-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprepare_sim_for_comparison.R
496 lines (417 loc) · 20.4 KB
/
prepare_sim_for_comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
rm(list = ls())
##############################################################################
# Dependencies
##############################################################################
#Call the R HDF5 Library
packReq <- c("ncdf4","dplyr", "tidyr", "lubridate")
#Install and load all required packages
lapply(packReq, function(x) {
print(x)
if (require(x, character.only = TRUE) == FALSE) {
install.packages(x)
library(x, character.only = TRUE)
}})
##############################################################################
# Workflow parameters
##############################################################################
#### Output Options ####
# Base directory for output, to conform with plotting script
user = 'wwieder'
if (user == 'wwieder') {
DirBase <- "~/Desktop/Working_files/Niwot/CLM/"
DirOutBase <- paste0(DirBase,"SIM/")
} else {
DirBase <- "~/Downloads/"
DirOutBase <- paste0(DirBase,"SIM/")
}
# Case name of the simulation to create an output subdirectory (optional), if you don't want
# to specify a case name, set equal to ""
# This is useful if you are running many cases
case_name <- "clm50bgc_NWT_newPHS_lowSLA"
## !!! FF and DM results below are from clm50bgc_NWT_newPHS_lowSLA_SAND_cn32 !!!
#### Input options ####
# The input directory where simulation data is located
DirIn <- paste0(DirOutBase,"clm_history_files/")
# The names of the netcdf files from each simulation you want to work with.
# If you don't have a netcdf for a particular vegetation community, leave
# the file path blank.
ff_ncdf_fp <- "clm50bgc_NWT_ff_newPHS_lowSLA_SAND_cn32.clm2.h1.2008-2019.nc" # fell field
dm_ncdf_fp <- "clm50bgc_NWT_dm_newPHS_lowSLA_SAND_cn32.clm2.h1.2008-2019.nc" # dry meadow
mm_ncdf_fp <- "clm50bgc_NWT_mm_newPHS_lowSLA.clm2.h1.2008-2019.nc" # moist meadow
wm_ncdf_fp <- "clm50bgc_NWT_wm_newPHS_lowSLA.clm2.h1.2008-2019.nc" # wet meadow
sb_ncdf_fp <- "clm50bgc_NWT_sb_newPHS_lowSLA.clm2.h1.2008-2019.nc" # snow bed
#### Extra Variable Choice ####
# The names of any optional extra variables the user would like to extract
# WARNING: No conversions are made to the units of user-specified optional
# variables
#
# Variables that are extracted by default are:
# "FSH", # sensible heat flux (W/m^2)
# "T10", # temperature at 2m (C)
# "RNET", # net radiation FSA-FIRA (W/m^2)
# "TSOI_2", # Soil temperature (2nd layer; 4cm, 2-6cm layer) (C)
# "TSOI_3", # Soil temperature (3rd layer; 9cm, 6-12cm layer) (C)
# "TSOI_5", # Soil temperature (5th layer; 26cm, 20-32cm layer) (C)
# "H2OSOI_2", # volumetric soil moisture (2nd layer; 4cm, 2-6cm layer) (mm/mm)
# "H2OSOI_3", # volumetric soil moisture (3rd layer; 9cm, 6-12cm layer) (mm/mm),
# "H2OSOI_5", # volumetric soil moisture (5th layer; 26cm, 20-32cm layer) (mm/mm)
# "SNOW_DEPTH", # snow height of snow covered area (cm)
# "EFLX_LH_TOT", # total latent heat flux [+ to atm], (W/m^2)
# "GPP", # Gross primary production (gC/m^2/s)
# "AGNPP", # Aboveground net primary productivity (gC/m^2/s)
# "NPP" # Net primary production(gC/m^2/s))
usr_var <- c("ELAI", "TOTVEGC")
##############################################################################
# Static workflow parameters - these are unlikely to change
##############################################################################
# Create a list of netcdfs for each vegetation community
veg_coms_names <- c("FF", "DM", "WM", "MM", "SB")
ncdf_fp_list <- list(ff_ncdf_fp, dm_ncdf_fp, wm_ncdf_fp, mm_ncdf_fp, sb_ncdf_fp)
names(ncdf_fp_list) <- veg_coms_names
# Remove members of list without simulations
ncdf_fp_list <- ncdf_fp_list[ncdf_fp_list != ""]
# Output subdirector is the DirOutBase + the case_name
DirOut <- paste0(DirOutBase, case_name)
# Create output directory if it doesn't exist
if (!dir.exists(DirOut)) dir.create(DirOut, recursive = TRUE)
# Variables to summarize with mean annual summaries
mean_ann_sum_vars <- c("GPP", "NPP", "ET", "TOTVEGC")
################################################################################
# Helper functions - for downloading and loading data
################################################################################
#---------------read in CLM variables----------------------------------
extract_CLM_vars <- function(infile, vars) {
# Extract variables from netcdf history files
# file = filepath to netcdf file
# vars = the variables to extract from the netcdf file
require(ncdf4)
Data.clm <- nc_open(infile)
# should this not be hard coded? I'm not sure what it does later on, but it's burried in the code now?
print(paste("The file has",Data.clm$nvars,"variables"))
print(paste("The variables are:"))
print(paste(names(Data.clm$var)))
summary(Data.clm)
# If vars is not given, set it to be all the vars in the file
# otherwise, take the user-supplied vars
if(missing(vars)) {
vars <- names(Data.clm$var)
} else {
# Check if vars exist in output, and throw a warning if they don't
if (any(!(vars %in% names(Data.clm$var)))) {
warning(paste0("Cannot load all variables because some do not exist. \n",
"The following variables do not exist in your history file: \n",
paste(vars[which(!(vars %in% names(Data.clm$var)))], collapse = ", ")))
}
}
# list of variables pulled from netcdf
varlist <- vector(length = length(vars), "list")
names(varlist) <- vars
# list of dimensions of those variables
vardim <- vector(length = length(vars), "list")
names(vardim) <- vars
# list of the units for each variable
varunitlist <- vector(length = length(vars), "list")
names(varunitlist) <- vars
# list of the long name of each variable
varlongname <- vector(length = length(vars), "list")
names(varlongname) <- vars
# Load variables and their units into lists; Separate out soil layer and other
# layered variables into separate columns
if (exists("varord")) {rm(varord)}
writeLines("Loading variables into list...")
for (i in seq_along(vars)) {
print(vars[i])
try(vardim[[i]] <- dim(ncvar_get(Data.clm, vars[i])))
# if the variable has 2 dimensions, flatten them into separate columns
if (length(vardim[[i]]) == 2 ) {
print(paste0("Variable ", vars[i], " has ", vardim[[i]][1], " columns."))
try(tmp_var <- ncvar_get(Data.clm, vars[i]))
try(tmp_varunit <- ncatt_get(Data.clm, vars[i], "units"))
try(tmp_varlongname <- ncatt_get(Data.clm, vars[i], "long_name"))
for (j in 1:vardim[[i]][1]) {
tmp_name <- paste0(vars[i], "_", j)
tmp_longname <- tmp_varlongname
varord <- c(varord, tmp_name)
try(varlist[[tmp_name]] <- tmp_var[j,])
try(varunitlist[[tmp_name]] <- tmp_varunit)
if(tmp_longname$hasatt) {
tmp_longname$value <- paste0(tmp_longname$value,
" at level ", j)
# print(paste0("tmp_varlongname has attribute, it is ", tmp_longname$value))
} else {
tmp_longname$value <- NA
}
try(varlongname[[tmp_name]] <- tmp_longname)
}
} else if (exists("varord")) { # otherwise simply add the dimension to the list
#print(paste0("this is the regular loop for 1 dimensional variables"))
varord <- c(varord, vars[i])
try(varlist[[i]] <- ncvar_get(Data.clm, vars[i]))
try(varunitlist[[i]] <- ncatt_get(Data.clm, vars[i], "units"))
try(varlongname[[i]] <- ncatt_get(Data.clm, vars[i], "long_name"))
} else { # for the first variable create the varord vector
#print("this should only happen once, for the first variable")
varord <- vars[i]
try(varlist[[i]] <- ncvar_get(Data.clm, vars[i]))
try(varunitlist[[i]] <- ncatt_get(Data.clm, vars[i], "units"))
try(varlongname[[i]] <- ncatt_get(Data.clm, vars[i], "long_name"))
}
}
# reorder variables
varlist <- varlist[varord]
varunitlist <- varunitlist[varord]
varlongname <- varlongname[varord]
# Optional creation of derived variables if they exist:
# Create net radiation if FSA and FIRA are present
if (("FSA" %in% varord) & ("FIRA" %in% varord)) {
varlist$RNET <- varlist$FSA - varlist$FIRA
varunitlist$RNET <- varunitlist$FSA
varlongname$RNET <- list(hasatt = TRUE, value = "net radiation: FSA-FIRA")
}
nc_close(Data.clm)
# print(mean(GPP)*3600*24*365)
# print(mean(LH))
# case[e]
return(list(data = varlist, units = varunitlist, longname = varlongname))
}
summarize_vars_by_time <- function(var, unitlist, ncdata, veg_com = NA) {
library(dplyr)
library(lubridate)
library(tidyr)
if ( missing(unitlist) ) {
unitlist <- rep("", length(var))
names(unitlist) <- var
}
var.plot.all <- as.data.frame(ncdata[c("mcsec", "mcdate", var)]) %>%
mutate(mcdate = stringr::str_pad(mcdate, width = 8, side = "left", pad = "0"),
date_UTC = as.Date(mcdate, format = "%Y%m%d"),
timestamp_UTC = as.Date(date_UTC, origin = paste0(date, " 00:00:00")) +
lubridate::seconds(mcsec)) %>%
# Convert the timezone
mutate(timestamp = lubridate::with_tz(timestamp_UTC, tzone = "MST"),
date = as.Date(timestamp, tz = "MST"),
Hour = lubridate::hour(timestamp) + lubridate::minute(timestamp)/60,
month = as.factor(lubridate::month(date)),
year = as.factor(lubridate::year(date)),
DoY = lubridate::yday(date)) %>%
# Move time back 30 minutes since timestamp seems to be off
mutate(Hour = Hour - 0.5,
Hour = ifelse(Hour == -0.5, 23.5, Hour)) %>%
select(mcsec, mcdate, timestamp, date, timestamp_UTC, date_UTC, year, month,
DoY, Hour, all_of(var)) %>%
mutate(ObsSim = "Sim") %>%
mutate(veg_com = veg_com)
var.plot.diurnal <- var.plot.all %>%
mutate(MonGroup = ifelse(month %in% c(12,1,2), "DJF",
ifelse(month %in% c(3,4,5), "MAM",
ifelse(month %in% c(6,7,8), "JJA", "SON")))) %>%
group_by(MonGroup, Hour) %>%
mutate(across(all_of(var), .fns = list(houravg = ~mean(., na.rm = TRUE),
hoursd = ~sd(., na.rm = TRUE)))) %>%
ungroup() %>%
select(MonGroup, Hour, contains("houravg"), contains("hoursd")) %>%
unique() %>%
mutate(ObsSim = "Sim") %>%
mutate(veg_com = veg_com)
var.plot.doy <- var.plot.all %>%
group_by(DoY) %>%
mutate(across(all_of(var), .fns = list(doyavg = ~mean(., na.rm = TRUE),
doysd = ~sd(., na.rm = TRUE)))) %>%
ungroup() %>%
select(DoY, contains("doyavg"), contains("doysd")) %>%
unique() %>%
mutate(ObsSim = "Sim") %>%
mutate(veg_com = veg_com)
var.plot.ann <- var.plot.all %>%
group_by(year) %>%
mutate(across(all_of(var), .fns = list(yearavg = ~mean(., na.rm = TRUE),
yearsd = ~sd(., na.rm = TRUE)))) %>%
ungroup() %>%
select(year, contains("yearavg"), contains("yearsd")) %>%
unique() %>%
mutate(ObsSim = "Sim") %>%
mutate(veg_com = veg_com)
return(list(diurnal_seasonal = var.plot.diurnal,
daily = var.plot.doy,
annual = var.plot.ann,
all_wide = var.plot.all))
}
################################################################################
# Extract the CLM variables into an R-friendly format
################################################################################
nc_info_list <- lapply(ncdf_fp_list, function(x) {
writeLines(paste0("Extracting data from ", x))
nc <- extract_CLM_vars(infile = paste0(DirIn, x))
# Subset nc data to only include the time step data
# get list of variables that are not recorded each time step
run_data_names <- sapply(nc$data, function(i) length(i) < length(nc$data$nstep))
run_data <- nc$data[!run_data_names]
# list of variable units
run_units <- sapply(names(run_data), function(x) ifelse(nc$units[[x]]$hasatt,
nc$units[[x]]$value,
NA))
run_units <- data.frame(t(run_units), stringsAsFactors = FALSE)
# list of variable descriptions
run_longname <- sapply(names(run_data), function(x) nc$longname[[x]]$value)
run_longname <- data.frame(t(run_longname), stringsAsFactors = FALSE)
nc_info <- list(run_data = run_data,
run_units = run_units,
run_longname = run_longname)
return(nc_info)
}
)
################################################################################
# Unit conversions
################################################################################
nc_info_list <- lapply(nc_info_list, function(x) {
# Convert all Kelvin temperatures to Celsius
# find variables with "temperature" in the longname, then subset those to variables
# with units of K
temperature_vars <- grep("temperature", x$run_longname)
temperature_vars <- temperature_vars[grepl("K", x$run_units[temperature_vars])]
writeLines("Converting Kelvin variables to Celsius")
for (i in seq_along(temperature_vars)) {
#print(x$run_longname[temperature_vars[i]])
#print(x$run_units[temperature_vars[i]])
x$run_data[[temperature_vars[i]]] <- x$run_data[[temperature_vars[i]]] - 273.15
x$run_units[temperature_vars[i]] <- "C"
}
# Convert all snow depth into cm
writeLines("Converting SNOW_DEPTH from m to cm")
x$run_data[["SNOW_DEPTH"]] <- x$run_data[["SNOW_DEPTH"]] * 100 # from m to cm
x$run_units["SNOW_DEPTH"] <- "cm"
# Convert soil moisture into percent
soilmoist_vars <- grep("H2OSOI", names(x$run_longname))
writeLines("Converting soil moisture from ratio to %")
for (i in seq_along(soilmoist_vars)) {
x$run_data[[soilmoist_vars[i]]] <- x$run_data[[soilmoist_vars[i]]] * 100
x$run_units[soilmoist_vars[i]] <- "% mm/mm"
}
return(x)
})
################################################################################
# Summarize clm variables at different time chunks (i.e. diurnally, hourly etc.)
################################################################################
nc_format_list <- lapply(names(nc_info_list), function(x, opt_var = usr_var) {
writeLines(paste0("For each vegetation community we are selecting variables to compare to obs",
"and creating diurnal, daily, and annual summaries of them"))
# Set up veg_com variable based on list name
veg_com <- x
# Set up nc_info object
nc_info <- nc_info_list[[x]]
# Select variables to pull from model if missing above
var <- c("FSH", # sensible heat flux (W/m^2)
"T10", # temperature at 2m (C)
"RNET", # net radiation FSA-FIRA (W/m^2)
"TSOI_2", # Soil temperature (2nd layer; 4cm, 2-6cm layer) (C)
"TSOI_3", # Soil temperature (3rd layer; 9cm, 6-12cm layer) (C)
"TSOI_5", # Soil temperature (5th layer; 26cm, 20-32cm layer) (C)
"H2OSOI_2", # volumetric soil moisture (2nd layer; 4cm, 2-6cm layer) (mm/mm)
"H2OSOI_3", # volumetric soil moisture (3rd layer; 9cm, 6-12cm layer) (mm/mm),
"H2OSOI_5", # volumetric soil moisture (5th layer; 26cm, 20-32cm layer) (mm/mm)
"SNOW_DEPTH", # snow height of snow covered area (cm)
"EFLX_LH_TOT", # total latent heat flux [+ to atm], (W/m^2)
"GPP", # Gross primary production (gC/m^2/s)
"AGNPP", # Aboveground net primary productivity (gC/m^2/s)
"NPP") # Net primary production(gC/m^2/s))
# add any user-specified optional variables that are not already in var
var <- c(var, opt_var[!(opt_var %in% var)])
# Select the appropriate soil layers for comparison
if (veg_com == "FF") {
var <- var[!grepl("SOI.{1,}2", var)] # FF is measured at 10cm depth (drop unused variables)
} else {
var <- var[!grepl("SOI.{1,}3", var)] # all other communities measured at 5cm (drop unused variables)
}
# get the units associated with the variables
unitlist <- nc_info$run_units[var]
writeLines("Selected Variables are: ")
for (i in seq_along(var)) {
variable <- var[i]
writeLines(paste0(variable, ": ", nc_info$run_longname[variable], " (",
nc_info$run_units[variable], ")"))
}
# Extract the three time summaries of the variables
writeLines(paste0("Extracting the three time summaries of the ", veg_com, " data"))
nc_format <- summarize_vars_by_time(var = var,
unitlist = unitlist,
ncdata = nc_info$run_data,
veg_com = veg_com)
# Change the names of the soil variables to "upper" and "lower" so that FF data can
# be combined with all other veg communities later
nc_format <- lapply(nc_format, function(x) {
names(x) <- sub("_5_", "_lower_", names(x))
names(x) <- sub("_3_|_2_", "_upper_", names(x))
return(x)
})
# Add the unitlist to nc_format
nc_format$unilist <- unitlist
return(nc_format)
})
names(nc_format_list) <- names(nc_info_list)
################################################################################
# Concatenate Vegetation Community data
################################################################################
# Create list to hold the concatenated data
nc_format <- vector(mode = "list", length = 4)
names(nc_format) <- c("diurnal_seasonal", "daily", "annual", "all_wide")
# Concatenate data
nc_format$diurnal_seasonal <- do.call(bind_rows, lapply(nc_format_list, function(x) {x$diurnal_seasonal}))
nc_format$daily <- do.call(bind_rows, lapply(nc_format_list, function(x) {x$daily}))
nc_format$annual <- do.call(bind_rows, lapply(nc_format_list, function(x) {x$annual}))
nc_format$all_wide <- do.call(bind_rows, lapply(nc_format_list, function(x) {x$all_wide}))
################################################################################
# Produce basic summaries of simulation data
################################################################################
# Mean annual summaries
mean_ann_sum <- nc_format$annual %>%
group_by(veg_com) %>%
select(veg_com, starts_with(mean_ann_sum_vars)) %>%
summarize_at(vars(ends_with("_yearavg")), mean, na.rm = TRUE)
write.table(mean_ann_sum,
file = paste0(DirOut, "/Mean_annual_summaries_", paste(mean_ann_sum_vars, collapse = "_"), ".txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
# maximum ELAI summary
max_elai <- nc_format$all_wide %>%
group_by(veg_com, year) %>%
select(veg_com, year, starts_with("ELAI")) %>%
summarize_at(vars(starts_with("ELAI")), max, na.rm = TRUE) %>%
rename(max_ELAI = ELAI) %>%
ungroup() %>%
group_by(veg_com) %>%
mutate(mean_max_ELAI = mean(max_ELAI, na.rm = TRUE))
write.table(max_elai,
file = paste0(DirOut, "/Max_elai_summary.txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
################################################################################
# Write out Simulation data
################################################################################
writeLines("Writing out simulation data")
# Write out diurnal summaries for each season
write.table(nc_format$diurnal_seasonal,
file = paste0(DirOut, "/Diurnal_seasonal_summaries.txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
# Write out daily summaries for each DoY
write.table(nc_format$daily,
file = paste0(DirOut, "/Daily_summaries.txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
# Write out annual summaries for each year
write.table(nc_format$annual,
file = paste0(DirOut, "/Annual_summaries.txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
# Write out 30-minute data
write.table(nc_format$all_wide,
file = paste0(DirOut, "/Unsummarized_30min.txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
# Write out unit definitions for each vegetation community (they should all have the same units)
lapply(veg_coms_names, function(x) {
write.table(nc_format_list[[x]]$unitlist,
file = paste0(DirOut, "/Unit_Definitions_", x, ".txt"),
col.names = TRUE, row.names = FALSE, sep = "\t")
} )
# #####################################################################################
# model data have been processed for plotting & comparison with observations
# Move onto the `plot_obs_sim_comparisons.R` script
# #####################################################################################
print('script complete')
DirOut
## !! FF and DM results are from clm50bgc_NWT_newPHS_lowSLA_SAND_cn32 !!