diff --git a/doc/docs/Materials.md b/doc/docs/Materials.md index 39181d251..31897b1dd 100644 --- a/doc/docs/Materials.md +++ b/doc/docs/Materials.md @@ -113,7 +113,7 @@ All of the above features that are supported for the electric permittivity $\var Materials Library ----------------- -A materials library containing commonly used metals in optoelectronic devices is available for [Python](https://github.com/stevengj/meep/tree/master/python/materials_library.py) and [Scheme](https://github.com/stevengj/meep/tree/master/libctl/materials-library.scm). The data is based on results published in [A.D. Rakic et al., Applied Optics, Vol. 37, No. 22, pp. 5271-83 (1998)](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-37-22-5271) [[pdf](http://faculty.kfupm.edu.sa/EE/msunaidi/EE635%20stuff/project%202/p3.pdf)]. Experimental values of the complex refractive index of 11 metals — Ag, Au, Cu, Al, Be, Cr, Ni, Pd, Pt, Ti, W — are fit to a [Drude-Lorentzian susceptibility profile](#material-dispersion) over the broadband spectrum of approximately 0.2 to 12.4 µm. Fitting parameters for the materials are defined for a unit distance of 1 µm. For simulation models which use a *different* value for the unit distance, the predefined variable `eV_um_scale` (Python) or `eV-um-scale` (Scheme) must be rescaled by *multiplying* by whatever the unit distance is, in units of µm. +A materials library containing commonly used metals in optoelectronic devices is available for [Python](https://github.com/stevengj/meep/tree/master/python/examples/materials_library.py) and [Scheme](https://github.com/stevengj/meep/tree/master/examples/materials-library.scm). The data is based on results published in [A.D. Rakic et al., Applied Optics, Vol. 37, No. 22, pp. 5271-83 (1998)](https://www.osapublishing.org/ao/abstract.cfm?uri=ao-37-22-5271) [[pdf](http://faculty.kfupm.edu.sa/EE/msunaidi/EE635%20stuff/project%202/p3.pdf)]. Experimental values of the complex refractive index of 11 metals — Ag, Au, Cu, Al, Be, Cr, Ni, Pd, Pt, Ti, W — are fit to a [Drude-Lorentzian susceptibility profile](#material-dispersion) over the broadband spectrum of approximately 0.2 to 12.4 µm. Fitting parameters for the materials are defined for a unit distance of 1 µm. For simulation models which use a *different* value for the unit distance, the predefined variable `eV_um_scale` (Python) or `eV-um-scale` (Scheme) must be rescaled by *multiplying* by whatever the unit distance is, in units of µm. To import the library into a Python script requires adding the following lines: diff --git a/examples/Makefile.am b/examples/Makefile.am index 7564d7a09..6fa4a7003 100644 --- a/examples/Makefile.am +++ b/examples/Makefile.am @@ -1,2 +1,2 @@ EXTRA_DIST = 3rd-harm-1d.ctl bend-flux.ctl holey-wvg-bands.ctl \ -holey-wvg-cavity.ctl ring.ctl ring-cyl.ctl material-dispersion.ctl +holey-wvg-cavity.ctl ring.ctl ring-cyl.ctl material-dispersion.ctl materials-library.scm diff --git a/libctl/materials-library.scm b/examples/materials-library.scm similarity index 100% rename from libctl/materials-library.scm rename to examples/materials-library.scm diff --git a/python/materials_library.py b/python/examples/materials_library.py similarity index 100% rename from python/materials_library.py rename to python/examples/materials_library.py