Qwen2.5-Coder-7B-Instruct模型的部署示例。
# 下载Qwen2.5-Coder-7B-Instruct模型
apt update && apt install git-lfs
git lfs install
git clone https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct /tmp/Qwen2.5-Coder-7B-Instruct
# 进入TensorRT-LLM/examples/qwen目录,参考README进行构建trtllm引擎。
cd third_party/TensorRT-LLM/examples/qwen
# 转换ckpt
rm -rf /tmp/Qwen2.5-Coder-7B-Instruct/tllm_checkpoint/
python3 convert_checkpoint.py --model_dir /tmp/Qwen2.5-Coder-7B-Instruct \
--output_dir /tmp/Qwen2.5-Coder-7B-Instruct/tllm_checkpoint/ --dtype bfloat16 --load_model_on_cpu
# 构建引擎
rm -rf /tmp/Qwen2.5-Coder-7B-Instruct/trt_engines/
trtllm-build --checkpoint_dir /tmp/Qwen2.5-Coder-7B-Instruct/tllm_checkpoint/ \
--output_dir /tmp/Qwen2.5-Coder-7B-Instruct/trt_engines/ \
--gemm_plugin bfloat16 --max_batch_size 16 --paged_kv_cache enable \
--max_input_len 32256 --max_seq_len 32768 --max_num_tokens 32256
# 运行测试
python3 ../run.py --input_text "你好,你是谁?" --max_output_len=50 \
--tokenizer_dir /tmp/Qwen2.5-Coder-7B-Instruct/ \
--engine_dir=/tmp/Qwen2.5-Coder-7B-Instruct/trt_engines/
# 回到工程根目录
cd ../../../../
# 构建
grpst archive .
# 部署,
# 通过--inference_conf参数指定模型对应的inference.yml配置文件启动服务。
# 如需修改服务端口,并发限制等,可以修改conf/server.yml文件,然后启动时指定--server_conf参数指定新的server.yml文件。
# 注意如果使用多卡推理,需要使用mpi方式启动,--mpi_np参数为并行推理的GPU数量。
grpst start ./server.mar --inference_conf=conf/inference_qwen2.5-coder.yml
# 查看服务状态
grpst ps
# 如下输出
PORT(HTTP,RPC) NAME PID DEPLOY_PATH
9997 my_grps 65322 /home/appops/.grps/my_grps
# curl命令非stream请求
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-instruct",
"messages": [
{
"role": "user",
"content": "请给一个快速排序的代码实例:"
}
]
}'
# 返回如下:
: '
{
"id": "chatcmpl-1",
"object": "chat.completion",
"created": 1727683829,
"model": "qwen2.5-coder-instruct",
"system_fingerprint": "grps-trtllm-server",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": " 当然!以下是一个用Python实现的快速排序算法的代码实例:\n\n```python\ndef quicksort(arr):\n if len(arr) <= 1:\n return arr\n else:\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quicksort(left) + middle + quicksort(right)\n\n# 示例用法\nif __name__ == \"__main__\":\n example_array = [3, 6, 8, 10, 1, 2, 1]\n print(\"原始数组:\", example_array)\n sorted_array = quicksort(example_array)\n print(\"排序后的数组:\", sorted_array)\n```\n\n这个代码定义了一个`quicksort`函数,它使用递归的方式对数组进行排序。具体步骤如下:\n\n1. 选择一个基准值(pivot),这里选择数组的中间元素。\n2. 将数组分成三个部分:小于基准值的元素、等于基准值的元素和大于基准值的元素。\n3. 递归地对小于和大于基准值的部分进行排序。\n4. 将排序后的部分和等于基准值的部分合并,得到最终的排序结果。\n\n你可以运行这个代码来查看快速排序的效果。"
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 38,
"completion_tokens": 290,
"total_tokens": 328
}
}
'
# curl命令stream请求
curl --no-buffer http://127.0.0.1:9997/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen2.5-coder-instruct",
"messages": [
{
"role": "user",
"content": "请给一个快速排序的代码实例:"
}
],
"stream": true
}'
# 返回如下:
: '
data: {"id":"chatcmpl-2","object":"chat.completion.chunk","created":1727683879,"model":"qwen2.5-coder-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"role":"assistant","content":" 当"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-2","object":"chat.completion.chunk","created":1727683879,"model":"qwen2.5-coder-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"然"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-2","object":"chat.completion.chunk","created":1727683879,"model":"qwen2.5-coder-instruct","system_fingerprint":"grps-trtllm-server","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]}
'
# openai_cli.py 非stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "请给一个快速排序的代码实例:" false
# 返回如下:
: '
ChatCompletion(id='chatcmpl-3', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content=' 当然!以下是一个用Python实现的快速排序算法的代码实例:\n\n```python\ndef quicksort(arr):\n if len(arr) <= 1:\n return arr\n else:\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quicksort(left) + middle + quicksort(right)\n\n# 示例用法\nif __name__ == "__main__":\n example_array = [3, 6, 8, 10, 1, 2, 1]\n print("原始数组:", example_array)\n sorted_array = quicksort(example_array)\n print("排序后的数组:", sorted_array)\n```\n\n这个代码定义了一个`quicksort`函数,它使用递归的方式对数组进行排序。具体步骤如下:\n\n1. 选择一个基准值(pivot),这里选择数组的中间元素。\n2. 将数组分成三个部分:小于基准值的元素、等于基准值的元素和大于基准值的元素。\n3. 递归地对小于和大于基准值的部分进行排序。\n4. 将排序后的部分和等于基准值的部分合并,得到最终的排序结果。\n\n你可以运行这个代码来查看快速排序的效果。', refusal=None, role='assistant', function_call=None, tool_calls=None))], created=1727684015, model='', object='chat.completion', service_tier=None, system_fingerprint='grps-trtllm-server', usage=CompletionUsage(completion_tokens=290, prompt_tokens=38, total_tokens=328, completion_tokens_details=None))
'
# openai_cli.py stream请求
python3 client/openai_cli.py 127.0.0.1:9997 "请给一个快速排序的代码实例:" true
# 返回如下:
: '
ChatCompletionChunk(id='chatcmpl-4', choices=[Choice(delta=ChoiceDelta(content=' 当', function_call=None, refusal=None, role='assistant', tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1727684064, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-4', choices=[Choice(delta=ChoiceDelta(content='然', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1727684064, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
ChatCompletionChunk(id='chatcmpl-4', choices=[Choice(delta=ChoiceDelta(content='!', function_call=None, refusal=None, role=None, tool_calls=None), finish_reason=None, index=0, logprobs=None)], created=1727684064, model='', object='chat.completion.chunk', service_tier=None, system_fingerprint='grps-trtllm-server', usage=None)
'
# 关闭服务
grpst stop my_grps