diff --git a/previews/PR54/api/internal/index.html b/previews/PR54/api/internal/index.html index a066db7..8f7f08c 100644 --- a/previews/PR54/api/internal/index.html +++ b/previews/PR54/api/internal/index.html @@ -1,2 +1,2 @@ -Internal API Reference · PowerFlows.jl

Internal

PowerFlows._first_choice_gen_idMethod

Try to make an informative one or two character name for the load/generator/etc.

  • "generator-1234-AB" -> "AB"
  • "123CT7" -> "7"
  • "load1234" -> "34"
source
PowerFlows._psse_bus_namesMethod

Given a vector of Sienna bus names, create a dictionary from Sienna bus name to PSS/E-compatible bus name. Guarantees determinism and minimal changes.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data

source
PowerFlows._psse_bus_numbersMethod

Given a vector of Sienna bus numbers, create a dictionary from Sienna bus number to PSS/E-compatible bus number. Assumes that the Sienna bus numbers are positive and unique. Guarantees determinism: if the input contains the same bus numbers in the same order, the output will. Guarantees minimal changes: that if an existing bus number is compliant, it will not be changed.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data

source
PowerFlows._psse_transformer_namesMethod

Given a vector of Sienna transformer names, create a dictionary from Sienna transformer name to PSS/E-compatible transformer name. Guarantees determinism and minimal changes.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Transformer Data

source
PowerFlows.create_component_idsMethod

Given a vector of component names and a corresponding vector of container IDs (e.g., bus numbers), create unique-per-container PSS/E-compatible IDs, output a dictionary from (container ID, component name) to PSS/E-compatible component ID. The "singlesto1" flag detects components that are the only one on their bus and gives them the name "1".

source
PowerFlows.fix_nans!Method

Iterate over all the Generators in the system and, if any active_power or reactive_power fields are NaN, make them 0.0

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type Line

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type TapTransformer

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type Transformer2W

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Line

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Line

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type TapTransformer

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Transformer2W

source
PowerFlows.make_power_flow_containerFunction

Create an appropriate PowerFlowContainer for the given PowerFlowEvaluationModel and initialize it from the given PSY.System.

Arguments:

  • pfem::PowerFlowEvaluationModel: power flow model to construct a container for (e.g., DCPowerFlow())
  • sys::PSY.System: the system from which to initialize the power flow container
  • time_steps::Int: number of time periods to consider (default is 1)
  • timestep_names::Vector{String}: names of the time periods defines by the argument "time_steps". Default value is String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value is true.
source
PowerFlows.solve_powerflow!Method

Evaluates the power flows on each system's branch and updates the PowerFlowData structure.

Arguments:

  • data::PTDFPowerFlowData: PTDFPowerFlowData structure containing all the information related to the system's power flow.
source
PowerFlows.solve_powerflow!Method

Evaluates the power flows on each system's branch and updates the PowerFlowData structure.

Arguments:

  • data::vPTDFPowerFlowData: vPTDFPowerFlowData structure containing all the information related to the system's power flow.
source
PowerFlows.update_system!Method

Modify the values in the given System to correspond to the given PowerFlowData such that if a new PowerFlowData is constructed from the resulting system it is the same as data. See also write_powerflow_solution!. NOTE that this assumes that data was initialized from sys and then solved with no further modifications.

source
PowerFlows.with_unitsMethod

A context manager similar to Logging.with_logger that sets the system's units to the given value, executes the function, then sets them back. Suppresses logging below Warn from internal calls to set_units_base_system!. Not thread safe.

source
PowerFlows.write_to_buffers!Method

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data. Sienna voltage limits treated as PSS/E normal voltage limits; PSSE emergency voltage limits left as default.

source
PowerFlows.write_to_buffers!Method

If the exportsettings flag `sourcesas_generatorsis set, exportPSY.Sourceinstances as PSS/E generators in addition toPSY.Generator`s

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Generator Data

source
+Internal API Reference · PowerFlows.jl

Internal

PowerFlows._first_choice_gen_idMethod

Try to make an informative one or two character name for the load/generator/etc.

  • "generator-1234-AB" -> "AB"
  • "123CT7" -> "7"
  • "load1234" -> "34"
source
PowerFlows._psse_bus_namesMethod

Given a vector of Sienna bus names, create a dictionary from Sienna bus name to PSS/E-compatible bus name. Guarantees determinism and minimal changes.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data

source
PowerFlows._psse_bus_numbersMethod

Given a vector of Sienna bus numbers, create a dictionary from Sienna bus number to PSS/E-compatible bus number. Assumes that the Sienna bus numbers are positive and unique. Guarantees determinism: if the input contains the same bus numbers in the same order, the output will. Guarantees minimal changes: that if an existing bus number is compliant, it will not be changed.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data

source
PowerFlows._psse_transformer_namesMethod

Given a vector of Sienna transformer names, create a dictionary from Sienna transformer name to PSS/E-compatible transformer name. Guarantees determinism and minimal changes.

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Transformer Data

source
PowerFlows.create_component_idsMethod

Given a vector of component names and a corresponding vector of container IDs (e.g., bus numbers), create unique-per-container PSS/E-compatible IDs, output a dictionary from (container ID, component name) to PSS/E-compatible component ID. The "singlesto1" flag detects components that are the only one on their bus and gives them the name "1".

source
PowerFlows.fix_nans!Method

Iterate over all the Generators in the system and, if any active_power or reactive_power fields are NaN, make them 0.0

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type Line

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type TapTransformer

source
PowerFlows.flow_funcMethod

Calculates the From - To complex power flow using external data of voltages of branch of type Transformer2W

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Line

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Line

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type TapTransformer

source
PowerFlows.flow_valMethod

Calculates the From - To complex power flow (Flow injected at the bus) of branch of type Transformer2W

source
PowerFlows.make_power_flow_containerFunction

Create an appropriate PowerFlowContainer for the given PowerFlowEvaluationModel and initialize it from the given PSY.System.

Arguments:

  • pfem::PowerFlowEvaluationModel: power flow model to construct a container for (e.g., DCPowerFlow())
  • sys::PSY.System: the system from which to initialize the power flow container
  • time_steps::Int: number of time periods to consider (default is 1)
  • timestep_names::Vector{String}: names of the time periods defines by the argument "time_steps". Default value is String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value is true.
source
PowerFlows.solve_powerflow!Method

Evaluates the power flows on each system's branch and updates the PowerFlowData structure.

Arguments:

  • data::PTDFPowerFlowData: PTDFPowerFlowData structure containing all the information related to the system's power flow.
source
PowerFlows.solve_powerflow!Method

Evaluates the power flows on each system's branch and updates the PowerFlowData structure.

Arguments:

  • data::vPTDFPowerFlowData: vPTDFPowerFlowData structure containing all the information related to the system's power flow.
source
PowerFlows.update_system!Method

Modify the values in the given System to correspond to the given PowerFlowData such that if a new PowerFlowData is constructed from the resulting system it is the same as data. See also write_powerflow_solution!. NOTE that this assumes that data was initialized from sys and then solved with no further modifications.

source
PowerFlows.with_unitsMethod

A context manager similar to Logging.with_logger that sets the system's units to the given value, executes the function, then sets them back. Suppresses logging below Warn from internal calls to set_units_base_system!. Not thread safe.

source
PowerFlows.write_to_buffers!Method

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Bus Data. Sienna voltage limits treated as PSS/E normal voltage limits; PSSE emergency voltage limits left as default.

source
PowerFlows.write_to_buffers!Method

If the exportsettings flag `sourcesas_generatorsis set, exportPSY.Sourceinstances as PSS/E generators in addition toPSY.Generator`s

WRITTEN TO SPEC: PSS/E 33.3 POM 5.2.1 Generator Data

source
diff --git a/previews/PR54/api/public/index.html b/previews/PR54/api/public/index.html index 73faa58..f56f54e 100644 --- a/previews/PR54/api/public/index.html +++ b/previews/PR54/api/public/index.html @@ -1,6 +1,6 @@ -Public API Reference · PowerFlows.jl

PowerFlows

PowerFlows.PSSEExporterType

Structure to perform an export from a Sienna System, plus optional updates from PowerFlowData, to the PSS/E format. Construct from a System and a PSS/E version, update using update_exporter with any new data as relevant, and perform the export with write_export.

Arguments:

  • base_system::PSY.System: the system to be exported. Later updates may change power flow-related values but may not fundamentally alter the system
  • psse_version::Symbol: the version of PSS/E to target, must be one of PSSE_EXPORT_SUPPORTED_VERSIONS
  • write_comments::Bool = false: whether to add the customary-but-not-in-spec-annotations after a slash on the first line and at group boundaries
  • name::AbstractString = "export": the base name of the export
  • step::Union{Nothing, Integer, Tuple{Vararg{Integer}}} = nothing: optional step number or tuple of step numbers (e.g., step and timestamp within step) to append to the base export name. User is responsible for updating the step.
  • overwrite::Bool = false: true to silently overwrite existing exports, false to throw an error if existing results are encountered
source
PowerFlows.PowerFlowDataType

Structure containing all the data required for the evaluation of the power flows and angles, as well as these ones.

Arguments:

  • bus_lookup::Dict{Int, Int}: dictionary linking the system's bus number with the rows of either "powernetworkmatrix" or "auxnetworkmatrix".
  • branch_lookup::Dict{String, Int}: dictionary linking the branch name with the column name of either the "powernetworkmatrix" or "auxnetworkmatrix".
  • bus_activepower_injection::Matrix{Float64}: "(b, t)" matrix containing the bus active power injection. b: number of buses, t: number of time period.
  • bus_reactivepower_injection::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power injection. b: number of buses, t: number of time period.
  • bus_activepower_withdrawals::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power withdrawals. b: number of buses, t: number of time period.
  • bus_reactivepower_withdrawals::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power withdrawals. b: number of buses, t: number of time period.
  • bus_reactivepower_bounds::Vector{Float64}: Upper and Lower bounds for the reactive supply at each bus.
  • bus_type::Vector{PSY.ACBusTypes}: vector containing type of buses present in the system, ordered according to "bus_lookup".
  • bus_magnitude::Matrix{Float64}: "(b, t)" matrix containing the bus magnitudes, ordered according to "bus_lookup". b: number of buses, t: number of time period.
  • bus_angles::Matrix{Float64}: "(b, t)" matrix containing the bus angles, ordered according to "bus_lookup". b: number of buses, t: number of time period.
  • branch_flow_values::Matrix{Float64}: "(br, t)" matrix containing the power flows, ordered according to "branch_lookup". br: number of branches, t: number of time period.
  • timestep_map::Dict{Int, S}: dictonary mapping the number of the time periods (corresponding to the column number of the previosly mentioned matrices) and their names.
  • valid_ix::Vector{Int}: vector containing the indeces of not slack buses
  • power_network_matrix::M: matrix used for the evaluation of either the power flows or bus angles, depending on the method considered.
  • aux_network_matrix::N: matrix used for the evaluation of either the power flows or bus angles, depending on the method considered.
  • neighbors::Vector{Set{Int}}: Vector with the sets of adjacent buses.
source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for DC power flow computations.

Arguments:

  • ::DCPowerFlow: use DCPowerFlow() to store the ABA matrix as powernetworkmatrix and the BA matrix as auxnetworkmatrix.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value = true.
source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for AC power flow computations.

Arguments:

  • ::ACPowerFlow: use ACPowerFlow() to evaluate the AC PF.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value = true.

WARNING: functions for the evaluation of the multi-period AC PF still to be implemented.

source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for DC power flow computations.

Arguments:

  • ::PTDFDCPowerFlow: use vPTDFDCPowerFlow() to store the Virtual PTDF matrix as powernetworkmatrix and the ABA matrix as auxnetworkmatrix.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
source
PowerFlows.solve_ac_powerflow!Method

Solves a the power flow into the system and writes the solution into the relevant structs. Updates generators active and reactive power setpoints and branches active and reactive power flows (calculated in the From - To direction) (see flow_val)

Supports passing NLsolve kwargs in the args. By default shows the solver trace.

Arguments available for nlsolve:

  • get_connectivity::Bool: Checks if the network is connected. Default true
  • method : See NLSolve.jl documentation for available solvers
  • xtol: norm difference in x between two successive iterates under which convergence is declared. Default: 0.0.
  • ftol: infinite norm of residuals under which convergence is declared. Default: 1e-8.
  • iterations: maximum number of iterations. Default: 1_000.
  • store_trace: should a trace of the optimization algorithm's state be stored? Default: false.
  • show_trace: should a trace of the optimization algorithm's state be shown on STDOUT? Default: false.
  • extended_trace: should additifonal algorithm internals be added to the state trace? Default: false.

Examples

solve_ac_powerflow!(sys)
+Public API Reference · PowerFlows.jl

PowerFlows

PowerFlows.PSSEExporterType

Structure to perform an export from a Sienna System, plus optional updates from PowerFlowData, to the PSS/E format. Construct from a System and a PSS/E version, update using update_exporter with any new data as relevant, and perform the export with write_export.

Arguments:

  • base_system::PSY.System: the system to be exported. Later updates may change power flow-related values but may not fundamentally alter the system
  • psse_version::Symbol: the version of PSS/E to target, must be one of PSSE_EXPORT_SUPPORTED_VERSIONS
  • write_comments::Bool = false: whether to add the customary-but-not-in-spec-annotations after a slash on the first line and at group boundaries
  • name::AbstractString = "export": the base name of the export
  • step::Union{Nothing, Integer, Tuple{Vararg{Integer}}} = nothing: optional step number or tuple of step numbers (e.g., step and timestamp within step) to append to the base export name. User is responsible for updating the step.
  • overwrite::Bool = false: true to silently overwrite existing exports, false to throw an error if existing results are encountered
source
PowerFlows.PowerFlowDataType

Structure containing all the data required for the evaluation of the power flows and angles, as well as these ones.

Arguments:

  • bus_lookup::Dict{Int, Int}: dictionary linking the system's bus number with the rows of either "powernetworkmatrix" or "auxnetworkmatrix".
  • branch_lookup::Dict{String, Int}: dictionary linking the branch name with the column name of either the "powernetworkmatrix" or "auxnetworkmatrix".
  • bus_activepower_injection::Matrix{Float64}: "(b, t)" matrix containing the bus active power injection. b: number of buses, t: number of time period.
  • bus_reactivepower_injection::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power injection. b: number of buses, t: number of time period.
  • bus_activepower_withdrawals::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power withdrawals. b: number of buses, t: number of time period.
  • bus_reactivepower_withdrawals::Matrix{Float64}: "(b, t)" matrix containing the bus reactive power withdrawals. b: number of buses, t: number of time period.
  • bus_reactivepower_bounds::Vector{Float64}: Upper and Lower bounds for the reactive supply at each bus.
  • bus_type::Vector{PSY.ACBusTypes}: vector containing type of buses present in the system, ordered according to "bus_lookup".
  • bus_magnitude::Matrix{Float64}: "(b, t)" matrix containing the bus magnitudes, ordered according to "bus_lookup". b: number of buses, t: number of time period.
  • bus_angles::Matrix{Float64}: "(b, t)" matrix containing the bus angles, ordered according to "bus_lookup". b: number of buses, t: number of time period.
  • branch_flow_values::Matrix{Float64}: "(br, t)" matrix containing the power flows, ordered according to "branch_lookup". br: number of branches, t: number of time period.
  • timestep_map::Dict{Int, S}: dictonary mapping the number of the time periods (corresponding to the column number of the previosly mentioned matrices) and their names.
  • valid_ix::Vector{Int}: vector containing the indeces of not slack buses
  • power_network_matrix::M: matrix used for the evaluation of either the power flows or bus angles, depending on the method considered.
  • aux_network_matrix::N: matrix used for the evaluation of either the power flows or bus angles, depending on the method considered.
  • neighbors::Vector{Set{Int}}: Vector with the sets of adjacent buses.
source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for DC power flow computations.

Arguments:

  • ::DCPowerFlow: use DCPowerFlow() to store the ABA matrix as powernetworkmatrix and the BA matrix as auxnetworkmatrix.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value = true.
source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for AC power flow computations.

Arguments:

  • ::ACPowerFlow: use ACPowerFlow() to evaluate the AC PF.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
  • check_connectivity::Bool: Perform connectivity check on the network matrix. Default value = true.

WARNING: functions for the evaluation of the multi-period AC PF still to be implemented.

source
PowerFlows.PowerFlowDataMethod

Function for the definition of the PowerFlowData strucure given the System data, number of time periods to consider and their names. Calling this function will not evaluate the power flows and angles. NOTE: use it for DC power flow computations.

Arguments:

  • ::PTDFDCPowerFlow: use vPTDFDCPowerFlow() to store the Virtual PTDF matrix as powernetworkmatrix and the ABA matrix as auxnetworkmatrix.
  • sys::PSY.System: container storing the system data to consider in the PowerFlowData structure.
  • time_steps::Int: number of time periods to consider in the PowerFlowData structure. It defines the number of columns of the matrices used to store data. Default value = 1.
  • timestep_names::Vector{String}: names of the time periods defines by the argmunet "time_steps". Default value = String[].
source
PowerFlows.solve_ac_powerflow!Method

Solves a the power flow into the system and writes the solution into the relevant structs. Updates generators active and reactive power setpoints and branches active and reactive power flows (calculated in the From - To direction) (see flow_val)

Supports passing NLsolve kwargs in the args. By default shows the solver trace.

Arguments available for nlsolve:

  • get_connectivity::Bool: Checks if the network is connected. Default true
  • method : See NLSolve.jl documentation for available solvers
  • xtol: norm difference in x between two successive iterates under which convergence is declared. Default: 0.0.
  • ftol: infinite norm of residuals under which convergence is declared. Default: 1e-8.
  • iterations: maximum number of iterations. Default: 1_000.
  • store_trace: should a trace of the optimization algorithm's state be stored? Default: false.
  • show_trace: should a trace of the optimization algorithm's state be shown on STDOUT? Default: false.
  • extended_trace: should additifonal algorithm internals be added to the state trace? Default: false.

Examples

solve_ac_powerflow!(sys)
 # Passing NLsolve arguments
-solve_ac_powerflow!(sys, method=:newton)
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the ABA and BA matrices. Updates the PowerFlowData structure and returns a dictionary containing a DataFrame for the single timestep considered. The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::DCPowerFlow: use DCPowerFlow() to evaluate the power flows according to the method based on the ABA and BA matrices
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the PTDF matrix. Updates the PowerFlowData structure and returns a dictionary containing a DataFrame for the single timestep considered. The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::PTDFDCPowerFlow: use PTDFDCPowerFlow() to evaluate the power flows according to the method based on the PTDF matrix
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the ABA and BA matrices. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::ABAPowerFlowData: PowerFlowData structure containing the system's data per each timestep considered, as well as the ABA and BA matrices.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the PTDF matrix. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::PTDFPowerFlowData: PowerFlowData structure containing the system's data per each timestep considered, as well as the PTDF matrix.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of Virtual PTDF matrices. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::PTDFPowerFlowData: PowerFlowData structure containing the system data per each timestep considered, as well as the Virtual PTDF matrix.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Similar to solve_powerflow!(sys) but does not update the system struct with results. Returns the results in a dictionary of dataframes.

Examples

res = solve_powerflow(sys)
+solve_ac_powerflow!(sys, method=:newton)
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the ABA and BA matrices. Updates the PowerFlowData structure and returns a dictionary containing a DataFrame for the single timestep considered. The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::DCPowerFlow: use DCPowerFlow() to evaluate the power flows according to the method based on the ABA and BA matrices
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the PTDF matrix. Updates the PowerFlowData structure and returns a dictionary containing a DataFrame for the single timestep considered. The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::PTDFDCPowerFlow: use PTDFDCPowerFlow() to evaluate the power flows according to the method based on the PTDF matrix
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the ABA and BA matrices. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::ABAPowerFlowData: PowerFlowData structure containing the system's data per each timestep considered, as well as the ABA and BA matrices.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the PTDF matrix. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::PTDFPowerFlowData: PowerFlowData structure containing the system's data per each timestep considered, as well as the PTDF matrix.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of Virtual PTDF matrices. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". Each DataFrame containts the flows and angles.

Arguments:

  • data::PTDFPowerFlowData: PowerFlowData structure containing the system data per each timestep considered, as well as the Virtual PTDF matrix.
  • sys::PSY.System: container gathering the system data.
source
PowerFlows.solve_powerflowMethod

Similar to solve_powerflow!(sys) but does not update the system struct with results. Returns the results in a dictionary of dataframes.

Examples

res = solve_powerflow(sys)
 # Passing NLsolve arguments
-res = solve_powerflow(sys, method=:newton)
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the Virtual PTDF matrix. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::vPTDFDCPowerFlow: use vPTDFDCPowerFlow() to evaluate the power flows according to the method based on the Virtual PTDF matrix
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.update_exporter!Method

Update the PSSEExporter with new data.

Arguments:

  • exporter::PSSEExporter: the exporter to update
  • data::PSY.PowerFlowData: the new data. Must correspond to the System with which the exporter was constructor
source
PowerFlows.update_exporter!Method

Update the PSSEExporter with new data.

Arguments:

  • exporter::PSSEExporter: the exporter to update
  • data::PSY.System: system containing the new data. Must be fundamentally the same

System as the one with which the exporter was constructed, just with different values

source
PowerFlows.write_resultsMethod

Returns a dictionary containing the AC power flow results.

Only single-period evaluation is supported at the moment for AC Power flows. Resulting dictionary will therefore feature just one key linked to one DataFrame.

Arguments:

  • ::ACPowerFlow: use ACPowerFlow() storing AC power flow results.
  • sys::PSY.System: container storing the systam information.
  • result::Vector{Float64}: vector containing the reults for one single time-period.
source
PowerFlows.write_resultsMethod

Returns a dictionary containing the DC power flow results. Each key conresponds to the name of the considered time periods, storing a DataFrame with the PF results.

Arguments:

  • data::Union{PTDFPowerFlowData, vPTDFPowerFlowData, ABAPowerFlowData}: PowerFlowData strcuture containing power flows and bus angles.
  • sys::PSY.System: container storing the systam information.
source
+res = solve_powerflow(sys, method=:newton)
source
PowerFlows.solve_powerflowMethod

Evaluates the power flows on each system's branch by means of the Virtual PTDF matrix. Updates the PowerFlowData structure "data" and returns a dictionary containing a number of DataFrames equal to the numeber of timestep considered in "data". The DataFrame containts the flows and angles related to the information stored in the PSY.System considered as input.

Arguments:

  • ::vPTDFDCPowerFlow: use vPTDFDCPowerFlow() to evaluate the power flows according to the method based on the Virtual PTDF matrix
  • sys::PSY.System: container gathering the system data used for the evaluation of flows and angles.
source
PowerFlows.update_exporter!Method

Update the PSSEExporter with new data.

Arguments:

  • exporter::PSSEExporter: the exporter to update
  • data::PSY.PowerFlowData: the new data. Must correspond to the System with which the exporter was constructor
source
PowerFlows.update_exporter!Method

Update the PSSEExporter with new data.

Arguments:

  • exporter::PSSEExporter: the exporter to update
  • data::PSY.System: system containing the new data. Must be fundamentally the same

System as the one with which the exporter was constructed, just with different values

source
PowerFlows.write_resultsMethod

Returns a dictionary containing the AC power flow results.

Only single-period evaluation is supported at the moment for AC Power flows. Resulting dictionary will therefore feature just one key linked to one DataFrame.

Arguments:

  • ::ACPowerFlow: use ACPowerFlow() storing AC power flow results.
  • sys::PSY.System: container storing the systam information.
  • result::Vector{Float64}: vector containing the reults for one single time-period.
source
PowerFlows.write_resultsMethod

Returns a dictionary containing the DC power flow results. Each key conresponds to the name of the considered time periods, storing a DataFrame with the PF results.

Arguments:

  • data::Union{PTDFPowerFlowData, vPTDFPowerFlowData, ABAPowerFlowData}: PowerFlowData strcuture containing power flows and bus angles.
  • sys::PSY.System: container storing the systam information.
source
diff --git a/previews/PR54/code_base_developer_guide/developer/index.html b/previews/PR54/code_base_developer_guide/developer/index.html index 59be4b5..555510c 100644 --- a/previews/PR54/code_base_developer_guide/developer/index.html +++ b/previews/PR54/code_base_developer_guide/developer/index.html @@ -1,2 +1,2 @@ -Developer Guide · PowerFlows.jl
+Developer Guide · PowerFlows.jl
diff --git a/previews/PR54/index.html b/previews/PR54/index.html index 3efa171..5f9ed11 100644 --- a/previews/PR54/index.html +++ b/previews/PR54/index.html @@ -1,2 +1,2 @@ -Welcome Page · PowerFlows.jl

PowerFlows.jl

Overview

PowerFlows.jl is a Julia package for solving Power Flows

Installation

The latest stable release of PowerFlows can be installed using the Julia package manager with

] add PowerFlows

For the current development version, "checkout" this package with

] add PowerFlows#main

PowerFlows has been developed as part of the Scalable Integrated Infrastructure Planning (SIIP) initiative at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL)

+Welcome Page · PowerFlows.jl

PowerFlows.jl

Overview

PowerFlows.jl is a Julia package for solving Power Flows

Installation

The latest stable release of PowerFlows can be installed using the Julia package manager with

] add PowerFlows

For the current development version, "checkout" this package with

] add PowerFlows#main

PowerFlows has been developed as part of the Scalable Integrated Infrastructure Planning (SIIP) initiative at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL)

diff --git a/previews/PR54/modeler_guide/power_flow/index.html b/previews/PR54/modeler_guide/power_flow/index.html index 5502e32..b70d3e1 100644 --- a/previews/PR54/modeler_guide/power_flow/index.html +++ b/previews/PR54/modeler_guide/power_flow/index.html @@ -144,4 +144,4 @@ Bus 10 - Magnitude 1.051 - Angle (rad) -0.26354471705114374 Bus 3 - Magnitude 1.01 - Angle (rad) -0.22200588085367873 Bus 1 - Magnitude 1.06 - Angle (rad) 0.0 -Bus 5 - Magnitude 1.02 - Angle (rad) -0.15323990832510212 +Bus 5 - Magnitude 1.02 - Angle (rad) -0.15323990832510212 diff --git a/previews/PR54/search/index.html b/previews/PR54/search/index.html index ad3276d..9678e66 100644 --- a/previews/PR54/search/index.html +++ b/previews/PR54/search/index.html @@ -1,2 +1,2 @@ -Search · PowerFlows.jl

Loading search...

    +Search · PowerFlows.jl

    Loading search...