forked from mbadry1/Trending-Deep-Learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
140 lines (112 loc) · 3.86 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Imports
import numpy as np
import pandas as pd
from github import Github
from terminaltables import AsciiTable
from terminaltables import GithubFlavoredMarkdownTable
import pickle
import codecs
import urllib.parse as urlparse # For url parsing
from datetime import datetime, timedelta
from IPython.display import clear_output
# Functions
def get_last_stargazers_page_number(stargazers):
"""
stargazers: List of stargazers output of pygithub package
"""
url = stargazers._getLastPageUrl()
if url is None:
return 0
page_num = int(urlparse.parse_qs(urlparse.urlparse(url).query)['page'][0])
return page_num
def get_stars_count_in_last_days(rep, days, print_user=True):
"""
rep: Object of github repository which was made by pygithub package
days: int, number of last days to get the count at.
"""
last_stargazers_page_num = get_last_stargazers_page_number(rep.get_stargazers())
if print_user:
print("Number of stargazzers:",last_stargazers_page_num)
last_day = True
total_count = 0
for page_num in range(last_stargazers_page_num-1, -1, -1):
stargazers = rep.get_stargazers_with_dates().get_page(page_num)[::-1]
for star in stargazers:
if datetime.now() - star.starred_at < timedelta(days=days):
total_count += 1
if print_user:
print(star.starred_at, star.user)
# print(star)
else:
last_day = False
break
if not last_day:
break
return total_count
def pandas_table_to_nested_list(df):
"""
Converts pandas table df to nested list
"""
table_data = [["" for x in range(df.shape[1])] for y in range(df.shape[0]+1)]
# Columns names
for i in range(df.shape[1]):
table_data[0][i] = df.columns[i]
for i in range(df.shape[0]):
for j in range(df.shape[1]):
table_data[i+1][j] = df.iat[i, j]
return table_data
# Github object
username = ""
password = ""
g = Github(username, password)
# Settings
query = 'deep-learning OR CNN OR RNN OR "convolutional neural network" OR "recurrent neural network"'
number_of_reps_to_present = 100
number_of_reps_to_check = 1000
days_to_check = 1
biggest_stars_number = 50000 # Because of github limitations!
names_of_props = ["Name", "Description", "Language", "Stars Today", "Total Stars"]
github_server_link = "https://github.com/"
last_tables_file_name = 'last_table_data.pickle'
md_file_name = 'readme.md'
# Symbols
new_symbol = ":new:"
up_symbol = ":arrow_up:"
down_symbol = ":arrow_down:"
same_symbol = ":heavy_minus_sign:"
# Main query
df = pd.DataFrame(columns=names_of_props)
df_count = 0
seach_query = g.search_repositories(query, sort="stars", order="desc")
results = []
for index, rep in enumerate(seach_query):
# print(rep.full_name)
clear_output()
print(index)
if rep.stargazers_count > biggest_stars_number:
continue
link = github_server_link + rep.full_name
starts_count = get_stars_count_in_last_days(rep, days_to_check, print_user=False)
lst = []
lst.append("[{}]({})".format(rep.name, link))
lst.append(rep.description)
lst.append(rep.language)
lst.append(starts_count)
lst.append(rep.stargazers_count)
df.loc[df_count] = lst
df_count += 1
if(index > number_of_reps_to_check-2):
break
# Sorting
df = df.sort_values(by=["Stars Today"], ascending=False)
# Slicing
df = df.iloc[0:number_of_reps_to_present]
# Inserting pos column
df.insert(0, "Pos1", list(range(1, number_of_reps_to_present+1)))
table_data = pandas_table_to_nested_list(df)
# Generating the ascii table
table = GithubFlavoredMarkdownTable(table_data)
table_str = table.table
# Wrting the md file
with codecs.open(md_file_name, "w", "utf-8") as f:
f.write(table_str)