This repository has been archived by the owner on Jan 8, 2025. It is now read-only.
forked from lineage-rpi/android_hardware_intel_sensors-iio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenumeration.c
1187 lines (980 loc) · 32.5 KB
/
enumeration.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
// Copyright (c) 2015 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <ctype.h>
#include <dirent.h>
#include <stdlib.h>
#include <fcntl.h>
#include <utils/Log.h>
#include <sys/stat.h>
#include <hardware/sensors.h>
#include "enumeration.h"
#include "description.h"
#include "utils.h"
#include "transform.h"
#include "description.h"
#include "control.h"
#include "calibration.h"
#include <errno.h>
/*
* This table maps syfs entries in scan_elements directories to sensor types,
* and will also be used to determine other sysfs names as well as the iio
* device number associated to a specific sensor.
*/
/*
* We duplicate entries for the uncalibrated types after their respective base
* sensor. This is because all sensor entries must have an associated catalog entry
* and also because when only the uncal sensor is active it needs to take it's data
* from the same iio device as the base one.
*/
sensor_catalog_entry_t sensor_catalog[] = {
{
.tag = "accel",
.shorthand = "",
.type = SENSOR_TYPE_ACCELEROMETER,
.num_channels = 3,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("accel", "x") },
{ DECLARE_NAMED_CHANNEL("accel", "y") },
{ DECLARE_NAMED_CHANNEL("accel", "z") },
},
},
{
.tag = "anglvel",
.shorthand = "",
.type = SENSOR_TYPE_GYROSCOPE,
.num_channels = 3,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("anglvel", "x") },
{ DECLARE_NAMED_CHANNEL("anglvel", "y") },
{ DECLARE_NAMED_CHANNEL("anglvel", "z") },
},
},
{
.tag = "magn",
.shorthand = "",
.type = SENSOR_TYPE_MAGNETIC_FIELD,
.num_channels = 3,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("magn", "x") },
{ DECLARE_NAMED_CHANNEL("magn", "y") },
{ DECLARE_NAMED_CHANNEL("magn", "z") },
},
},
{
.tag = "intensity",
.shorthand = "",
.type = SENSOR_TYPE_INTERNAL_INTENSITY,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("intensity", "both") },
},
},
{
.tag = "illuminance",
.shorthand = "",
.type = SENSOR_TYPE_INTERNAL_ILLUMINANCE,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("illuminance") },
},
},
{
.tag = "incli",
.shorthand = "",
.type = SENSOR_TYPE_ORIENTATION,
.num_channels = 3,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("incli", "x") },
{ DECLARE_NAMED_CHANNEL("incli", "y") },
{ DECLARE_NAMED_CHANNEL("incli", "z") },
},
},
{
.tag = "rot",
.shorthand = "",
.type = SENSOR_TYPE_ROTATION_VECTOR,
.num_channels = 4,
.is_virtual = 0,
.channel = {
{ DECLARE_NAMED_CHANNEL("rot", "quat_x") },
{ DECLARE_NAMED_CHANNEL("rot", "quat_y") },
{ DECLARE_NAMED_CHANNEL("rot", "quat_z") },
{ DECLARE_NAMED_CHANNEL("rot", "quat_w") },
},
},
{
.tag = "temp",
.shorthand = "",
.type = SENSOR_TYPE_AMBIENT_TEMPERATURE,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("temp") },
},
},
{
.tag = "pressure",
.shorthand = "",
.type = SENSOR_TYPE_PRESSURE,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("pressure") },
},
},
{
.tag = "humidity",
.shorthand = "",
.type = SENSOR_TYPE_RELATIVE_HUMIDITY,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("humidityrelative") },
},
},
{
.tag = "proximity",
.shorthand = "prox",
.type = SENSOR_TYPE_PROXIMITY,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("proximity") },
},
},
{
.tag = "",
.shorthand = "",
.type = SENSOR_TYPE_GYROSCOPE_UNCALIBRATED,
.num_channels = 0,
.is_virtual = 1,
.channel = {
{ DECLARE_GENERIC_CHANNEL("") },
},
},
{
.tag = "",
.shorthand = "",
.type = SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED,
.num_channels = 0,
.is_virtual = 1,
.channel = {
{ DECLARE_GENERIC_CHANNEL("") },
},
},
{
.tag = "steps",
.shorthand = "",
.type = SENSOR_TYPE_STEP_COUNTER,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{ DECLARE_GENERIC_CHANNEL("steps") },
},
},
{
.tag = "steps",
.shorthand = "",
.type = SENSOR_TYPE_STEP_DETECTOR,
.num_channels = 1,
.is_virtual = 0,
.channel = {
{
DECLARE_VOID_CHANNEL("steps")
.num_events = 1,
.event = {
{ DECLARE_NAMED_EVENT("steps", "change") },
},
},
},
},
{
.tag = "proximity",
.shorthand = "prox",
.type = SENSOR_TYPE_PROXIMITY,
.num_channels = 4,
.is_virtual = 0,
.channel = {
{
DECLARE_VOID_CHANNEL("proximity0")
.num_events = 1,
.event = {
{ DECLARE_EVENT("proximity0", "_", "", "", "thresh", "_", "either") },
},
},
{
DECLARE_VOID_CHANNEL("proximity1")
.num_events = 1,
.event = {
{ DECLARE_EVENT("proximity1", "_", "", "", "thresh", "_", "either") },
},
},
{
DECLARE_VOID_CHANNEL("proximity2")
.num_events = 1,
.event = {
{ DECLARE_EVENT("proximity2", "_", "", "", "thresh", "_", "either") },
},
},
{
DECLARE_VOID_CHANNEL("proximity3")
.num_events = 1,
.event = {
{ DECLARE_EVENT("proximity3", "_", "", "", "thresh", "_", "either") },
},
},
},
},
};
unsigned int catalog_size = ARRAY_SIZE(sensor_catalog);
/* ACPI PLD (physical location of device) definitions, as used with sensors */
#define PANEL_FRONT 4
#define PANEL_BACK 5
/* Buffer default length */
#define BUFFER_LENGTH 16
/* We equate sensor handles to indices in these tables */
struct sensor_t sensor_desc[MAX_SENSORS]; /* Android-level descriptors */
sensor_info_t sensor[MAX_SENSORS]; /* Internal descriptors */
int sensor_count; /* Detected sensors */
/* if the sensor has an _en attribute, we need to enable it */
int get_needs_enable(int dev_num, const char *tag)
{
char sysfs_path[PATH_MAX];
int fd;
sprintf(sysfs_path, SENSOR_ENABLE_PATH, dev_num, tag);
fd = open(sysfs_path, O_RDWR);
if (fd == -1)
return 0;
close(fd);
return 1;
}
static void setup_properties_from_pld (int s, int panel, int rotation,
int num_channels)
{
/*
* Generate suitable order and opt_scale directives from the PLD panel
* and rotation codes we got. This can later be superseded by the usual
* properties if necessary. Eventually we'll need to replace these
* mechanisms by a less convoluted one, such as a 3x3 placement matrix.
*/
int x = 1;
int y = 1;
int z = 1;
int xy_swap = 0;
int angle = rotation * 45;
/* Only deal with 3 axis chips for now */
if (num_channels < 3)
return;
if (panel == PANEL_BACK) {
/* Chip placed on the back panel ; negate x and z */
x = -x;
z = -z;
}
switch (angle) {
case 90: /* 90° clockwise: negate y then swap x,y */
xy_swap = 1;
y = -y;
break;
case 180: /* Upside down: negate x and y */
x = -x;
y = -y;
break;
case 270: /* 90° counter clockwise: negate x then swap x,y */
x = -x;
xy_swap = 1;
break;
}
if (xy_swap) {
sensor[s].order[0] = 1;
sensor[s].order[1] = 0;
sensor[s].order[2] = 2;
sensor[s].quirks |= QUIRK_FIELD_ORDERING;
}
sensor[s].channel[0].opt_scale = x;
sensor[s].channel[1].opt_scale = y;
sensor[s].channel[2].opt_scale = z;
}
static int is_valid_pld (int panel, int rotation)
{
if (panel != PANEL_FRONT && panel != PANEL_BACK) {
ALOGW("Unhandled PLD panel spec: %d\n", panel);
return 0;
}
/* Only deal with 90° rotations for now */
if (rotation < 0 || rotation > 7 || (rotation & 1)) {
ALOGW("Unhandled PLD rotation spec: %d\n", rotation);
return 0;
}
return 1;
}
static int read_pld_from_properties (int s, int* panel, int* rotation)
{
int p, r;
if (sensor_get_prop(s, "panel", &p))
return -1;
if (sensor_get_prop(s, "rotation", &r))
return -1;
if (!is_valid_pld(p, r))
return -1;
*panel = p;
*rotation = r;
ALOGI("S%d PLD from properties: panel=%d, rotation=%d\n", s, p, r);
return 0;
}
static int read_pld_from_sysfs (int s, int dev_num, int* panel, int* rotation)
{
char sysfs_path[PATH_MAX];
int p,r;
sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/panel", dev_num);
if (sysfs_read_int(sysfs_path, &p))
return -1;
sprintf(sysfs_path, BASE_PATH "../firmware_node/pld/rotation", dev_num);
if (sysfs_read_int(sysfs_path, &r))
return -1;
if (!is_valid_pld(p, r))
return -1;
*panel = p;
*rotation = r;
ALOGI("S%d PLD from sysfs: panel=%d, rotation=%d\n", s, p, r);
return 0;
}
static void decode_placement_information (int dev_num, int num_channels, int s)
{
/*
* See if we have optional "physical location of device" ACPI tags.
* We're only interested in panel and rotation specifiers. Use the
* .panel and .rotation properties in priority, and the actual ACPI
* values as a second source.
*/
int panel;
int rotation;
if (read_pld_from_properties(s, &panel, &rotation) &&
read_pld_from_sysfs(s, dev_num, &panel, &rotation))
return; /* No PLD data available */
/* Map that to field ordering and scaling mechanisms */
setup_properties_from_pld(s, panel, rotation, num_channels);
}
static int map_internal_to_external_type (int sensor_type)
{
/* Most sensors are internally identified using the Android type, but for some we use a different type specification internally */
switch (sensor_type) {
case SENSOR_TYPE_INTERNAL_ILLUMINANCE:
case SENSOR_TYPE_INTERNAL_INTENSITY:
return SENSOR_TYPE_LIGHT;
default:
return sensor_type;
}
}
static void populate_descriptors (int s, int sensor_type)
{
int32_t min_delay_us;
max_delay_t max_delay_us;
/* Initialize Android-visible descriptor */
sensor_desc[s].name = sensor_get_name(s);
sensor_desc[s].vendor = sensor_get_vendor(s);
sensor_desc[s].version = sensor_get_version(s);
sensor_desc[s].handle = s;
sensor_desc[s].type = map_internal_to_external_type(sensor_type);
sensor_desc[s].maxRange = sensor_get_max_range(s);
sensor_desc[s].resolution = sensor_get_resolution(s);
sensor_desc[s].power = sensor_get_power(s);
sensor_desc[s].stringType = sensor_get_string_type(s);
/* None of our supported sensors requires a special permission */
sensor_desc[s].requiredPermission = "";
sensor_desc[s].flags = sensor_get_flags(s);
sensor_desc[s].minDelay = sensor_get_min_delay(s);
sensor_desc[s].maxDelay = sensor_get_max_delay(s);
ALOGV("Sensor %d (%s) type(%d) minD(%d) maxD(%zd) flags(%2.2zx)\n",
s, sensor[s].friendly_name, sensor_desc[s].type,
sensor_desc[s].minDelay, sensor_desc[s].maxDelay,
sensor_desc[s].flags);
/* We currently do not implement batching */
sensor_desc[s].fifoReservedEventCount = 0;
sensor_desc[s].fifoMaxEventCount = 0;
min_delay_us = sensor_desc[s].minDelay;
max_delay_us = sensor_desc[s].maxDelay;
sensor[s].min_supported_rate = max_delay_us ? 1000000.0 / max_delay_us : 1;
sensor[s].max_supported_rate = min_delay_us && min_delay_us != -1 ? 1000000.0 / min_delay_us : 0;
}
static void add_virtual_sensor (int catalog_index)
{
int s;
int sensor_type;
if (sensor_count == MAX_SENSORS) {
ALOGE("Too many sensors!\n");
return;
}
sensor_type = sensor_catalog[catalog_index].type;
s = sensor_count;
sensor[s].is_virtual = 1;
sensor[s].catalog_index = catalog_index;
sensor[s].type = sensor_type;
populate_descriptors(s, sensor_type);
/* Initialize fields related to sysfs reads offloading */
sensor[s].thread_data_fd[0] = -1;
sensor[s].thread_data_fd[1] = -1;
sensor[s].acquisition_thread = -1;
sensor_count++;
}
static int add_sensor (int dev_num, int catalog_index, int mode)
{
int s;
int sensor_type;
int retval;
char sysfs_path[PATH_MAX];
const char* prefix;
float scale;
int c;
float opt_scale;
const char* ch_name;
int num_channels;
char suffix[MAX_NAME_SIZE + 8];
int calib_bias;
int buffer_length;
if (sensor_count == MAX_SENSORS) {
ALOGE("Too many sensors!\n");
return -1;
}
sensor_type = sensor_catalog[catalog_index].type;
/*
* At this point we could check that the expected sysfs attributes are
* present ; that would enable having multiple catalog entries with the
* same sensor type, accomodating different sets of sysfs attributes.
*/
s = sensor_count;
sensor[s].dev_num = dev_num;
sensor[s].catalog_index = catalog_index;
sensor[s].type = sensor_type;
sensor[s].mode = mode;
sensor[s].trigger_nr = -1; /* -1 means no trigger - we'll populate these at a later time */
num_channels = sensor_catalog[catalog_index].num_channels;
if (mode == MODE_POLL)
sensor[s].num_channels = 0;
else
sensor[s].num_channels = num_channels;
/* Populate the quirks array */
sensor_get_quirks(s);
/* Reject interfaces that may have been disabled through a quirk for this driver */
if ((mode == MODE_EVENT && (sensor[s].quirks & QUIRK_NO_EVENT_MODE)) ||
(mode == MODE_TRIGGER && (sensor[s].quirks & QUIRK_NO_TRIG_MODE )) ||
(mode == MODE_POLL && (sensor[s].quirks & QUIRK_NO_POLL_MODE ))) {
memset(&sensor[s], 0, sizeof(sensor[0]));
return -1;
}
prefix = sensor_catalog[catalog_index].tag;
/*
* receiving the illumination sensor calibration inputs from
* the Android properties and setting it within sysfs
*/
if (sensor_type == SENSOR_TYPE_INTERNAL_ILLUMINANCE) {
retval = sensor_get_illumincalib(s);
if (retval > 0) {
sprintf(sysfs_path, ILLUMINATION_CALIBPATH, dev_num);
sysfs_write_int(sysfs_path, retval);
}
}
/*
* See if we have optional calibration biases for each of the channels of this sensor. These would be expressed using properties like
* iio.accel.y.calib_bias = -1, or possibly something like iio.temp.calib_bias if the sensor has a single channel. This value gets stored in the
* relevant calibbias sysfs file if that file can be located and then used internally by the iio sensor driver.
*/
if (num_channels) {
for (c = 0; c < num_channels; c++) {
ch_name = sensor_catalog[catalog_index].channel[c].name;
sprintf(suffix, "%s.calib_bias", ch_name);
if (!sensor_get_prop(s, suffix, &calib_bias) && calib_bias) {
sprintf(suffix, "%s_%s", prefix, sensor_catalog[catalog_index].channel[c].name);
sprintf(sysfs_path, SENSOR_CALIB_BIAS_PATH, dev_num, suffix);
sysfs_write_int(sysfs_path, calib_bias);
}
}
} else
if (!sensor_get_prop(s, "calib_bias", &calib_bias) && calib_bias) {
sprintf(sysfs_path, SENSOR_CALIB_BIAS_PATH, dev_num, prefix);
sysfs_write_int(sysfs_path, calib_bias);
}
/* Change buffer length according to the property or use default value */
if (mode == MODE_TRIGGER) {
if (sensor_get_prop(s, "buffer_length", &buffer_length)) {
buffer_length = BUFFER_LENGTH;
}
sprintf(sysfs_path, BUFFER_LENGTH_PATH, dev_num);
if (sysfs_write_int(sysfs_path, buffer_length) <= 0) {
ALOGE("Failed to set buffer length on dev%d", dev_num);
}
}
/* Read name attribute, if available */
sprintf(sysfs_path, NAME_PATH, dev_num);
sysfs_read_str(sysfs_path, sensor[s].internal_name, INTERNAL_NAME_SIZE);
/* See if we have general offsets and scale values for this sensor */
sprintf(sysfs_path, SENSOR_OFFSET_PATH, dev_num, prefix);
sysfs_read_float(sysfs_path, &sensor[s].offset);
sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
if (!sensor_get_fl_prop(s, "scale", &scale)) {
/*
* There is a chip preferred scale specified,
* so try to store it in sensor's scale file
*/
if (sysfs_write_float(sysfs_path, scale) == -1 && errno == ENOENT) {
ALOGE("Failed to store scale[%g] into %s - file is missing", scale, sysfs_path);
/* Store failed, try to store the scale into channel specific file */
for (c = 0; c < num_channels; c++)
{
sprintf(sysfs_path, BASE_PATH "%s", dev_num,
sensor_catalog[catalog_index].channel[c].scale_path);
if (sysfs_write_float(sysfs_path, scale) == -1)
ALOGE("Failed to store scale[%g] into %s", scale, sysfs_path);
}
}
}
sprintf(sysfs_path, SENSOR_SCALE_PATH, dev_num, prefix);
if (!sysfs_read_float(sysfs_path, &scale)) {
sensor[s].scale = scale;
ALOGV("Scale path:%s scale:%g dev_num:%d\n",
sysfs_path, scale, dev_num);
} else {
sensor[s].scale = 1;
/* Read channel specific scale if any*/
for (c = 0; c < num_channels; c++)
{
sprintf(sysfs_path, BASE_PATH "%s", dev_num,
sensor_catalog[catalog_index].channel[c].scale_path);
if (!sysfs_read_float(sysfs_path, &scale)) {
sensor[s].channel[c].scale = scale;
sensor[s].scale = 0;
ALOGV( "Scale path:%s "
"channel scale:%g dev_num:%d\n",
sysfs_path, scale, dev_num);
}
}
}
/* Set default scaling - if num_channels is zero, we have one channel */
sensor[s].channel[0].opt_scale = 1;
for (c = 1; c < num_channels; c++)
sensor[s].channel[c].opt_scale = 1;
for (c = 0; c < num_channels; c++) {
/* Check the presence of the channel's input_path */
sprintf(sysfs_path, BASE_PATH "%s", dev_num,
sensor_catalog[catalog_index].channel[c].input_path);
sensor[s].channel[c].input_path_present = (access(sysfs_path, R_OK) != -1);
/* Check the presence of the channel's raw_path */
sprintf(sysfs_path, BASE_PATH "%s", dev_num,
sensor_catalog[catalog_index].channel[c].raw_path);
sensor[s].channel[c].raw_path_present = (access(sysfs_path, R_OK) != -1);
}
sensor_get_available_frequencies(s);
if (sensor_get_mounting_matrix(s, sensor[s].mounting_matrix))
sensor[s].quirks |= QUIRK_MOUNTING_MATRIX;
else
/* Read ACPI _PLD attributes for this sensor, if there are any */
decode_placement_information(dev_num, num_channels, s);
/*
* See if we have optional correction scaling factors for each of the
* channels of this sensor. These would be expressed using properties
* like iio.accel.y.opt_scale = -1. In case of a single channel we also
* support things such as iio.temp.opt_scale = -1. Note that this works
* for all types of sensors, and whatever transform is selected, on top
* of any previous conversions.
*/
if (num_channels) {
for (c = 0; c < num_channels; c++) {
ch_name = sensor_catalog[catalog_index].channel[c].name;
sprintf(suffix, "%s.opt_scale", ch_name);
if (!sensor_get_fl_prop(s, suffix, &opt_scale))
sensor[s].channel[c].opt_scale = opt_scale;
}
} else {
if (!sensor_get_fl_prop(s, "opt_scale", &opt_scale))
sensor[s].channel[0].opt_scale = opt_scale;
}
populate_descriptors(s, sensor_type);
if (sensor[s].internal_name[0] == '\0') {
/*
* In case the kernel-mode driver doesn't expose a name for
* the iio device, use (null)-dev%d as the trigger name...
* This can be considered a kernel-mode iio driver bug.
*/
ALOGW("Using null trigger on sensor %d (dev %d)\n", s, dev_num);
strcpy(sensor[s].internal_name, "(null)");
}
switch (sensor_type) {
case SENSOR_TYPE_ACCELEROMETER:
/* Only engage accelerometer bias compensation if really needed */
if (sensor_get_quirks(s) & QUIRK_BIASED)
sensor[s].cal_data = calloc(1, sizeof(accel_cal_t));
break;
case SENSOR_TYPE_GYROSCOPE:
sensor[s].cal_data = malloc(sizeof(gyro_cal_t));
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
sensor[s].cal_data = malloc(sizeof(compass_cal_t));
break;
}
sensor[s].max_cal_level = sensor_get_cal_steps(s);
/* Select one of the available sensor sample processing styles */
select_transform(s);
/* Initialize fields related to sysfs reads offloading */
sensor[s].thread_data_fd[0] = -1;
sensor[s].thread_data_fd[1] = -1;
sensor[s].acquisition_thread = -1;
/* Check if we have a special ordering property on this sensor */
if (sensor_get_order(s, sensor[s].order))
sensor[s].quirks |= QUIRK_FIELD_ORDERING;
sensor[s].needs_enable = get_needs_enable(dev_num, sensor_catalog[catalog_index].tag);
sensor_count++;
return 0;
}
static void virtual_sensors_check (void)
{
int i;
int has_acc = 0;
int has_gyr = 0;
int has_mag = 0;
int has_rot = 0;
int has_ori = 0;
int gyro_cal_idx = 0;
int magn_cal_idx = 0;
unsigned int j;
for (i=0; i<sensor_count; i++)
switch (sensor[i].type) {
case SENSOR_TYPE_ACCELEROMETER:
has_acc = 1;
break;
case SENSOR_TYPE_GYROSCOPE:
has_gyr = 1;
gyro_cal_idx = i;
break;
case SENSOR_TYPE_MAGNETIC_FIELD:
has_mag = 1;
magn_cal_idx = i;
break;
case SENSOR_TYPE_ORIENTATION:
has_ori = 1;
break;
case SENSOR_TYPE_ROTATION_VECTOR:
has_rot = 1;
break;
}
for (j=0; j<catalog_size; j++)
switch (sensor_catalog[j].type) {
/*
* If we have accel + gyro + magn but no rotation vector sensor,
* SensorService replaces the HAL provided orientation sensor by the
* AOSP version... provided we report one. So initialize a virtual
* orientation sensor with zero values, which will get replaced. See:
* frameworks/native/services/sensorservice/SensorService.cpp, looking
* for SENSOR_TYPE_ROTATION_VECTOR; that code should presumably fall
* back to mUserSensorList.add instead of replaceAt, but accommodate it.
*/
case SENSOR_TYPE_ORIENTATION:
if (has_acc && has_gyr && has_mag && !has_rot && !has_ori)
add_sensor(0, j, MODE_POLL);
break;
case SENSOR_TYPE_GYROSCOPE_UNCALIBRATED:
if (has_gyr) {
sensor[sensor_count].base_count = 1;
sensor[sensor_count].base[0] = gyro_cal_idx;
add_virtual_sensor(j);
}
break;
case SENSOR_TYPE_MAGNETIC_FIELD_UNCALIBRATED:
if (has_mag) {
sensor[sensor_count].base_count = 1;
sensor[sensor_count].base[0] = magn_cal_idx;
add_virtual_sensor(j);
}
break;
default:
break;
}
}
static void propose_new_trigger (int s, char trigger_name[MAX_NAME_SIZE],
int sensor_name_len)
{
/*
* A new trigger has been enumerated for this sensor. Check if it makes sense to use it over the currently selected one,
* and select it if it is so. The format is something like sensor_name-dev0.
*/
const char *suffix = trigger_name + sensor_name_len + 1;
/* dev is the default, and lowest priority; no need to update */
if (!memcmp(suffix, "dev", 3))
return;
/* If we found any-motion trigger, record it */
if (!memcmp(suffix, "any-motion-", 11)) {
strcpy(sensor[s].motion_trigger_name, trigger_name);
return;
}
/* If we found a hrtimer trigger, record it */
if (!memcmp(suffix, "hr-dev", 6)) {
strcpy(sensor[s].hrtimer_trigger_name, trigger_name);
return;
}
/*
* It's neither the default "dev" nor an "any-motion" one. Make sure we use this though, as we may not have any other indication of the name
* of the trigger to use with this sensor.
*/
strcpy(sensor[s].init_trigger_name, trigger_name);
}
static void update_sensor_matching_trigger_name (char name[MAX_NAME_SIZE], int* updated, int trigger)
{
/*
* Check if we have a sensor matching the specified trigger name, which should then begin with the sensor name, and end with a number
* equal to the iio device number the sensor is associated to. If so, update the string we're going to write to trigger/current_trigger
* when enabling this sensor.
*/
int s;
int dev_num;
int len;
char* cursor;
int sensor_name_len;
/*
* First determine the iio device number this trigger refers to. We expect the last few characters (typically one) of the trigger name
* to be this number, so perform a few checks.
*/
len = strnlen(name, MAX_NAME_SIZE);
if (len < 2)
return;
cursor = name + len - 1;
if (!isdigit(*cursor))
return;
while (len && isdigit(*cursor)) {
len--;
cursor--;
}
dev_num = atoi(cursor+1);
/* See if that matches a sensor */
for (s=0; s<sensor_count; s++)
if (sensor[s].dev_num == dev_num) {
sensor_name_len = strlen(sensor[s].internal_name);
if (!strncmp(name, sensor[s].internal_name, sensor_name_len))
/* Switch to new trigger if appropriate */
propose_new_trigger(s, name, sensor_name_len);
updated[s] = 1;
sensor[s].trigger_nr = trigger;
}
}
extern float sensor_get_max_static_freq(int s);
extern float sensor_get_min_freq (int s);
static int create_hrtimer_trigger(int s, int trigger)
{
struct stat dir_status;
char buf[MAX_NAME_SIZE];
char hrtimer_path[PATH_MAX];
char hrtimer_name[MAX_NAME_SIZE];
float min_supported_rate = 1, min_rate_cap, max_supported_rate;
snprintf(buf, MAX_NAME_SIZE, "hrtimer-%s-hr-dev%d", sensor[s].internal_name, sensor[s].dev_num);
snprintf(hrtimer_name, MAX_NAME_SIZE, "%s-hr-dev%d", sensor[s].internal_name, sensor[s].dev_num);
snprintf(hrtimer_path, PATH_MAX, "%s%s", CONFIGFS_TRIGGER_PATH, buf);
/* Get parent dir status */
if (stat(CONFIGFS_TRIGGER_PATH, &dir_status))
return -1;
/* Create hrtimer with the same access rights as it's parent */
if (mkdir(hrtimer_path, dir_status.st_mode))
if (errno != EEXIST)
return -1;
strncpy (sensor[s].hrtimer_trigger_name, hrtimer_name, MAX_NAME_SIZE);
sensor[s].trigger_nr = trigger;
max_supported_rate = sensor_get_max_static_freq(s);
/* set 0 for wrong values */
if (max_supported_rate < 0.1) {
max_supported_rate = 0;
}
sensor[s].max_supported_rate = max_supported_rate;
sensor_desc[s].minDelay = max_supported_rate ? (int32_t) (1000000.0 / max_supported_rate) : 0;
/* Check if a minimum rate was specified for this sensor */
min_rate_cap = sensor_get_min_freq(s);
if (min_supported_rate < min_rate_cap) {
min_supported_rate = min_rate_cap;
}
sensor[s].min_supported_rate = min_supported_rate;
sensor_desc[s].maxDelay = (max_delay_t) (1000000.0 / min_supported_rate);
return 0;
}
static void setup_trigger_names (void)
{
char filename[PATH_MAX];
char buf[MAX_NAME_SIZE];
int s;
int trigger;
int ret;
int updated[MAX_SENSORS] = {0};
/* By default, use the name-dev convention that most drivers use */
for (s=0; s<sensor_count; s++)
snprintf(sensor[s].init_trigger_name, MAX_NAME_SIZE, "%s-dev%d", sensor[s].internal_name, sensor[s].dev_num);
/* Now have a look to /sys/bus/iio/devices/triggerX entries */
for (trigger=0; trigger<MAX_TRIGGERS; trigger++) {
snprintf(filename, sizeof(filename), TRIGGER_FILE_PATH, trigger);
ret = sysfs_read_str(filename, buf, sizeof(buf));
if (ret < 0)
break;
/* Record initial and any-motion triggers names */
update_sensor_matching_trigger_name(buf, updated, trigger);
}
/* If we don't have any other trigger exposed and quirk hrtimer is set setup the hrtimer name here - and create it also */
for (s=0; s<sensor_count && trigger<MAX_TRIGGERS; s++) {
if ((sensor[s].quirks & QUIRK_HRTIMER) && !updated[s]) {