train: 100
n_task_val: 100
target_fs: 16000 # used in preprocessing
resample: True # used in preprocessing
denoise: True # used in preprocessing
normalize: True # used in preprocessing
frame_length: 25.0 # used in preprocessing
tensor_length: 128 # used in preprocessing
n_shot: 3
n_query: 2
overlap: 0.5 # used in preprocessing
n_subsample: 1
num_mel_bins: 128 # used in preprocessing
max_segment_length: 1.0 # used in preprocessing
status: validate # used in preprocessing, train or validate or evaluate
set_type: "Validation_Set"
#################################
# PARAMETERS FOR MODEL TRAINING #
#################################
# Be sure the parameters match the ones in data processing
# Otherwise the hash of the folders will be different!!
trainer:
max_epochs: 20
default_root_dir: /data
accelerator: gpu
gpus: 1
model:
distance: euclidean # other option is mahalanobis
lr: 1.0e-05
model_type: beats # beats, pann or baseline
state: train # train or validate - for which model should be loaded
model_path: None
specaugment_params: null
# specaugment_params:
# application_ratio: 1.0
# time_mask: 40
# freq_mask: 40
###################################
# PARAMETERS FOR MODEL PREDICTION #
###################################
predict:
wav_save: True
overwrite: True
n_self_detected_supports: 0
tolerance: 1
n_subsample: 1 # Whether each segment should be subsampled
self_detect_support: True # Whether to use the self-training loop
filter_by_p_value: True # Whether we filter outliers by their pvalues
threshold_p_value: 0.1
self_detect_threshold_p_value: 0.95
occurence_threshold: 1 # min number of consequetive frames for a postive to be included
distribution: ecdf # name of distribution, ecdf or norm
repetitions: 1 # number of times to feed Beats same feature (no longer useful)
plot:
tsne: True
perplexity: 5