-
Notifications
You must be signed in to change notification settings - Fork 0
/
makedata.py
121 lines (105 loc) · 5.92 KB
/
makedata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import cv2
import numpy as np
import os
from matplotlib import pyplot as plt
import time
from datetime import datetime
import mediapipe as mp
mp_holistic = mp.solutions.holistic # Holistic model
mp_drawing = mp.solutions.drawing_utils # Drawing utilities
# Path for exported data, numpy arrays
DATA_PATH = os.path.join('Data')
# Actions that we try to detect
actions = np.array(['dung yen'])
# Thirty videos worth of data
no_sequences = 50
# Videos are going to be 30 frames in length
sequence_length = 10
for action in actions:
for sequence in range(no_sequences):
try:
os.makedirs(os.path.join(DATA_PATH, action, str(sequence)))
except:
pass
def mediapipe_detection(image, model):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # COLOR CONVERSION BGR 2 RGB
image.flags.writeable = False # Image is no longer writeable
results = model.process(image) # Make prediction
image.flags.writeable = True # Image is now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # COLOR COVERSION RGB 2 BGR
return image, results
def draw_landmarks(image, results):
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_TESSELATION) # Draw face connections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS) # Draw pose connections
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS) # Draw left hand connections
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS) # Draw right hand connections
def draw_styled_landmarks(image, results):
# Draw face connections
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_TESSELATION,
mp_drawing.DrawingSpec(color=(80,110,10), thickness=1, circle_radius=1),
mp_drawing.DrawingSpec(color=(80,256,121), thickness=1, circle_radius=1)
)
# Draw pose connections
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(80,22,10), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(80,44,121), thickness=2, circle_radius=2)
)
# Draw left hand connections
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(121,22,76), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(121,44,250), thickness=2, circle_radius=2)
)
# Draw right hand connections
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=4),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
)
def extract_keypoints(results):
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]).flatten() if results.face_landmarks else np.zeros(468*3)
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]).flatten() if results.left_hand_landmarks else np.zeros(21*3)
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]).flatten() if results.right_hand_landmarks else np.zeros(21*3)
return np.concatenate([pose, face, lh, rh])
cap = cv2.VideoCapture(1)
# Set mediapipe model
with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
# NEW LOOP
# Loop through actions
for action in actions:
# Loop through sequences aka videos
for sequence in range(no_sequences):
# Loop through video length aka sequence length
t1 = time.time()
for frame_num in range(sequence_length):
# Read feed
ret, frame = cap.read()
# Make detections
image, results = mediapipe_detection(frame, holistic)
# print(results)
# Draw landmarks
draw_styled_landmarks(image, results)
# NEW Apply wait logic
if frame_num == 0:
cv2.putText(image, 'STARTING COLLECTION', (120, 200),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 4, cv2.LINE_AA)
cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence), (15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
# Show to screen
cv2.imshow('OpenCV Feed', image)
cv2.waitKey(2000)
else:
cv2.putText(image, 'Collecting frames for {} Video Number {}'.format(action, sequence), (15, 12),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA)
# Show to screen
cv2.imshow('OpenCV Feed', image)
# NEW Export keypoints
keypoints = extract_keypoints(results)
npy_path = os.path.join(DATA_PATH, action, str(sequence), str(frame_num))
np.save(npy_path, keypoints)
# Break gracefully
if cv2.waitKey(10) & 0xFF == ord('q'):
break
t2=time.time()
print(t2-t1)
cap.release()
cv2.destroyAllWindows()