-
Notifications
You must be signed in to change notification settings - Fork 5
/
ci_calc.py
590 lines (513 loc) · 24.2 KB
/
ci_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
############################################################################################
# Program Name : Confidence Interval Calculator / Grapher
# Description : Displays confidence intervals from actual MOS values and calculated
# statistics. Made from a matlab version by a video quality researcher
# in germany.
############################################################################################
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import scipy
import scipy.io
# Input Value Files and Fields
MOSFileNameList = []
MOSFieldNameList = []
NRParsFileNameList = []
NRParsFieldNameList = []
NRParsMOSCount = 0
GraphSaveFileName = ""
IsVerbose = False
# Global field values
MetricName = ""
MOSDict = []
NRParsDict = []
# Main
# Plot the confidence interval (CI) of an NR parameter by MOS values
# SYNTAX
# python ci_calc.py -m iqa_camera.mat ccriq_dataset blur.mat 10_percent
# SEMANTICS
# Read values and run ci_calc algorithm. Please see ci_calc
# description or documentation for extra detail on f output graph
# and output parameters.
#
# Input Parameters:
# mosFileName Input mos filename(s)
# mosFieldName MOS filename's field name
# nrParsFileName Input NR Parameter's filename(s)
# nrParsFieldName NR Parameter's field name
##
# Output Parameters
# ideal_ci = the ideal confidence interval
# practial_ci = the practical confidence interval
#
# Constraints:
# All datasets are weighted equally.
# The MOSs must range from 1 to 5.
#
def Main():
# Parse commandline arguments and read mat files
parse_command_arguments(sys.argv)
read_mos_and_nrpars()
# Calculate confidence intervals
(ideal_ci, practical_ci) = ci_calc(MetricName, MOSDict, NRParsDict, GraphSaveFileName, IsVerbose)
# Main
# Parse command arguments
# SYNTAX
# parse_command_arguments([ "-help" ])
# SEMANTICS
# Parses input filenames and fields. And, prints any format errors.
#
# Input Parameters:
# argvList: Command line arguments
#
# Output Parameters
# MOSFileNameList Input MOS filename(s)
# MOSFieldNameList MOS filename's field name
# NRParsFileNameList Input NR Parameter's filename(s)
# NRParsFieldNameList NR Parameter's field name
#
def parse_command_arguments(argvList):
# Global vars
global MOSFileNameList
global MOSFieldNameList
global NRParsFileNameList
global NRParsFieldNameList
global NRParsMOSCount
global GraphSaveFileName
global IsVerbose
# Clear data
MOSFileNameList = []
MOSFieldNameList = []
NRParsFileNameList = []
NRParsFieldNameList = []
NRParsMOSCount = 0
GraphSaveFileName = ""
IsVerbose = False
# Parse arguments
if len(argvList)<=1:
argvList = [ argvList[0] if len(argvList)>0 else "", "-h" ]
argvListCount = len(argvList)
index = 1
while index<argvListCount:
# Format argument
argv = (argvList[index] or "").strip().lower()
if argv.startswith("/"):
argv = "-"+argv[1:]
# Read argument
if (argv=="-m" and index+4<argvListCount):
if NRParsMOSCount>0:
print(" <Warning: Only 1 Dataset Can Currently be Plotted, Defaulting to Last Entered Dataset>")
MOSFileNameList .append((argvList[index+1] or "").strip())
MOSFieldNameList .append((argvList[index+2] or "").strip())
NRParsFileNameList .append((argvList[index+3] or "").strip())
NRParsFieldNameList.append((argvList[index+4] or "").strip())
NRParsMOSCount += 1
index += 4
elif (argv=="-s" and index+1<argvListCount):
GraphSaveFileName = (argvList[index+1] or "").strip()
index += 1
elif (argv=="-h" or argv=="--help"):
print("Usage:")
print(" python3 ci_calc.py [options]")
print("Options:")
print(" -m <mosFileName> <mosFieldName> <nrParsFileName> <nrParsFieldName>")
print(" -s <graphSaveFileName>")
print(" -b Verbose / Program Status")
print("Misc Options:")
print(" -h --help Help")
print(" -v --version Version Number")
print(" -b --verbose Verbose Messages")
print("Example:")
print(" python3 ci_calc.py -b -m iqa_camera.mat ccriq_dataset \"..\\nr_data\\group_blur\\NRpars_blur_ccriq.mat\" unsharp -s \"ci_graph1.jpg\"")
print(" python3 ci_calc.py -b -m iqa_camera.mat ccriq_dataset \"..\\nr_data\\group_blur\\NRpars_blur_ccriq.mat\" viqet-sharpness -s \"ci_graph1.jpg\"")
print(" python3 ci_calc.py -v")
elif (argv=="-v" or argv=="--version"):
print("Version 1.0a")
elif (argv=="-b" or argv=="-?" or argv=="--verbose"):
IsVerbose = True
else:
print(" <Error: Failed to Parse Arguments at Index {0} of {1} with First Value \"{2}\">".format(index, argvListCount, argvList[index]))
index += 1
# read_mos_and_nrpars
# Read MOS and NRPars
# SYNTAX
# read_mos_and_nrpars();
# SEMANTICS
# Read MOS and NRPars into global variables.
#
# Input Parameters:
# MOSFileNameList MOS filename(is a list)
# MOSFieldNameList MOS dataset name
# NRParsFileNameList NRPars filename
# NRParsFieldNameList NRPars fieldname
#
# Output Parameters
# MetricName Metric name, taken from fieldnames
# MOSDict MOS values from mat file
# NRParsDict NRPar values from mat file
#
def read_mos_and_nrpars():
# Global vars
global MetricName
global MOSDict
global NRParsDict
MetricName = ""
MOSDict = {}
NRParsDict = {}
# Print header
if IsVerbose:
print("Reading MOS and NRPars from Files")
# Set metric name
for index in range(NRParsMOSCount):
MetricName += "{0}({1}) ".format(MOSFieldNameList[index], NRParsFieldNameList[index])
MetricName = MetricName.strip()
# Read mat files
for index in range(NRParsMOSCount):
# Print header
if IsVerbose:
print("Reading Files \"{0}\" and \"{1}\"".format(MOSFileNameList[index], NRParsFileNameList[index]))
# Set MOS and NRPar names
dataSetName = "{0}({1}) ".format(MOSFileNameList[index], MOSFieldNameList[index], NRParsFileNameList[index], NRParsFieldNameList[index])
# Attempt to read MOS file
if not os.path.exists(MOSFileNameList[index]):
print(" <Failed to find MOS File \"{0}\">".format(MOSFileNameList[index]))
exit(0)
data = scipy.io.loadmat(MOSFileNameList[index])
if not MOSFieldNameList[index] in data.keys():
print(" <Failed to find MOS Dataset Field \"{0}\">".format(MOSFieldNameList[index]))
exit(0)
data = data[MOSFieldNameList[index]]
if not( type(data )==np.ndarray and len(data )>0 \
and type(data[0] )==np.ndarray and len(data[0])>0 \
and type(data[0][0])==np.void and "media" in np.dtype(data[0][0]).names):
print(" <Failed to find \"media\" Field in MOS Dataset \"{0}\">".format(MOSFieldNameList[index]))
exit(0)
dataIndex = np.dtype(data[0][0]).names.index("media")
data = data[0][0]
if not(dataIndex<len(data) \
and type(data[dataIndex] )==np.ndarray and len(data[dataIndex] )>0 \
and type(data[dataIndex][0])==np.ndarray and len(data[dataIndex][0])>0):
print(" <Failed to find \"media\" Field as a List in MOS Dataset \"{0}\">".format(MOSFieldNameList[index]))
exit(0)
MOSDict[dataSetName] = []
for rowIndex in range(len(data[dataIndex][0])):
row = data[dataIndex][0][rowIndex]
if not("mos" in np.dtype(row).names):
print(" <Failed to find MOS column on row \"{0}\">".format(rowIndex))
exit(0)
columnIndex = np.dtype(row).names.index("mos")
if not( type(row[columnIndex] )==np.ndarray and len(row[columnIndex] )>0 \
and type(row[columnIndex][0] )==np.ndarray and len(row[columnIndex][0])>0 \
and type(row[columnIndex][0][0]) in (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32, np.float64)):
print(" <Failed to find MOS column as a formatted float on row \"{0}\">".format(rowIndex))
exit(0)
mos = float(row[columnIndex][0][0])
MOSDict[dataSetName].append(mos)
# Attempt to read NRPars file
if not os.path.exists(NRParsFileNameList[index]):
print(" <Failed to find NRPars File \"{0}\">".format(NRParsFileNameList[index]))
exit(0)
data = scipy.io.loadmat(NRParsFileNameList[index])
if not "NRpars" in data.keys():
print(" <Failed to find NRPars Dataset Field \"NRPars\">")
exit(0)
data = data["NRpars"]
if not( type(data )==np.ndarray and len(data )>0 \
and type(data[0] )==np.ndarray and len(data[0] )>0 \
and type(data[0][0])==np.void and "par_name" in np.dtype(data[0][0]).names and "data" in np.dtype(data[0][0]).names):
print(" <Failed to find \"par_name\" and \"data\" Fields in NRPars Dataset \"{0}\">".format(NRParsFieldNameList[index]))
exit(0)
data = data[0][0]
dataIndex1 = np.dtype(data).names.index("par_name")
dataIndex2 = np.dtype(data).names.index("data")
if not(dataIndex1<len(data) and dataIndex2<len(data) \
and type(data[dataIndex1] )==np.ndarray and len(data[dataIndex1] )>0 \
and type(data[dataIndex1][0])==np.ndarray and len(data[dataIndex1][0])>0 \
and type(data[dataIndex2] )==np.ndarray and len(data[dataIndex2] )>0):
print(" <Failed to find \"par_name\" and \"data\" Fields as a List in MOS Dataset \"{0}\">".format(MOSFieldNameList[index]))
exit(0)
parNames = [ str(d[0]) for d in data[dataIndex1][0] if type(d)==np.ndarray and len(d)>0 and type(d[0])==np.str_ ]
if not(NRParsFieldNameList[index] in parNames):
print(" <Failed to find parameter name \"{0}\">".format(NRParsFieldNameList[index]))
exit(0)
parNamesIndex = parNames.index(NRParsFieldNameList[index])
if not(parNamesIndex<len(data[dataIndex2]) \
and type(data[dataIndex2][parNamesIndex])==np.ndarray and len(data[dataIndex2][parNamesIndex])>0):
print(" <Failed to find data Fields for parameter name \"{0}\">".format(NRParsFieldNameList[index]))
exit(0)
NRParsDict[dataSetName] = []
for rowIndex in range(len(data[dataIndex2][parNamesIndex])):
val = data[dataIndex2][parNamesIndex][rowIndex]
if not type(val) in (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, np.float32, np.float64):
print(" <Failed to find data as a formatted float on row \"{0}\">".format(rowIndex))
exit(0)
NRParsDict[dataSetName].append(val)
if not len(MOSDict[dataSetName])==len(NRParsDict[dataSetName]):
print(" <Failed To Read Data Where {0} MOS Rows and {1} NRPars Rows>".format(len(MOSDict[dataSetName]), len(NRParsDict[dataSetName])))
exit(0)
# Print footer
if IsVerbose:
print("Reading MOS and NRPars from Files Complete")
# ci_calc
# Estimate the confidence interval (CI) of an NR parameter
# SYNTAX
# (ideal_ci, practical_ci) = ci_calc(metric_name, dataset_mos,
# dataset_metrics, fig_path = False, verbose = True);
# SEMANTICS
# Estimate the confidence interval (CI) of an NR metric or parameter,
# by comparing the conclusions reached by the metric with conclusions
# reached by a subjective test. Both will use a constant confidence
# interval (CI) to make decisions. The subjective CI is based on
# 5-level ACR MOSs. Two recommended CIs are printed to the command window.
# (1) ideal CI, and (2) practical CI. The classification types are plotted,
# which allows the user to choose an alternate CI.
#
# By analogy, assess the performance of the metric in terms of an ad-hoc
# test with N people. This analysis assumes that the metric and MOSs are
# compared without statistical tests or confidence intervals.
#
# Input Parameters:
# metric_name Character string that contains the metric's name
# dataset_mos Cell array. For each dataset (1..num_datasets), a
# double array that contains the mean opinion score (MOS)
# for each stimuli in the dataset.
# dataset_metrics Cell array. For each dataset (1..num_datasets), a
# double array that contains the metric's value for each
# stimuli in the dataset. Order of stimuli must be
# identical to dataset_mos.
# fig_path figure path for saving
# verbose print extra status messages
#
# The theoretical underpinnings of this algorithm are pending publication
# of NTIA Report "Confidence Intervals for Subjective Tests and
# Objective Metrics" by Margaret H Pinson
#
# For a preliminary analysis, see Margaret Pinson, "NR metric confidence
# interval estimation using classification errors," Video Quality Experts
# Group (VQEG) meeting, Statistical Analysis Methods (SAM) Group,
# Presentation 11, March 2020.
# ftp://vqeg.its.bldrdoc.gov/Documents/VQEG_online_Mar20/VQEG_2020_SAM_011_confidence_intervals_for_metrics.pptx
#
# Output Parameters
# ideal_ci = the ideal confidence interval
# practial_ci = the practical confidence interval
# N = the number of people in an ad-hoc test with an equivalent likelihood of
# false ranking, or zero (0) if the performance is worse than a 1
# person ad-hoc test.
#
# For positively correlated metrics, false ranking is where a well designed
# subjective test would conclude that stimuli A is statistical better
# than stimuli B, but the metric value for stimuli B is greater than
# the metric value for stimuli A. "Less than" is used for negatively
# correlated metrics.
#
# Constraints:
# All datasets are weighted equally.
# The MOSs must range from 1 to 5.
#
def ci_calc(metric_name, dataset_mos, dataset_metrics, fig_path = False, verbose = True):
threshold_level = 0.5 # delta S, where 95% of stimuli MOS can be rank ordered
false_rank_thresh = 0.01 # disagree rate
false_diff_thresh = 0.10 # half of the uncertain rate of 20%
practical_threshold = 0.165 # half of maximum uncertain rate plus disagree rate
concur_threshold = 0.91 #based on analyses of the VQEG FRTV Phase I ratings
print('Metric confidence interval analysis for {}'.format(metric_name))
# calculate range of this parameter
this_par = []
pos_corr = []
for dcnt, mos in dataset_mos.items():
omos = dataset_metrics[dcnt]
tmp = np.corrcoef(mos, omos)
if tmp[0,1] >= 0:
pos_corr.append(1)
else:
pos_corr.append(-1)
this_par.extend(omos)
this_par = sorted(this_par)
this_par_count = len(this_par)
pmin = min(this_par)
pmax = max(this_par)
if verbose and len(this_par)>0:
print('Full range {}..{}, '.format(pmin, pmax))
print('95% of data in {}..{}\n'.format(this_par[max(int(round(0.025*this_par_count)), this_par_count-1)], this_par[max(int(round(0.975*this_par_count)), this_par_count-1)]))
if sum(pos_corr) > 0:
if verbose:
print('Positively correlated with MOS for most datasets\n\n')
is_pos_corr = True
elif sum(pos_corr) == 0:
if verbose:
print('Split decision on whether metric is positively or negatively correlated with MOS.\nAssume positive correlation.\n\n')
is_pos_corr = True
else:
if verbose:
print('Negatively correlated with MOS for most datasets\n\n')
is_pos_corr = False
if pmin == pmax:
print('Warning: parameter has a constant value, aborting.\n')
ideal_ci = np.NaN
practical_ci = np.NaN
return
# manually loop through all pairs of stimuli
subj = []
obj = []
wt = []
curr = 1
for dcnt, mos in dataset_mos.items():
curr_len = len(mos)
for mcnt1 in range(0,curr_len):
for mcnt2 in range(mcnt1+1,curr_len):
# subj(curr) is decision whether #1 is better,
# equivalent, or worse than #2
diff = mos[mcnt1] - mos[mcnt2]
if diff > threshold_level:
subj.append(1)
elif diff < -threshold_level:
subj.append(-1)
else:
subj.append(0)
# obj(curr) is distance before thresholding, since the
# point of this function is to ideal_ci a threshold
obj.append(dataset_metrics[dcnt][mcnt1] - dataset_metrics[dcnt][mcnt2])
# note weight
wt.append( 1 / len(mos) )
curr += 1
# flip sign of objective differences, if parameter is
# negatively correlated to MOS
if is_pos_corr == False:
obj = list(-np.array(obj))
# Have all of the data. Now make the plot.
# round our increment to one significant digits
# incr = round((pmax-pmin)/100, 1, 'significant');
incr = (pmax-pmin)/100
list_want = np.arange(incr,pmax-pmin,incr)
correct_rank = [0]*len(list_want)
correct_tie = [0]*len(list_want)
false_ranking = [0]*len(list_want)
false_distinction = [0]*len(list_want)
false_tie = [0]*len(list_want)
# create data for roughly 60% of the range of parameter values
# from there, the plot flattens and contains no more info
for loop in range(0,len(list_want)):
#print(loop)
delta = list_want[loop]
for curr in range(0,len(subj)):
if (subj[curr] == 1 and obj[curr] >= delta) or (subj[curr] == -1 and obj[curr] <= -delta):
correct_rank[loop] = correct_rank[loop] + wt[curr]
elif subj[curr] == 0 and obj[curr] > -delta and obj[curr] < delta:
correct_tie[loop] = correct_tie[loop] + wt[curr]
elif (subj[curr] == 1 and obj[curr] <= -delta) or (subj[curr] == -1 and obj[curr] >= delta):
false_ranking[loop] = false_ranking[loop] + wt[curr]
elif (subj[curr] != 0 and obj[curr] > -delta and obj[curr] < delta):
false_tie[loop] = false_tie[loop] + wt[curr]
else:
false_distinction[loop] = false_distinction[loop] + wt[curr]
total_votes = sum(wt)
correct_rank = [ val/total_votes for val in correct_rank]
correct_tie = [ val/total_votes for val in correct_tie]
false_ranking = [ val/total_votes for val in false_ranking]
false_distinction = [ val/total_votes for val in false_distinction]
false_tie = [ val/total_votes for val in false_tie]
# if too much data is false_tie and correct_tie at minimum
# threshold, don't try. Skip. Rule of thumb: 50% ties. We expect
# values close to zero, so this should mean most of the metric is a
# constant value.
if false_tie[0] + correct_tie[0] > 0.5:
print('Half of data is correct ties or false ties. Skipping.\n')
ideal_ci = np.NAN
practical_ci = np.NAN
return
# compute the ideal ci
ideal_ci = len(list_want)
for n, (fr, fd) in enumerate(zip(false_ranking,false_distinction)):
if (fr < false_rank_thresh) and (fd < false_diff_thresh):
ideal_ci = n
break
# compute the practical CI
practical_ci = len(list_want)
for n, (fr, fd) in enumerate(zip(false_ranking, false_distinction)):
if (fr + fd) < practical_threshold:
practical_ci = n
break
equiv_ideal = np.sqrt(correct_rank[ideal_ci]) + 1.2 * correct_tie[ideal_ci]
equiv_practical = np.sqrt(correct_rank[practical_ci]) + 1.2 * correct_tie[practical_ci]
# print recommended threshold
if verbose:
print('{} Ideal CI ({}% correct ranking, {}% false ranking, {}% false distinction, {}% false tie, {}% correct tie)'.format( \
list_want[ideal_ci], round(correct_rank[ideal_ci]*100), round(false_ranking[ideal_ci]*100), round(false_distinction[ideal_ci]*100), \
round(false_tie[ideal_ci]*100), round(correct_tie[ideal_ci]*100)))
if equiv_ideal >= concur_threshold:
print(' ==> equivalent to a subjective test with 24 subjects')
print('\n{} Practical CI ({}% correct ranking, {}% false ranking, {}% false distinction, {}% false tie, {}% correct tie)'.format( \
list_want[practical_ci], round(correct_rank[practical_ci]*100), round(false_ranking[practical_ci]*100), round(false_distinction[practical_ci]*100), \
round(false_tie[practical_ci]*100), round(correct_tie[practical_ci]*100)))
if equiv_practical >= concur_threshold:
print(' ==> equivalent to a subjective test with 15 subjects')
# create plot
fig, ax = plt.subplots(figsize=(6, 6))
ax.plot(list_want, [val*100 for val in correct_rank], 'g', label="correct rank")
ax.plot(list_want, [val*100 for val in false_ranking], 'r', label="false rank")
ax.plot(list_want, [val*100 for val in false_distinction], 'b--', label="false distinction")
ax.plot(list_want, [val*100 for val in false_tie], 'y--', label="false tie")
ax.plot(list_want, [val*100 for val in correct_tie], 'y', label="correct tie")
ax.plot([list_want[ideal_ci],list_want[ideal_ci]], [0,100], 'k', label="ideal CI")
ax.plot([list_want[practical_ci],list_want[practical_ci]], [0,100], 'k--', label="practical CI")
plt.xlabel("Delta Metric")
plt.ylabel("Probability")
ax.grid()
ax.set_title(metric_name)
ax.axis([0, 2, 0, 100])
leg = ax.legend()
if fig_path:
plt.savefig(fig_path)
else:
plt.show()
# equivelence determination
correct_rank_zero = 0
correct_tie_zero = 0
false_ranking_zero = 0
false_distinction_zero = 0
false_tie_zero = 0
delta = 0
for curr in range(0,len(subj)):
if (subj[curr] == 1 and obj[curr] >= delta) or (subj[curr] == -1 and obj[curr] <= -delta):
correct_rank_zero = correct_rank_zero + wt[curr]
elif subj[curr] == 0 and obj[curr] > -delta and obj[curr] < delta:
correct_tie_zero = correct_tie_zero + wt[curr]
elif (subj[curr] == 1 and obj[curr] <= -delta) or (subj[curr] == -1 and obj[curr] >= delta):
false_ranking_zero = false_ranking_zero + wt[curr]
elif (subj[curr] != 0 and obj[curr] > -delta and obj[curr] < delta):
false_tie_zero = false_tie_zero + wt[curr]
else:
false_distinction_zero = false_distinction_zero + wt[curr]
correct_rank_zero = correct_rank_zero/total_votes
correct_tie_zero = correct_tie_zero/total_votes
false_ranking_zero = false_ranking_zero/total_votes
false_distinction_zero = false_distinction_zero/total_votes
false_tie_zero = false_tie_zero/total_votes
print('\nNo CI used ({}% correct ranking, {}% false ranking, {}% false distinction, {}% false tie, {}% correct tie)'.format( \
round(correct_rank_zero*100), round(false_ranking_zero*100), round(false_distinction_zero*100), round(false_tie_zero*100), round(correct_tie_zero*100)))
if false_ranking_zero <= 0.0325:
equivalent = 12
print(' ==> equivalent to a pilot test with {} subjects'.format(equivalent))
elif false_ranking_zero <= 0.0395:
equivalent = 9
print(' ==> equivalent to a pilot test with {} subjects'.format(equivalent))
elif false_ranking_zero <= 0.056:
equivalent = 6
print(' ==> equivalent to a pilot test with {} subjects'.format(equivalent))
elif false_ranking_zero <= 0.0765:
equivalent = 3
print(' ==> equivalent to a {} person ad-hoc test'.format(equivalent))
elif false_ranking_zero <= 0.0995:
equivalent = 2
print(' ==> equivalent to a {} person ad-hoc test'.format(equivalent))
elif false_ranking_zero <= 0.1285:
equivalent = 1
print(' ==> equivalent to a {} person ad-hoc test'.format(equivalent))
else:
equivalent = 0
return list_want[ideal_ci], list_want[practical_ci]
if __name__ == "__main__":
Main()