forked from dxns-hub/quantum-enhanced-encryption
-
Notifications
You must be signed in to change notification settings - Fork 0
/
quantum_enhanced_lwe.py
107 lines (95 loc) · 3.47 KB
/
quantum_enhanced_lwe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
class QuantumEnhancedLWE:
def __init__(self, n=256, q=4093, sigma=1.0):
"""
Initialize the Quantum Enhanced LWE system with specified parameters.
:param n: Dimension of the lattice (default: 256)
:param q: Modulus for the lattice (default: 4093)
:param sigma: Standard deviation for error sampling (default: 1.0)
"""
self.n = n
self.q = q
self.sigma = sigma
def gen_keypair(self):
"""
Generate a public and private key pair for encryption and decryption.
:return: Tuple containing the public key and private key.
"""
s = self.sample_uniform(self.n)
e = self.sample_error(self.n)
a = self.sample_uniform(self.n)
b = (np.dot(a, s) + e) % self.q
return (a, b), s
def encrypt(self, pk, m):
"""
Encrypt a message using the public key.
:param pk: Public key
:param m: Message to encrypt (0 or 1)
:return: Ciphertext as a tuple of (a, c)
"""
s, quantum_key = pk
a = self.sample_uniform(self.n)
e = self.sample_error(1)[0]
b = (np.dot(a, s) + e) % self.q
c = (b + m * (self.q // 4)) % self.q
return a, c
def decrypt(self, sk, ct):
"""
Decrypt a ciphertext using the private key.
:param sk: Private key
:param ct: Ciphertext to decrypt
:return: Decrypted message (0 or 1)
"""
a, c = ct
s = sk
b = (np.dot(a, s)) % self.q
m = (c - b) % self.q
return 0 if m < self.q // 2 else 1
def sample_uniform(self, size):
"""
Sample a uniform random vector of given size.
:param size: Size of the vector
:return: Uniform random vector
"""
return np.random.randint(0, self.q, size)
def sample_error(self, size):
"""
Sample an error vector from a Gaussian distribution.
:param size: Size of the vector
:return: Error vector
"""
return np.random.normal(0, self.sigma, size).astype(int)
def quantum_enhanced_encrypt(self, pk, m):
"""
Encrypt a message using quantum-enhanced techniques.
:param pk: Public key
:param m: Message to encrypt (0 or 1)
:return: Ciphertext as a tuple of (a, c)
"""
# Initialize quantum state
q_state = self.quantum_circuit.initialize_state()
# Evolve state
evolved_state = self.quantum_circuit.evolve_state(q_state, 1e-9)
# Use evolved state amplitude as additional noise
quantum_noise = np.abs(evolved_state[0])
# Standard LWE encryption with quantum noise
s, quantum_key = pk
a = self.sample_uniform(self.n)
e = self.sample_error(1)[0]
e = (e + int(quantum_noise * self.q)) % self.q
b = (np.dot(a, s) + e) % self.q
c = (b + m * (self.q // 4)) % self.q
return a, c
def calculate_entangled_pairs(self):
"""
Calculate the number of entangled pairs and their combinations.
"""
return self.n * (self.n - 1) // 2
def evaluate_evolutionary_potential(self, x, y):
"""
Evaluate the evolutionary potential of a pair.
:param x: First element of the pair
:param y: Second element of the pair
:return: Probability of successful evolution
"""
return np.random.rand() # Placeholder for actual probability calculation