diff --git a/nbs/docs/capabilities/01_overview.ipynb b/nbs/docs/capabilities/01_overview.ipynb
index a71c552c5..11b964a7f 100644
--- a/nbs/docs/capabilities/01_overview.ipynb
+++ b/nbs/docs/capabilities/01_overview.ipynb
@@ -25,7 +25,7 @@
"|`HINT` | `AutoHINT` | Any7 | Both7 | Both7 | F/H/S | \n",
"|`Informer` | `AutoInformer` | Transformer | Multivariate | Direct | F | \n",
"|`iTransformer` | `AutoiTransformer` | Transformer | Multivariate | Direct | - | \n",
- "|`KAN` | `AutoKAN` | KAN | Univariate | Direct | - | \n",
+ "|`KAN` | `AutoKAN` | KAN | Univariate | Direct | F/H/S | \n",
"|`LSTM` | `AutoLSTM` | RNN | Univariate | Recursive | F/H/S | \n",
"|`MLP` | `AutoMLP` | MLP | Univariate | Direct | F/H/S | \n",
"|`MLPMultivariate` | `AutoMLPMultivariate` | MLP | Multivariate | Direct | F/H/S | \n",
diff --git a/nbs/models.timemixer.ipynb b/nbs/models.timemixer.ipynb
index bccb36adf..0aacd694c 100644
--- a/nbs/models.timemixer.ipynb
+++ b/nbs/models.timemixer.ipynb
@@ -35,7 +35,7 @@
"outputs": [],
"source": [
"#| export\n",
- "\n",
+ "import math\n",
"import numpy as np\n",
"\n",
"import torch\n",
@@ -243,13 +243,13 @@
" [\n",
" nn.Sequential(\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** i),\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** i)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
" ),\n",
" nn.GELU(),\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
+ " math.ceil(seq_len // (down_sampling_window ** (i + 1))),\n",
" ),\n",
"\n",
" )\n",
@@ -287,13 +287,13 @@
" [\n",
" nn.Sequential(\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** (i + 1)),\n",
- " seq_len // (down_sampling_window ** i),\n",
+ " math.ceil(seq_len / (down_sampling_window ** (i + 1))),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
" ),\n",
" nn.GELU(),\n",
" torch.nn.Linear(\n",
- " seq_len // (down_sampling_window ** i),\n",
- " seq_len // (down_sampling_window ** i),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
+ " math.ceil(seq_len / (down_sampling_window ** i)),\n",
" ),\n",
" )\n",
" for i in reversed(range(down_sampling_layers))\n",
@@ -573,7 +573,7 @@
" self.predict_layers = torch.nn.ModuleList(\n",
" [\n",
" torch.nn.Linear(\n",
- " self.input_size // (self.down_sampling_window ** i),\n",
+ " math.ceil(self.input_size // (self.down_sampling_window ** i)),\n",
" self.h,\n",
" )\n",
" for i in range(self.down_sampling_layers + 1)\n",
@@ -773,149 +773,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/timemixer.py#L329){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n",
- "\n",
- "### TimeMixer\n",
- "\n",
- "> TimeMixer (h, input_size, n_series, stat_exog_list=None,\n",
- "> hist_exog_list=None, futr_exog_list=None, d_model:int=32,\n",
- "> d_ff:int=32, dropout:float=0.1, e_layers:int=4, top_k:int=5,\n",
- "> decomp_method:str='moving_avg', moving_avg:int=25,\n",
- "> channel_independence:int=0, down_sampling_layers:int=1,\n",
- "> down_sampling_window:int=2, down_sampling_method:str='avg',\n",
- "> use_norm:bool=True, decoder_input_size_multiplier:float=0.5,\n",
- "> loss=MAE(), valid_loss=None, max_steps:int=1000,\n",
- "> learning_rate:float=0.001, num_lr_decays:int=-1,\n",
- "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n",
- "> batch_size:int=32, step_size:int=1,\n",
- "> scaler_type:str='identity', random_seed:int=1,\n",
- "> num_workers_loader:int=0, drop_last_loader:bool=False,\n",
- "> optimizer=None, optimizer_kwargs=None, lr_scheduler=None,\n",
- "> lr_scheduler_kwargs=None, **trainer_kwargs)\n",
- "\n",
- "TimeMixer\n",
- "**Parameters**
\n",
- "`h`: int, Forecast horizon.
\n",
- "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n",
- "`n_series`: int, number of time-series.
\n",
- "`futr_exog_list`: str list, future exogenous columns.
\n",
- "`hist_exog_list`: str list, historic exogenous columns.
\n",
- "`stat_exog_list`: str list, static exogenous columns.
\n",
- "`d_model`: int, dimension of the model.
\n",
- "`d_ff`: int, dimension of the fully-connected network.
\n",
- "`dropout`: float, dropout rate.
\n",
- "`e_layers`: int, number of encoder layers.
\n",
- "`top_k`: int, number of selected frequencies.
\n",
- "`decomp_method`: str, method of series decomposition [moving_avg, dft_decomp].
\n",
- "`moving_avg`: int, window size of moving average.
\n",
- "`channel_independence`: int, 0: channel dependence, 1: channel independence.
\n",
- "`down_sampling_layers`: int, number of downsampling layers.
\n",
- "`down_sampling_window`: int, size of downsampling window.
\n",
- "`down_sampling_method`: str, down sampling method [avg, max, conv].
\n",
- "`use_norm`: bool, whether to normalize or not.
\n",
- " `decoder_input_size_multiplier`: float = 0.5.
\n",
- "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`max_steps`: int=1000, maximum number of training steps.
\n",
- "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n",
- "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n",
- "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n",
- "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n",
- "`batch_size`: int=32, number of different series in each batch.
\n",
- "`step_size`: int=1, step size between each window of temporal data.
\n",
- "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n",
- "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n",
- "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n",
- "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n",
- "`alias`: str, optional, Custom name of the model.
\n",
- "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n",
- "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n",
- "`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).
\n",
- "`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.
\n",
- "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n",
- "\n",
- "**References**
\n",
- "[Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou.\"TimeMixer: Decomposable Multiscale Mixing For Time Series Forecasting\"](https://openreview.net/pdf?id=7oLshfEIC2)"
- ],
- "text/plain": [
- "---\n",
- "\n",
- "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/timemixer.py#L329){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n",
- "\n",
- "### TimeMixer\n",
- "\n",
- "> TimeMixer (h, input_size, n_series, stat_exog_list=None,\n",
- "> hist_exog_list=None, futr_exog_list=None, d_model:int=32,\n",
- "> d_ff:int=32, dropout:float=0.1, e_layers:int=4, top_k:int=5,\n",
- "> decomp_method:str='moving_avg', moving_avg:int=25,\n",
- "> channel_independence:int=0, down_sampling_layers:int=1,\n",
- "> down_sampling_window:int=2, down_sampling_method:str='avg',\n",
- "> use_norm:bool=True, decoder_input_size_multiplier:float=0.5,\n",
- "> loss=MAE(), valid_loss=None, max_steps:int=1000,\n",
- "> learning_rate:float=0.001, num_lr_decays:int=-1,\n",
- "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n",
- "> batch_size:int=32, step_size:int=1,\n",
- "> scaler_type:str='identity', random_seed:int=1,\n",
- "> num_workers_loader:int=0, drop_last_loader:bool=False,\n",
- "> optimizer=None, optimizer_kwargs=None, lr_scheduler=None,\n",
- "> lr_scheduler_kwargs=None, **trainer_kwargs)\n",
- "\n",
- "TimeMixer\n",
- "**Parameters**
\n",
- "`h`: int, Forecast horizon.
\n",
- "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n",
- "`n_series`: int, number of time-series.
\n",
- "`futr_exog_list`: str list, future exogenous columns.
\n",
- "`hist_exog_list`: str list, historic exogenous columns.
\n",
- "`stat_exog_list`: str list, static exogenous columns.
\n",
- "`d_model`: int, dimension of the model.
\n",
- "`d_ff`: int, dimension of the fully-connected network.
\n",
- "`dropout`: float, dropout rate.
\n",
- "`e_layers`: int, number of encoder layers.
\n",
- "`top_k`: int, number of selected frequencies.
\n",
- "`decomp_method`: str, method of series decomposition [moving_avg, dft_decomp].
\n",
- "`moving_avg`: int, window size of moving average.
\n",
- "`channel_independence`: int, 0: channel dependence, 1: channel independence.
\n",
- "`down_sampling_layers`: int, number of downsampling layers.
\n",
- "`down_sampling_window`: int, size of downsampling window.
\n",
- "`down_sampling_method`: str, down sampling method [avg, max, conv].
\n",
- "`use_norm`: bool, whether to normalize or not.
\n",
- " `decoder_input_size_multiplier`: float = 0.5.
\n",
- "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n",
- "`max_steps`: int=1000, maximum number of training steps.
\n",
- "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n",
- "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n",
- "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n",
- "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n",
- "`batch_size`: int=32, number of different series in each batch.
\n",
- "`step_size`: int=1, step size between each window of temporal data.
\n",
- "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n",
- "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n",
- "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n",
- "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n",
- "`alias`: str, optional, Custom name of the model.
\n",
- "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n",
- "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n",
- "`lr_scheduler`: Subclass of 'torch.optim.lr_scheduler.LRScheduler', optional, user specified lr_scheduler instead of the default choice (StepLR).
\n",
- "`lr_scheduler_kwargs`: dict, optional, list of parameters used by the user specified `lr_scheduler`.
\n",
- "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n",
- "\n",
- "**References**
\n",
- "[Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang, Jun Zhou.\"TimeMixer: Decomposable Multiscale Mixing For Time Series Forecasting\"](https://openreview.net/pdf?id=7oLshfEIC2)"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer)"
]
@@ -924,71 +782,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "### TimeMixer.fit\n",
- "\n",
- "> TimeMixer.fit (dataset, val_size=0, test_size=0, random_seed=None,\n",
- "> distributed_config=None)\n",
- "\n",
- "Fit.\n",
- "\n",
- "The `fit` method, optimizes the neural network's weights using the\n",
- "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n",
- "and the `loss` function as defined during the initialization.\n",
- "Within `fit` we use a PyTorch Lightning `Trainer` that\n",
- "inherits the initialization's `self.trainer_kwargs`, to customize\n",
- "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n",
- "\n",
- "The method is designed to be compatible with SKLearn-like classes\n",
- "and in particular to be compatible with the StatsForecast library.\n",
- "\n",
- "By default the `model` is not saving training checkpoints to protect\n",
- "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`val_size`: int, validation size for temporal cross-validation.
\n",
- "`test_size`: int, test size for temporal cross-validation.
"
- ],
- "text/plain": [
- "---\n",
- "\n",
- "### TimeMixer.fit\n",
- "\n",
- "> TimeMixer.fit (dataset, val_size=0, test_size=0, random_seed=None,\n",
- "> distributed_config=None)\n",
- "\n",
- "Fit.\n",
- "\n",
- "The `fit` method, optimizes the neural network's weights using the\n",
- "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n",
- "and the `loss` function as defined during the initialization.\n",
- "Within `fit` we use a PyTorch Lightning `Trainer` that\n",
- "inherits the initialization's `self.trainer_kwargs`, to customize\n",
- "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n",
- "\n",
- "The method is designed to be compatible with SKLearn-like classes\n",
- "and in particular to be compatible with the StatsForecast library.\n",
- "\n",
- "By default the `model` is not saving training checkpoints to protect\n",
- "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`val_size`: int, validation size for temporal cross-validation.
\n",
- "`test_size`: int, test size for temporal cross-validation.
"
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer.fit, name='TimeMixer.fit')"
]
@@ -997,51 +791,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/markdown": [
- "---\n",
- "\n",
- "### TimeMixer.predict\n",
- "\n",
- "> TimeMixer.predict (dataset, test_size=None, step_size=1,\n",
- "> random_seed=None, **data_module_kwargs)\n",
- "\n",
- "Predict.\n",
- "\n",
- "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`test_size`: int=None, test size for temporal cross-validation.
\n",
- "`step_size`: int=1, Step size between each window.
\n",
- "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)."
- ],
- "text/plain": [
- "---\n",
- "\n",
- "### TimeMixer.predict\n",
- "\n",
- "> TimeMixer.predict (dataset, test_size=None, step_size=1,\n",
- "> random_seed=None, **data_module_kwargs)\n",
- "\n",
- "Predict.\n",
- "\n",
- "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n",
- "\n",
- "**Parameters:**
\n",
- "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n",
- "`test_size`: int=None, test size for temporal cross-validation.
\n",
- "`step_size`: int=1, Step size between each window.
\n",
- "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)."
- ]
- },
- "execution_count": null,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"show_doc(TimeMixer.predict, name='TimeMixer.predict')"
]
@@ -1057,1508 +807,7 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Seed set to 1\n",
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n",
- "\n",
- " | Name | Type | Params\n",
- "----------------------------------------------------------\n",
- "0 | loss | MAE | 0 \n",
- "1 | valid_loss | MAE | 0 \n",
- "2 | padder | ConstantPad1d | 0 \n",
- "3 | scaler | TemporalNorm | 0 \n",
- "4 | pdm_blocks | ModuleList | 14.2 K\n",
- "5 | preprocess | SeriesDecomp | 0 \n",
- "6 | enc_embedding | DataEmbedding_wo_pos | 2.5 K \n",
- "7 | normalize_layers | ModuleList | 8 \n",
- "8 | predict_layers | ModuleList | 456 \n",
- "9 | projection_layer | Linear | 33 \n",
- "----------------------------------------------------------\n",
- "14.8 K Trainable params\n",
- "2.4 K Non-trainable params\n",
- "17.2 K Total params\n",
- "0.069 Total estimated model params size (MB)\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9649c190a0e944a39e40f30fb182c4d7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Sanity Checking: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "832f28d45a374fe7bac748717a21b512",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Training: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ffbff0d9df0244638c76f7b88793206f",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "940d974d12084ffa8f661d5fed0ef964",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4e26d7588dbe4505972bc5fd27c5ade7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "aaed084010a54bd29b2f720452309247",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "aaefa690fef449c5b4fb3c0d5136b9fe",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a22046abeccb460283ac25fc50d0851b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c6ecc2b0a71e4cb5a87bf718e829a94a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "deddf032745f40d2aa7c664aeb1e3990",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f98db41508d94529934eab9fcd823d70",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c35fc844b71e4e09a2bb5d040b7d96d1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "37adcc0b97e04f4c92f228a08b29c5cd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "91a7d674e0674d6b9ece4e4258cd8ae5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "218c4a0e6ac04d80bc1601014ef7b463",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8f2358a2ede040d1b3e339200ebd2f78",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f17c651fd3f646b0b1f89dac1649bd49",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "97af6a68385c477188fa2abed7ee787b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "eecf483ff75c46bc9ce209bd0df8d972",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "abb0ab9be3ad4059a16da346bbfc5905",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d22fe888ee604031b19406b440448ed2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5dc201dc57a64e768b1f2c021d0249dd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d0e1d49d9ba44091ae5763400a3d0b45",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a4a84b1b7041453f9c61e71309da11a4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "831b9efca201441b94e159ff91152911",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "51956696aaad4358b2046485efed79e8",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "94b540a6d7b44a01a20970a72c0b328e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b4d9b6d7ba72437993306a575bf6a1f7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7723b0e84b894bae93bef56e4a3b6574",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f0b4e83f7c6e487f90309c57c51ca5c0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "71fc6df934484816b5fecc6a978fa493",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3975f3ef04454f689597a3833767a7e4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "46702c57d7ce403abcd6a47817016a63",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6eec827a4d634cd5a42b406c4f655495",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3addbf0f92814b92a6b43d4880e2f489",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "06456b77b6854e8590a012cb1352ca84",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1cb0f9fb54434653885b5df1048a9671",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "70b926e897514805bfec2f4e19f181f3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d1ede73f03184674b4b78fda0c88c920",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4804d7f4767a4757809d95f922d9f382",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "34964c4ec1f74c9188d58caba5479370",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f37e39d3f6e34e41888c78a3a3bf5a60",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "84c93d0ba06d488ead2a12c0b148cb66",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d9fd457968f848b9b5e6557bfbd53a09",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "86bad1d76b5b4f54b65cf84cb230129d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "60e0fbb19c6c4125900d21ed6f16e11a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "609513cb63974f05a6f015777f243fac",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6143348083e846409e480d598920014e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "5484e118d5a44a248db009a727fd19ab",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "9f01f6f851ba4eb6b13a413f285d2d56",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d07e61df9b64d4480eaf96d3b5c6a92",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2eabd683252746eb80b0ad5436601dc1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "921a51161b2d4cce99cfc1f0a05646a6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d7fbfe83b4b463a85a1f6ec45761ae1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3ee41756d8fa4a7e95b1d7f8ca442f77",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6c6cee96c679480480fde1a694f65211",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "940af45773a549b09b2be1e5ea9a5bb6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8ba1811e1b884becb8ddc5a98e66d956",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fb49ef385e3c4a2db17efa4a17c1d082",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8d13f077498642dc8ac9ce46e62403e1",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7c134ba83306448f9d1ce79c124cb50c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "cb906be9e3644f559a27177de2e1711b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d23db16f69b440aeb39a92229a8ce1b7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "22af69f0ad3048b4aa8c6c292e449648",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "96cc30db14104d3eb8bcdd2bd46abd30",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "efc973d237e749babaaa527852b30165",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "81c28622b036402baa49f3e8a49e6d1b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "23e045adffb24c2280961e23ce3d7f9e",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8e616b3855124e46bafe7ef685fc6494",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "075b20f9ab374aba9803f45cc04baeda",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d450cd5fa784409d802f4d095da598ca",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "99bdcbd980784737b468a2f146c4b5a2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "20d4b9785ae141b6aae64b671ac7d740",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b7b6065b2d554e3e861a3d5f1ad9e86d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "4eae6b1f619d457f9474173d5ba1606d",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3b91e051e7144aed8c53d10a70b19dd0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "592b662cb51147d3bb47fc2ee04c38c5",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "c13b064c06214d83acafbedb1561b8a3",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "0c23e8ec653b4f1d8f4acf876f230e4b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b15ba28202ac40f1a3555a2574b4ac45",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1b9a2ca1b60140c5892960fa5e904bda",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d97ec9f7dc4242718de176202603968b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8353625f1d284974a1c731a240baaf29",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d18301fb72eb47898db83ea7f7614d43",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b0940dfa1dae4f898381f8b5e0025f43",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "34e7664ebf494208a34af5ed79660a5c",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "97a3238f4a5d4b7c85f2febfca8e02b4",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "fa2d7ce8e03d48c1b8e291c146958a95",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "675fb00ed5634543b32970c1fa581206",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "251d5963572f4923be72ffecb2576c52",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "7b854e098c9349cbbf35cf80c70017b9",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "6d7a4dec9ed44451b43ddf23eabf3891",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ee2ab61084804420b2fd5e44a041c033",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "3c13bd141daa4d858777266409ea17f7",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "032a09df693f422aa8fd8d00168bd6a2",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "2672056961c44431b94c7502a88e765b",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8e80b3beba054736bf0f93ac98a78cbd",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "a69504e378e14918a8eaeea50ecbb0ed",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "8c8a16545afd408184b516c360e568d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d30d7fbe7a5244cf961801889da62376",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "1758290ed3704fe6a70b033113b2c7af",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "d14c9d54c9434bec85cd626dff872ede",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Validation: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "`Trainer.fit` stopped: `max_steps=500` reached.\n",
- "GPU available: True (mps), used: True\n",
- "TPU available: False, using: 0 TPU cores\n",
- "IPU available: False, using: 0 IPUs\n",
- "HPU available: False, using: 0 HPUs\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "38a50bb6ad8342598d527c6f7510a1d6",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "Predicting: | | 0/? [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/neuralforecast/core.py:210: FutureWarning: In a future version the predictions will have the id as a column. You can set the `NIXTLA_ID_AS_COL` environment variable to adopt the new behavior and to suppress this warning.\n",
- " warnings.warn(\n"
- ]
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAKHCAYAAAB0L5wRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZf7+8XvSCwklhDRI6EivoiK9oyBFsYtdV1dZ7F9Xd8XVH1aQXTuuBV1sqICiIB0pIh2khk4qISEkJCH9/P4YzpCQzkwymfB+XVeuTM4855xnWtBz5/N5LIZhGAIAAAAAAAAAAECNcHP2BAAAAAAAAAAAAC4lhDMAAAAAAAAAAAA1iHAGAAAAAAAAAACgBhHOAAAAAAAAAAAA1CDCGQAAAAAAAAAAgBpEOAMAAAAAAAAAAFCDCGcAAAAAAAAAAABqEOEMAAAAAAAAAABADSKcAQAAAAAAAAAAqEGEMwAAAKjzVq1aJYvFIovFoqlTpzp7OgAAAACASxzhDAAAAFzCjBkzbAGLxWLR119/7ewpFZvPhV/16tVTZGSkRo8erXfffVfp6enOni5QoaNHj5b7vi7ta9y4cc6eNiowdepUTZ06VZ999pmzpwIAAIBzCGcAAADgEj755JNiP3/88cdOmknlZGZmKiYmRj///LMeeeQRtW3bVr/++quzpwXgEvTiiy/qxRdfJJwBAACoRTycPQEAAACgIhs2bNDu3buLbVu+fLmOHj2q5s2bV7j/wIEDZRhGNc3Oat68ecV+PnPmjLZv367PP/9cycnJOnHihMaOHavVq1friiuuqNa5AI4QHBysWbNmVTguLCysBmYDAAAA1C0Wo7r/LxUAAACw0/3336///ve/kqS7775bn376qSTpn//8p1588UWnzctisdhul/Wf1SkpKRo1apQ2bdokSbryyiv1+++/18j8gKo6evSoWrRoIUmKiorS0aNHnTshOIT5u2rAgAFatWqVcycDAAAASbQ1AwAAQC2XmZmpb775RpLUokUL/fvf/1a9evUkSZ9++qkKCwudOb0KBQUFafbs2bafN2zYoOPHjztxRgAAAAAAZyOcAQAAQK327bff6syZM5KkO+64QwEBAbr++uslSTExMVq6dGmFx1i1apVt8fKpU6eWOqZ58+ayWCy2Nmk5OTl69913NXDgQIWFhcnd3b1SLdRK0759e7Vp08b2859//mm7nZ2drQULFmjy5Mnq06ePgoOD5enpqYCAALVp00Z33HFHpR6jJKWnp2v69OkaNGiQQkJC5OXlpcDAQLVq1Up9+vTR448/rsWLFys3N7fU/RMTE/Xiiy/q6quvVuPGjeXp6akGDRqobdu26t+/v5577jmtWrWqwkBs+/bt+tvf/qauXbuqUaNG8vb2Vnh4uK699lp98sknys/PL3d/87UaOHCg7Tn6z3/+o6uuukpBQUHy9fVVq1at9OCDD+rw4cOVem4yMzM1bdo09ezZU/Xr11dAQIA6deqk5557TgkJCZKku+66y3buiipG0tLSNH36dA0dOlTh4eHy9vZWo0aN1LNnTz377LOKi4srd//SzjV//nxNmDBBUVFR8vb2LnUea9as0T333KP27dsrICBAXl5eCg0NVefOnTV+/Hi9++67OnLkSKWek+qWk5Oj999/XyNHjiz2HHXv3l1PP/10hfMs7XN74MABPfHEE+rYsaMaNGhQ5mc6OztbH374oUaPHq1mzZrJx8dH9evXV6dOnTR58mRFR0dX+nEkJyfr1Vdf1ZAhQ2yPw8/PT23atNHEiRP18ccfKz09vdR9o6OjNWPGDI0fP15t2rRRvXr15OXlpSZNmqh///56+eWXlZycXKl5XMxrbz5/ptWrV9u2Ff1iLRoAAAAnMAAAAIBa7OqrrzYkGZKMgwcPGoZhGCtWrLBtmzhxYoXHWLlypW38Cy+8UOqYqKgoQ5IRFRVlHDlyxOjUqZNtH/MrKiqq2D5F76tInz59bGPnzJlj296iRYsS5ynta+zYscaZM2fKPP7mzZuN0NDQSh1r06ZNJfb/5ZdfjICAgErtf/LkyVLnkJ2dbdxzzz2GxWIpd/+OHTsahw4dKvOxmOMGDBhgHD582OjcuXOZx/L39zeWLVtW7nO/d+9e2+tb2ldwcLDx22+/GXfeeadt25EjR8o83rfffms0atSo3Mfo4+NjfPbZZ2Ueo+i59u/fb1x//fWlHsecR0FBgfHggw9W6vW59tpry30+ynPkyJEy3+9VsWXLlnKfc0mGl5eX8cYbb5R5jAs/t1988YXh6+tb4jgXfqZXrVplRERElHtud3d3Y9q0aRU+jrffftvw9/ev8Dm/6667Suw7e/bsSr1egYGBxsKFC8ucgz2vfWX2kWR8+umnFT4XAAAAcCwPAQAAALXU/v37tW7dOklS37591apVK0nSwIED1bx5cx09elQLFixQcnKyGjdu7JBz5uTkaMKECdq1a5euvPJK3XDDDWrWrJlOnz5drOKlqpKSkmy3GzRoYLudlZWlBg0aaPDgwerevbuioqLk5+en9PR07dy5U998840SEhK0YMEC3XPPPfr2229LHDsrK0vjxo1TYmKiJKlnz54aP368IiIi5O/vr9TUVO3du1crV67Ujh07SuwfHx+vG2+8URkZGZKs61Jce+21Cg0Nlbe3t5KTk7Vr1y4tX768zIqD/Px8jRw50raeRUhIiG6++WZ169ZN/v7+iouL07x58/Tbb79p9+7d6t+/v7Zt26bg4OAyn7P09HRde+212rt3r4YPH67Ro0crNDRUiYmJ+vzzz7V582ZlZmbqlltu0b59+9SoUaMSxzh58qQGDx5sq46JjIzUPffco3bt2ikjI0NLlizRd999pwkTJqhr165lzsX00Ucf6cEHH5RhGPLw8NDo0aM1ePBghYaGKjMzU+vWrdOcOXN09uxZ3XXXXfLy8tItt9xS7jGnTJmiRYsWKSoqSpMmTdJll12m3Nxcbdy4Ud7e3pKkd955Rx9++KEkKSAgQDfccIN69uyp4OBg5ebmKjY2Vps3b9ayZcsqfAzVbdeuXRowYIDt/dSuXTvdcccdat26tdLS0vTLL79owYIFys3N1VNPPaWcnBw999xz5R5z/fr1+n//7//JYrHozjvvVL9+/VSvXj0dPnxYTZs2tY1btGiRxo4dq7y8PFksFg0dOlQjRoxQ06ZNlZubq82bN+vzzz/X6dOn9fe//12S9Oyzz5Z6zv/7v//Ta6+9Zvu5b9++Gj16tKKiolRYWKjjx49r3bp1Wrp0aalrTmVlZclisahr167q37+/LrvsMtt7NDY2VsuWLdPixYuVnp6u66+/XuvXr1ePHj1KHMee137evHmSpPHjx0uSOnbsqJdffrnEuNLOCwAAgGrm7HQIAAAAKMtTTz1l+8vujz76qNh9//jHP2z3vfXWW+UepyqVM+bXq6++WuH8io4vz549e4qNPX78uO2+X375xcjNzS1z38zMTGP8+PG2fdesWVNizNy5c233P/HEE+XOZffu3UZSUlKxbW+88YZt/7fffrvc/f/44w/j7NmzJbb/3//9n+0Yt9xyi5GRkVHq/u+8845t3G233VbqmKLPlYeHh/Htt9+WGJOfn2+MGTPGNu7NN98s9ViTJk2yjRk8eHCp81q4cKHh5eVVasVKUTt27DC8vb0NSUazZs2M7du3l3rOffv2GU2bNjUkGQEBAUZKSkqJMUUrZyQZ48aNK/V5NXXs2NGQZDRq1Mg4duxYmeOys7ONDRs2lHl/ReytnCksLDS6dOliO8add95Z6vv7hx9+MDw9PW1VLJs3by4xpujnVpLRpEkTY8eOHWWeOz4+3lbRVL9+fWP58uVljjPn6O7ubuzdu7fEmPnz59vO6+/vb/zwww9lnjclJcVYuXJlie27du0yDhw4UOZ+hmEYy5YtM/z8/AxJxpAhQ0od44jX3nwsAwYMKHc+AAAAqDmEMwAAAKiV8vLyjJCQEEOytog6ffp0sfsPHjxou+DYqVOnco9V1XBm7NixlZpjZcKZU6dOGVdccYVt3JVXXlmpYxeVlpZma6103333lbj/lVdesR1/9+7dVT5+0ZZJmZmZVd7/xIkTho+PjyHJ6NWrl5Gfn1/u+Ntuu812YTw2NrbE/UWf13/84x9lHmf//v22caVd2E5MTLQFAPXr1zdOnDhR5rGef/75CsMZMyRzd3c3tm7dWu5jXLp0ablBX9FwJiIiotyWdYZh2EKhyrTxs0fRcKYyXxde7F+4cGGxz2VeXl6Z53rxxRdtY2+88cYS918YzsybN6/cuT/22GO2sQsWLCh37L59+wx3d3dDkvGXv/yl2H2FhYW2QESS8fXXX5d7LHsVDZpL+zw44rUnnAEAAKh93AQAAADUQj/99JNOnDghSRo3bpzq169f7P5WrVqpb9++kqxtlDZu3Oiwc0+ePLnK+8yfP7/Y1//+9z899dRTuuyyy/THH39Ikry8vDRjxowqHzswMFCdO3eWJG3YsKHE/f7+/rbbW7ZsqfLx7d3/m2++UXZ2tiTpySeflLu7e7njJ02aJEkqKCjQ8uXLyxzn5uamv/3tb2Xe37ZtWzVr1kyStHv37hL3//zzz8rLy5Mk3XbbbWrSpEmZx3r00Ufl4VF21+fTp09rwYIFkqRhw4ape/fuZY6VpKFDhyo8PFyS9Ouvv5Y79p577lG9evXKHWO+Rn/++adyc3PLHetM33//ve32k08+We5zOmXKFPn5+Umyft7N16o0kZGRGjt2bJn3G4ahL774QpK1jdp1111X7jzbtWun3r17Syr5+mzdutX2furevbtuuummco9lr6uvvtp2u7zPd21/7QEAAFA1rDkDAACAWunjjz+23b7zzjtLHXPXXXdp7dq1kqRPPvnEdrHVHu7u7urTp0+V9zPXdChLcHCwPvvsM1111VUl7ktNTdWcOXO0ePFi7dq1SykpKcrMzCx1HYvY2NgS24YOHSqLxSLDMPTQQw/pwIEDuvnmm9WhQ4dKzX348OG20GjChAl65plndP3116tFixaV2v+3334r9ljmz59f7vi4uDjb7T179pQ5rl27dgoKCir3WBEREYqJiVFqamqJ+zZt2mS7PWjQoHKP06RJE3Xo0EE7d+4s9f5169apsLBQknXdj4oeoyRb4FLeY5Skfv36VXis4cOH6+uvv9a+ffs0ZMgQPfbYYxo+fHiFoY49goODNWvWrHLHXLjWU9FwYcSIEeXuGxgYqD59+mjZsmU6e/asduzYoV69epU6tm/fvrJYLGUea8+ePUpOTpYkhYaGVur1MUPEI0eOKDs7Wz4+PpKkNWvW2MaMGzeuwuNUZO3atfrqq6+0ceNGHT58WGfOnCkziCrt8+2M1x4AAADVj3AGAAAAtU58fLwWL14sSQoLC9OwYcNKHXfjjTdq8uTJysrK0ldffaUZM2bY/hL/YgUFBdku0trD19dXQUFB6ty5s0aNGqU77rhDDRo0KDFuwYIFuvfee5WSklKp46anp5fY1r59ez3//PN66aWXlJmZqZdeekkvvfSSmjRpor59+6p///4aOXKk2rVrV+oxR4wYoUmTJunzzz9XcnKynnrqKT311FOKjIzU1VdfrQEDBuiaa66xValc6OjRo7bbDz30UKUeh+nUqVNl3nfhhf/SeHt7S5JycnJK3BcfH2+73apVqwqP1apVqzLDmaKPce7cuZo7d26FxzOV9xglFVvQviyvvfaa1q5dq9jYWK1du1Zr166Vh4eHunXrpn79+mngwIEaPny4Q967Jj8/vyqHEwkJCZKsAVZoaGiF49u1a2dbyL7o63Whip6joq/P6tWrtXr16krM9rxTp07ZKp1iYmJs2ysbcJYmIyNDd9xxR6WCIlNpn29nvPYAAACofoQzAAAAqHU+++wzFRQUSLK2oyqrTVZAQIDGjx+vOXPmKD09Xd99952tZdbF8vX1vaj9Sqtyqcjvv/+uG264Qfn5+ZKkLl26aOjQoWrdurUaNmwob29vW7XA888/r927d9uqNy70r3/9S71799arr76qdevWSZKSkpL0ww8/6IcffpBkbZ80ffp0XXHFFSX2nz17toYMGaK33npL27dvlyQdP35cx48f11dffSWLxaJRo0ZpxowZJUKe06dPV/mxm8pr0+TmZl8X5szMTNvtyoR25Y2x5zGW165Lqtx7LjIyUtu2bdO0adP0+eefKyUlRfn5+dq8ebM2b96st956S4GBgfrb3/6m5557zhZa1bQzZ85IKt4qrzxFqz/MfUtT0XNkz+sjFX8fFg1I7KlOuemmm/TLL79Isj4f1157rbp3767w8HD5+fnZWr7t2rVL//jHPyTJ9nuvKFd57QEAAFA1hDMAAACoVQzD0CeffGL7+c0339Sbb75ZqX0//vhju8OZmvTPf/7TFsy8++67evjhh8sc+//+3/+r8HijR4/W6NGjdeLECa1Zs0a///67Vq9era1bt8owDK1bt079+vXTL7/8oqFDh5bYf9KkSZo0aZKOHz9u23/lypXas2ePDMPQL7/8ojVr1mjdunW2NXCk4hewU1NTS60QcoaiAUFWVlaF44uGORcq+hhnzpxZ7lo41aVx48aaMWOG3njjDW3ZskXr16/XunXrtGLFCp06dUrp6el66aWXtG7dOi1dutTucOtiBAQE6PTp0+U+l0VlZGQU2/diFX19pkyZorfeeuuijxUYGGi7XXR+VbFu3TpbMNO5c2ctWbKkzEoiT0/PCo/nCq89AAAAqob/YgMAAECtsnr1ah06dOii9v3tt9904MABB8+oeuTl5WnVqlWSpJ49e5YbzEjF2zZVJCQkRDfccIOmT5+uzZs36+jRo7rhhhts533sscfK3T8yMlK33Xab3nnnHe3evVu7d+/WgAEDJFmrG/7+978XG1+05ZS5kHptYLapklSp99Thw4fLvK/oY9y1a5d9E7OTu7u7evfurSlTpmju3Lk6ceKEvv32W9WvX1+StGLFCs2bN88pcwsLC5NkfZ8kJiZWOD46Otp2u+jrVVWOfH2KHqui9YLKsmTJEtvtadOmldvi7ciRI5U+bm1+7QEAAFA1VM4AAACgVvn4449tt8ePH68uXbpUuM/GjRu1aNEiSdInn3yiV155pdrm5yjJycm2qpnWrVuXO3bjxo22xc4vRmRkpL788kutXr1aJ0+e1K5du3T69OlKV7h06NBBP/zwg4KDg1VYWFhswXRJGjhwoBYuXChJ+uGHH3T11Vdf9Fwd6fLLL9cHH3wgSVq5cqUtoCpNUlJSucHSgAEDZLFYZBiGFi5cqNzcXHl5eTl8zhfDw8NDEydOVFxcnC14W7Nmja6//voan8uVV16pvXv3SpJ+/fVX3XnnnWWOPXPmjNavXy/J2rasa9euF33ebt26qUGDBjp9+rTWrFmj5OTkSq1ZVJr+/fvbbs+fP1///Oc/q3yMosFURZ9vs8LmYlT2tTffuxfTfhEAAADVg8oZAAAA1BppaWn6/vvvJVn/Qvy9997T1KlTK/yaOXOm7RizZ88udd2G2qZoy62DBw+WO/aFF16w+3yenp6KiIiw/WwGQ5XVqFEjW7unC9dQufnmm23rXHzwwQcVPp6acu2119paRs2ZM0cnT54sc+zbb79d7vumcePGuvbaayVZL7xPnz7dsZN1gBYtWthuV/X1dZSiAdj06dPLnce///1vW/uz6667rlLtvcri7u6u22+/XZKUk5Oj55577qKP1aNHD3Xs2FGStG3bNn3zzTdVPkZlP9/r16/X4sWLqz7JC1T02ptt3yrbbg4AAADVj3AGAAAAtcaXX36ps2fPSpKGDx9ebiugotq2basrr7xSkpSQkGDXX6LXlMDAQLVt21aStGXLFn333XclxhQUFOixxx6r8OLtf/7zH82dO7fYouYXWrNmjXbu3CnJ2rapaFXBiy++qF9//VWFhYVl7v/ll1/aFl3v3r17sfsiIiJsf7WflZWlESNGaNu2beXOedeuXfrLX/5S7hh7hYSE6JZbbpFkDf5uvvnmUi9O//zzz3r99dcrPN7LL79sC6Gef/55/fvf/y63EiEtLU0zZ87UsmXLLvIRWCUkJOiJJ54otzVbXl6eZs2aZfu5W7dudp3zYo0aNcpWAfPnn3/qgQceKBHmSdKPP/6ol156SZI1WHn66aftPvff//53NWrUSJI0a9YsPfPMM6We23T27Fl9+umn+vrrr4ttt1gsevnll20/33vvvZo/f36Zx0lNTbW1KDRdfvnlttsvvviisrOzS+y3c+dOTZw4sdz3kKNeezO82bdvn+13LAAAAJyLtmYAAACoNYq2NJs0aVKV9p00aZI2bNhgO86YMWMcOrfqMGXKFNtaMzfeeKNuuukmDRgwQA0bNtTBgwc1Z84c7d27V506dZK3t7e2bNlS6nG2bt2q2bNnq379+hoxYoR69Oihpk2bysPDQ0lJSVq5cqUWLlxoC18uXDNm5cqVmjp1qpo0aaIRI0aoW7duCgsLk8ViUUJCghYtWlQsYLhwf8kaXOzYsUOLFi3S4cOH1atXL40cOVKDBw9WRESELBaLUlJStGvXLq1atUp79+6Vu7u7re1YdXnzzTe1dOlSJSQkaMWKFerQoYPuueceXXbZZcrIyNCSJUs0d+5cNWrUSN26ddPy5cslqdQF1bt27ar//ve/uvPOO1VYWKgpU6bovffe0/jx49W+fXv5+/vrzJkzOnTokDZu3KjVq1crNzdXX3zxhV2PIScnRzNmzNCMGTPUs2dP9evXTx06dFCDBg2UkZGhQ4cO6auvvrKtmdOyZUvdfPPNdp3zYlksFs2ZM0dXXnmlMjIy9Omnn+r333/XpEmT1LJlS6Wnp2vRokXF1kV58cUX1aNHD7vPHRYWprlz5+raa69Vdna2Xn/9dc2ZM0cTJ05Uly5dFBAQoMzMTB07dkybN2/W8uXLlZWVZQuJiho3bpyeeOIJTZ8+XZmZmRo/frz69u2r0aNHKyoqSoZhKCYmRr///rsWL16sm266SQMHDrTtP2HCBEVGRur48ePavHmz2rVrp/vuu0+tW7dWVlaWVq9era+//lp5eXm68847NXv27FIfk6Ne+6FDh2rnzp3KzMzUmDFjNGnSJAUHB8tisUiSOnfuXKyyDgAAADXAAAAAAGqB7du3G5IMSUb9+vWNs2fPVmn/U6dOGd7e3oYkw8PDw0hMTLTdt3LlStuxX3jhhVL3j4qKMiQZUVFRlT6necyL/c/qwsJC45577il2nAu/OnfubBw+fNgYMGBAmee6++67yz2G+eXp6Wm8/PLLJfYfNGhQpfb39/c3PvnkkzIfT15envHUU08Znp6elTpeWc+1ef+AAQMqfA7Le15Me/bsMSIjI8ucR1BQkLFq1Srjtttus207depUmcdbsmSJ0bRp00o9Rm9vb2PRokUljnHnnXfaxhw5cqTcx3j06NFKnUuS0alTJ+PgwYMVPm9lOXLkSIWvT2Vs3rzZ9pkq68vLy8t47bXXyjxGZT63pdm6datx2WWXVer5cnd3Nz766KMyj/Xmm28aPj4+FR7n7rvvLvU5aNy4cbnnfvXVV8t9nI567ePi4oyQkJAy9/30008r/fwCAADAMaicAQAAQK1QtGpm4sSJ8vHxqdL+DRs21JgxY/Tdd98pPz9fs2fPdkirpOpksVj08ccf69prr9WsWbO0efNmpaenKygoSO3atdPEiRN17733VvhcfPDBB7rrrru0cuVKrV27Vvv379fJkyeVn5+vwMBAtWnTRgMHDtS9996rNm3alNh/4cKFWrt2rVauXKn169fr4MGDSk5OlmEYatCggS677DINHTpU9913n8LDw8uch4eHh15//XU98sgj+uSTT7RixQodOHBAp06dkpubm4KCgtS2bVtdccUVGjFiRLGF16tT+/bttWfPHv373//Wd999p4MHD8owDDVr1kxjxozR5MmTFRERoVdffdX2OMz1dUozbNgwW8XCzz//rM2bN+vkyZPKzs5WQECAmjdvrq5du2rw4MEaM2aMGjRoYNf8o6KidPz4ca1cuVIrV67U1q1bdfz4cZ05c0ZeXl4KDQ1V9+7ddf311+vGG2+Uh4fz/zevZ8+e2r9/vz7++GMtWLBAO3fuVEpKivz9/RUVFaVhw4bp4YcfLrZWiqN0795du3fv1rx587RgwQJt2LBBJ06cUGZmpurVq6dmzZqpc+fOGjRokMaMGVNu+8QnnnhCt956q2bNmqUlS5bowIEDSk1NlZeXlyIiItSjRw+NGjWq2Fo7RZ+DnTt3avr06Vq4cKGOHTsmDw8PhYeHa9CgQXrggQfUo0ePEi3RinLUax8eHq6tW7dq+vTpWrZsmY4cOaKMjIxyW6oBAACgelkM/msMAAAAwCWusLBQoaGhOnnypLp27art27c7e0oAAAAA6rCSjZQBAAAA4BLzzTff6OTJk5KkQYMGOXk2AAAAAOo6whkAAAAAddqGDRuUnZ1d5v1r167VX//6V0mSm5ubHnjggZqaGgAAAIBLlPObEQMAAABANXr11Vf122+/adSoUerVq5dt3Zy4uDgtW7ZMixcvtq298fTTT6t9+/bOnC4AAACASwBrzgAAAACo08aNG6cFCxaUO8ZiseiJJ57Qa6+9Jjc3GgwAAAAAqF6EMwAAAADqtIMHD+rHH3/U0qVLdejQIaWkpCg9PV0BAQGKjIzUgAED9MADD6hjx47OnioAAACASwThDAAAAAAAAAAAQA1izRk7FBYWKj4+XgEBAbJYLM6eDgAAAAAAAAAAcCLDMHTmzBmFh4eX2zKZcMYO8fHxatasmbOnAQAAAAAAAAAAapGYmBg1bdq0zPsJZ+wQEBAgyfokBwYGOnk2wMXLy8vTkiVLNHz4cHl6ejp7OgDKwecVcC18ZgHXwecVcC18ZgHXwecVl5r09HQ1a9bMlh+UhXDGDmYrs8DAQMIZuLS8vDz5+fkpMDCQfySBWo7PK+Ba+MwCroPPK+Ba+MwCroPPKy5VFS2FUnbDMwAAAAAAAAAAADgc4QwAAAAAAAAAAEANIpwBAAAAAAAAAACoQYQzAAAAAAAAAAAANYhwBgAAAAAAAAAAoAYRzgAAAAAAAAAAANQgD2dP4FKUl5engoICZ08DdYC7u7s8PT2dPQ0AAAAAAAAAQBUQztSg9PR0JScnKycnx9lTQR3i7e2txo0bKzAw0NlTAQAAAAAAAABUAuFMDUlPT1dcXJzq1aunxo0by9PTUxaLxdnTggszDEN5eXlKS0tTXFycJBHQAAAAAAAAAIALIJypIcnJyapXr56aNm1KKAOH8fX1VUBAgGJjY5WcnEw4AwAAAAAAAAAuwM3ZE7gU5OXlKScnR/Xr1yeYgcNZLBbVr19fOTk5ysvLc/Z0AAAAAAAAAAAVIJypAQUFBZLEwu2oNuZ7y3yvAQAAAAAAAABqL8KZGkTVDKoL7y0AAAAAAAAAcB2EMwAAAAAAAAAAADWIcAYAAAAAAAAAAKAGEc4AAAAAAAAAAADUIMIZ1DiLxVKlr+bNmzt7ygAAAAAAAAAAOIyHsyeAS8+dd95ZYtvatWt16NAhde3aVd26dSt2X+PGjWtoZgAAAAAAAAAAVD/CGdS4zz77rMS2u+66S4cOHdK4ceM0derUGp8TAAAAAAAAAAA1hbZmAAAAAAAAAAAANYhwBrXaqlWrZLFYdNdddykxMVH33XefmjZtKg8PD82cOVOSNHDgQFksFh09erTE/kePHpXFYtHAgQNLPf5PP/2kESNGKCgoSD4+Pmrbtq3+8Y9/KCMjo/oeFAAAAAAAAABIys+XYmOl33+X5s6VZsyQHn9cmjhR6tNHoslQ3UVbM7iEkydP6vLLL1d+fr769u2r7Oxs+fn52XXMJ554QjNmzJCPj4969+6txo0ba8uWLXr55Ze1aNEirV69Wv7+/g56BAAAAAAAAAAudYYhPfectHKlNZSJj5cKC8se//vv0rPPSt7eNTdH1AzCmVrAMAxlZWU5exqV5ufnJ4vFUqPn/OWXXzR+/Hh9+eWX8vHxsft43377rWbMmKHu3bvrhx9+UPPmzSVJeXl5euSRRzRr1ixNnTpVb7zxht3nAgAAAAAAAABJ2r9feuWV4ts8PKSICKlpU6lZs/Pfn3xSysuTEhOlqCjnzBfVh3CmFsjKylK9evWcPY1Ky8jIqPGKEm9vb7399tsOCWYkadq0aZKkr776yhbMSJKnp6f+/e9/68cff9R///tfvfbaa3Jzo/sfAAAAAAAAAPsdPmz93rq1NGeONYRp0kRydy859s03pZgYKSGBcKYu4qozXEKPHj0UERHhkGMlJSVpx44dat++vdq1a1fifh8fH/Xq1UunT5/WgQMHHHJOAAAAAAAAADCXze7YUerdWwoLKz2Ykaz3SdZwBnUPlTO1gJ+fn0stQG/vWi8XIzIy0mHHOnbsmCRp7969FbZnS05OLjXAAQAAAAAAAICqMsOZIs18yhQebv1OOFM3Ec7UAhaLhYXnK3Cx7cwKS1lNq6CgQJIUFham4cOHl7t/UFDQRZ0XAAAAAAAAAC5khjMtWlQ8lsqZuo1wBi7Py8tLkkqtPoqJiSmxrWnTppKk0NBQffbZZ9U6NwAAAAAAAAAwVaVyhnCmbmPNGbi8sHO/paKjo0vct2TJkhLbmjZtqnbt2mnnzp06cuRItc8PAAAAAAAAACTCGZxHOAOXN2DAAEnS9OnTlZWVZdu+bNkyzZw5s9R9nn/+eRUUFOj666/Xrl27Stx/6NAhffLJJ9UyXwAAAAAAAACXnsxM6eRJ6+2oqIrHE87UbYQzcHm33HKL2rVrp/Xr16t9+/a64YYbdMUVV2jEiBF6+OGHS93n9ttv19NPP61t27apW7duuvzyy3XjjTdq5MiRat++vVq3bq3//Oc/NfxIAAAAAAAAANRVx45ZvzdoYP2qCOFM3UY4A5fn6+ur5cuX65ZbbtGZM2f0yy+/qLCwUN98843++te/lrnfa6+9puXLl+u6665TbGys5s+fr23btsnPz09PPfUUlTMAAAAAAAAAHKYqLc2k8+HMiRNSfn51zAjO5OHsCQCS9Nlnn+mzzz4rsX3gwIEyDKPC/SMiIvTll1+Wel95+w8ePFiDBw+u9DwBAAAAAAAA4GJUNZxp0kRyc5MKC6WkJCk8vLpmBmegcgYAAAAAAAAAgGpW1XDG3d0a0Ei0NquLCGcAAAAAAAAAAKhmR45Yv1c2nJHOV8sQztQ9hDMAAAAAAAAAAFSzqlbOSOfXnSGcqXsIZwAAAAAAAAAAqGaEMyiKcAYAAAAAAAAAgGqUkSElJ1tvR0VVfj/CmbqLcAYAAAAAAAAAgGp07Jj1e4MG1q/KIpypuwhnAAAAAAAAAACoRhfT0kwinKnLCGcAAAAAAAAAAKhG9oYz8fGOnA1qA8IZAAAAAAAAAACqUdFw5tVXX9Wnn35aqf3McCYxUSosrJapwUk8nD0BAAAAAAAAAADqMjOc8fM7oWeffVaSFB4erhEjRpS7X2io9Xt+vpSSIgUHV+MkUaOonAEAAAAAAAAAoBqZ4YybW4xt2913361Tp06Vu5+Xl9S4sfU2687ULYQzAAAAAAAAAABUIzOcyc8/aNuWkJCghx56SIZhlLuv2dqMcKZuIZwBAAAAAAAAAKCaZGRIycnW25mZuyVJAwYMkIeHh7799lt99dVX5e5POFM3Ec4AZbjrrrtksVi0atWqYtubN28ui8XinEkBAAAAAAAAcCnHjlm/N2woxcfvlSSNHz9e//jHPyRJf/3rXxUTE1PW7oQzdRThDAAAAAAAAAAA1cRsada8uXTkyBFJUosWLfT3v/9dvXv31unTp3X33XersLCw1P0JZ+omwhmgipYvX669e/c6exoAAAAAAAAAXEDRcObouR+aN28uDw8PffHFF/L19dXy5cv1zjvvlLo/4UzdRDgDVFGrVq102WWXOXsaAAAAAAAAAFyAGc6Eh+fo1KlTkqyVM5LUtm1bTZ8+XZL0zDPPlPpH4WY4Ex9f7VNFDSKcgdMcPXpUFotFAwcOVGZmph5//HE1a9ZMvr6+6tGjh3766Sfb2Llz56p3797y9/dXSEiIJk+erLNnz5Y4ZkZGhv71r3+pc+fO8vPzU2BgoAYMGKD58+eXOY/vv/9evXv3lq+vr0JCQjRp0iTFl/Obrqw1Z37++Wfdc889at++vQIDA+Xv76+uXbtq2rRpysnJKTH+s88+k8Vi0dSpU3X8+HHdeuutCg4Olq+vr3r16lXs8QMAAAAAAABwTec6mcnfP1mSFBQUpICAANv9f/nLXzRy5EhlZ2fr9ttvV25ubrH9qZypmwhn4HS5ubkaMmSIvvjiC3Xr1k1XXnmlduzYofHjx2vZsmV66623dOutt8rDw0PDhw9XQUGB3n77bd13333FjnPixAldccUVeuGFF5Samqphw4bpiiuu0JYtWzR+/Hi9+uqrJc79zjvv6IYbbtDWrVvVp08fDRw4UMuWLdOVV16plJSUKj2Oe++9V3PnzlX9+vU1cuRI9evXTzExMXruued0zTXXqKCgoNT9jh49qssvv1zr1q1T37591b17d23ZskXjxo3TkiVLqjQHAAAAAAAAALWLWTnj4REryfrH30VZLBZ9/PHHatSokbZu3aqXXnqp2P3h4dbvCQmSYVTzZFFjCGfgdL///rt8fX0VHR2tn376SStXrtTHH3+sgoICPfTQQ3r55Ze1YsUKrV+/XvPmzdPOnTvVpEkTffnllzp8+LDtOHfffbf27Nmjp59+WkeOHNGCBQu0dOlS7dy5U61atdLzzz+vnTt32sYfPXpUTz75pLy9vbVs2TItX75c33zzjQ4ePKjLLrtMCxcurNLj+OCDD5SYmKgNGzbo22+/1eLFi3Xs2DGNHj1aK1as0Jw5c0rdb/bs2brpppt06NAhzZs3T+vXr9fMmTNVWFiol19++eKeVAAAAAAAAAC1ghnO5OUdkHS+pVlR4eHh+uCDDyRJ06ZN04YNG2z3mZUz2dlSWlq1ThU1iHCmFjAMKTPTdb4cnc66u7vro48+UsOGDW3bJk2apODgYB08eFCPPPKI+vXrZ7svPDxct912myTpt99+kyRt375dixYtUp8+ffTqq6/K09PTNr5ly5aaPn26CgoK9N///te2/ZNPPlFOTo4mTZqkgQMH2rb7+fnp7bffLrV1WXnGjRsnf3//YtsCAgL01ltvSZIWLFhQ6n7m/Dw8PGzb/vrXv6phw4basGFDiTJGAAAAAAAAAK7hzBnJbNBz5swuSSUrZ0wTJ07UbbfdpsLCQt1xxx3KzMyUJPn6SvXrW8fQ2qzu8Kh4CKpbVpZUr56zZ1F5GRnSBRmEXZo3b67WrVsX2+bm5qaoqCidPHlSw4YNK7FPq1atJEkJ534bLV26VJI0duzYUkOVvn37SpI2bdpk27Z27VpJ0o033lhifLt27dS9e3dt3bq1So/lwIED+uWXX3Tw4EFlZmaqsLBQxrk068CBA6XuM3DgwGJhkiR5eHioZcuW2rJli1JSUhRmxuMAAAAAAAAAXMaxY9bvDRtK8fF7JZVeOWN65513tHr1ah08eFBPPvmk3n//fUnW6pm0NGs40759tU8bNYBwBk4XERFR6nazCqW0+837cnJyJFlblEnSM888o2eeeabMcyUnJ9tux8fHS5IiIyNLHRsZGVnpcMYwDD355JN66623bGHMhc6cOVPq9qZNm5a6vd65xM58jAAAAAAAAABci9nSrHlz6ciRI5LKD2caNGigzz77TEOHDtUHH3ygMWPG6JprrlFYmLRvH5UzdQnhTC3g52etRnEVfn6OPV5F7cMq016soKBAktSvXz+1bNmyzHGNGze23TZDlKq2LyvNN998oxkzZqhp06aaOXOmrrrqKgUHB8vT01O5ubny9vYuM7RxxPkBAAAAAAAA1D7nwxlDy5YdPXe7ebn7DBkyRFOmTNHMmTP10EMP6ejRowoLs15DJJypOwhnagGLxbFtwi5FZvXJDTfcoMmTJ1dqn/DwcEVHR+vYsWNq06ZNifuPHz9e6fPPmzdPkvT+++9r9OjRxe47fPhwpY8DAAAAAAAAoO4ww5mQkGxbZ52KwhlJeumllzRz5kwdP35cp0+fVliYdb1uwpm6w83ZE7hYcXFxuv322xUUFCQ/Pz9169ZNW7Zssd1vGIamTp2q8PBw+fr6auDAgdq9e3exY+Tk5OjRRx9V48aN5e/vr+uuu06xsbE1/VDgAEOHDpUkzZ8/v9L7mOvQzJ07t8R90dHR2r59e6WPlZqaKklq1qxZifu+/fbbSh8HAAAAAAAAQN1hhjP+/iclSaGhofL19a1wv3r16ikoKEiSFBsbK3NJasKZusMlw5nU1FRdffXV8vT01KJFi7Rnzx5Nnz5dDRo0sI15/fXXNWPGDL3zzjvatGmTQkNDNWzYsGLrfkyZMkXz5s3T119/rbVr1yojI0OjR4+2tciC67jyyis1ZMgQrVy5Uo899pgyLugTV1hYqCVLlmjt2rW2bXfffbe8vLz0+eefa82aNbbtZ8+e1d/+9jcVFhZW+vxt27aVJM2aNatY+7I1a9bojTfeuNiHBQAAAAAAAMCFmeGMu3uMpMpVzZjMbkGxsbEKD7duO7eMNuoAlwxnXnvtNTVr1kyffvqpevfurebNm2vIkCFq1aqVJGvVzMyZM/Xcc89pwoQJ6tSpk2bPnq2srCx9+eWXkqS0tDR9/PHHmj59uoYOHaru3bvrf//7n/78808tW7bMmQ8PF2nOnDnq0qWLZs6cqaioKA0ZMkQ333yz+vXrp9DQUI0YMUKbN2+2jW/ZsqVee+01ZWdna9CgQRo6dKhuvvlmtW7dWrt27SrRnqw8kydPlr+/v9577z116tRJt9xyi/r3768BAwboL3/5S3U8XAAAAAAAAAC1nBnO5OUdkCS1aNGi0vsWDWeonKl7XHLNmR9//FEjRozQxIkTtXr1akVEROjhhx/W/fffL0k6cuSIEhMTNXz4cNs+3t7eGjBggNavX68HH3xQW7ZsUV5eXrEx4eHh6tSpk9avX68RI0aUOG9OTo5ycnJsP6enp0uS8vLylJeXV+Z88/LyZBiGCgsLq1SNUdcVfS7Ke15Ke97Mn83nVZKCg4O1fv16ffjhh/r222+1adMm5ebmKiwsTN26ddPYsWM1ceLEYseaPHmywsLC9MYbb2jt2rUKCAjQsGHD9Nprr+n5558v8/wXzrl169b6448/9H//93/auHGjfvzxR7Vr107vv/++7r//fr355ptlPuaij6Gyj7+0MYZhKC8vT+7u7uWOLY35/i3vfQygduDzCrgWPrOA6+DzCrgWPrOA67iUP69nzkgpKZ6SpNOnd0iSIiMjK/1chJ8rlzl27JiuuipPkqcSEgzl5eVXy3zhGJV9fS1G0R5MLsLHx0eS9Pjjj2vixInauHGjpkyZog8//FCTJk3S+vXrdfXVVysuLs72BpakBx54QMeOHdOvv/6qL7/8UnfffXexsEWShg8frhYtWujDDz8scd6pU6fqxRdfLLH9yy+/lJ+fX5nz9fDwUGhoqJo1ayYvL6+LfdhAmXJzcxUTE6PExETl5/PLGQAAAAAAAHC2Y8cC9Le/DVa9erlq2/Yqbd26VQ8//HCxgoHyzJ07V3PmzNGQIUN0772P6dZbr5Ukff31Qvn4sDRHbZWVlaVbb71VaWlpCgwMLHOcS1bOFBYWqlevXpo2bZokqXv37tq9e7fef/99TZo0yTbOYrEU288wjBLbLlTemGeffVaPP/647ef09HQ1a9ZMw4cPL/dJzs7OVkxMjOrVq2cLlgBHys7Olq+vr/r3739R77G8vDwtXbpUw4YNk6enZzXMEICj8HkFXAufWcB18HkFXAufWcB1XMqf159/tl5nbt3aU5mZmZKkMWPGaMiQIZXaPzk5WXPmzJGbm5uuv364/PwMZWVZ1KXLCLVuXW3Thp3MjlsVcclwJiwsTB06dCi2rX379vr+++8lSaGhoZKkxMREhZnN+CQlJSUpJCTENiY3N1epqalq2LBhsTF9+vQp9bze3t7y9vYusd3T07PcXywFBQWyWCxyc3OTm5tLLvODWs7NzU0Wi6XC92JF7N0fQM3h8wq4Fj6zgOvg8wq4Fj6zgOu4FD+vsbHW7y1aSIsWHZMktWnTptLPQ/PmzSVJcXFx8vLyVFiYdOiQlJzsqfbtq2PGcITKvr4umRRcffXV2r9/f7Ft0dHRioqKkmRdVCk0NFRLly613Z+bm6vVq1fbgpeePXvK09Oz2JiEhATt2rWrzHAGAAAAAAAAAIDKOHrU+j04OEvZ2dmyWCxq1qxZpfdv2rSpJCn2XMpj1iEkJDhylnAWl6yceeyxx9SnTx9NmzZNN954ozZu3KhZs2Zp1qxZkqztzKZMmaJp06apTZs2atOmjaZNmyY/Pz/deuutkqT69evr3nvv1RNPPKGgoCA1atRITz75pDp37qyhQ4c68+EBAAAAAAAAAFycGc74+ydJsoYtVVmTPCIiQpK1TVZ6errCwqxLaxDO1A0uGc5cfvnlmjdvnp599ln961//UosWLTRz5kzddttttjFPP/20zp49q4cfflipqam64oortGTJEgUEBNjGvPXWW/Lw8NCNN96os2fPasiQIfrss8/k7u7ujIcFAAAAAAAAAKgjjhyxfndzOy7pfJuyyqpXr54aNGig06dPKy4ujnCmjnHJcEaSRo8erdGjR5d5v8Vi0dSpUzV16tQyx/j4+Ojtt9/W22+/XQ0zBAAAAAAAAABcqszKmdzcaEnW5TiqqmnTpjp9+rRiY2MVHm5daCY+3lEzhDO55JozAAAAAAAAAADUVunp0qlT5u0/JV18OCNZ151hzZm6hXCmBhmG4ewpoI7ivQUAAAAAAADUHseOWb83aiTFxe2VVPW2ZhLhTF1GOFMDzDVs8vLynDwT1FXme4v1kgAAAAAAAADnM1uaNW8uHTm3+AyVMyiKcKYGeHp6ytvbW2lpaVQ4wOEMw1BaWpq8vb3l6enp7OkAAAAAAAAAlzwznImKMnT8+HFJjgtnTp2ScnIcMUs4k4ezJ3CpaNy4seLi4hQbG6v69evL09NTFovF2dOCCzMMQ3l5eUpLS1NGRoYiIiKcPSUAAAAAAAAAOh/ONG6coby8PHl4eFzU9bui4UyjRpKXl5SbKyUmSlFRDpwwahzhTA0JDAyUJCUnJysuLs7Js0Fd4u3trYiICNt7DAAAAAAAAIBzmeGMn1+SJCkyMvKiliQoGs5YLFJoqHT8uLW1GeGMayOcqUGBgYEKDAxUXl6eCgoKnD0d1AHu7u60MgMAAAAAAABqGTOcsViOSbq4lmbS+XDm1KlTysrKUliYny2cgWsjnHECT09PLqgDAAAAAAAAQB1lhjM5OfslSc2bN7+o4wQGBqpevXrKyMhQbGyswsPbSiKcqQvcnD0BAAAAAAAAAADqivR06dQp6+20tJ2SLr5yxmKxFGttFhZm3R4fb/c04WSEMwAAAAAAAAAAOMgxayczNWokxcXtlXTxlTOSSg1nqJxxfYQzAAAAAAAAAAA4iNnSrHlz6ciRI5IuvnJGIpypqwhnAAAAAAAAAABwEDOciYwsVGxsrCTCGZREOAMAAAAAAAAAgIOY4UxQULoKCwvl7e2tkJCQiz4e4UzdRDgDAAAAAAAAAICDmOGMr2+SJOt6M25uF38pvrRwJilJys+3Z5ZwNsIZAAAAAAAAAAAc5NwyM5KOSrKvpZlUPJwJDpbc3CTDsAY0cF2EMwAAAAAAAAAAOIhZOZOTs1+StXLGHmY4c/LkSeXlZcvskEZrM9dGOAMAAAAAAAAAgAOkpUmpqebtHZLsr5xp1KiRfHx8JEnx8fEKD7duJ5xxbYQzAAAAAAAAAAA4wLFj1u9BQVJs7F5J9oczFoul1HVn4uPtOiycjHAGAAAAAAAAAAAHMFuaNW8uHTm3+Iy9bc0klRrOUDnj2ghnAAAAAAAAAABwADOcadasQAnn0hN7K2ckwpm6iHAGAAAAAAAAAAAHMMOZhg3TJEn16tVTUFCQ3cclnKl7CGcAAAAAAAAAAHAAM5zx9T0hydrSzGKx2H1cwpm6h3AGAAAAAAAAAAAHMMMZybrejCNamkmEM3UR4QwAAAAAAAAAAA5ghjNnz+6TZK2ccYTSwpnERKmw0CGHhxMQzgAAAAAAAAAAYKe0NCk11Xr79OkdkhxfOZOYmKigoDxJUn6+lJLikMPDCQhnAAAAAAAAAACw07Fj1u9BQVJs7F5JjgtngoOD5enpKcMwlJycoOBg63Zam7kuwhkAAAAAAAAAAOxktjRr3lw6cuTIudvNHXJsNze3Ulubxcc75PBwAsIZAAAAAAAAAADsZIYzTZvmKzk5WZLjKmesxy0ZzlA547oIZwAAAAAAAAAAsJMZzjRocFqS1LBhQ9WvX99hxyecqVsIZwAAAAAAAADARW3fvl1TpkxRAlfpnc4MZ3x8EiU5rqWZiXCmbvFw9gQAAAAAAAAAAFX3xx9/aPjw4UpPT1ejRo30z3/+09lTuqSZ4YxhWNebcWRLM6l4ONOvn3Ub4YzronIGAAAAAAAAAFzM77//rmHDhik9PV2SdNRMBuA0R6yZjM6e3SupesMZKmdcH+EMAAAAAAAAALiQ9evXa8SIETpz5owaNmwoSYqJiXHyrC5tp09bvyQpNXW7JNqaoXyEMwAAAAAAAADgItauXWsLZgYNGqTZs2dLsl6wh/OY2VijRlJsbPVWzsTHxyskpECSNZwxDIeeBjWEcAYAAAAAAAAAXMCaNWs0cuRIZWRkaPDgwVq4cKHatWsnyVo5Y3CV3mnMCpbw8PMt5hxdORMSEiJ3d3cVFBTIze2EJCk7W0pLc+hpUEMIZwAAAAAAAACgllu9erVGjRqlzMxMDR06VD/99JP8/Pxs1RSZmZlK4yq905jhTHBwnk6f62/m6HDG3d1d4eHhkqTk5Fg1aGDdHh/v0NOghhDOAAAAAAAAAEAttmrVKl1zzTXKzMzU8OHD9eOPP8rPz0+S5Ofnp6CgIEmsO+NMiYnW735+ZyRJTZo0kb+/v8PPw7ozdQfhDAAAAAAAAADUUitWrNA111yjrKwsjRw5UgsWLJCvr2+xMeYFe8IZ5zHDGU/PZEmOr5oxEc7UHYQzAAAAAAAAAFALLV++XKNHj9bZs2c1atQozZs3Tz4+PiXGNWvWTJL1gj2cwwxICgutPcZatGhRLechnKk7CGcAAAAAAAAAoJZZv369LZi59tprywxmJCpnagOzciY7+6gkwhlUjHAGAAAAAAAAAGqZt956S9nZ2Ro1apS+//57eXt7lznWrJwhnHEeM5xJT98vibZmqBjhDAAAAAAAAADUMvv3Wy/yP/LII+UGMxJtzWoDMyBJTt4lqWYqZ8LDi58broVwBgAAAAAAAABqkcLCQh08eFCS1KZNmwrH09bMubKypPR06+34+K2Sqj+ciYuLU0hIoSTCGVdFOAMAAAAAAAAAtUh8fLzOnj0rDw+PSrXHKlo5YxhGNc8OFzpxwvrdx8dQVla8LBaLIiMjq+VcYWFhslgsys3NlY9PqiTCGVdFOAMAAAAAAAAAtUh0dLQka/WFp6dnheMjIiIkSVlZWUpNTa3WuaEkMxxp2DBXkhQeHl5hK7qL5enpqdDQUElSfr61UurMGSkjo1pOh2pEOAMAAAAAAAAAtciBAwckVa6lmST5+vqqcePGkmht5gyJidbv9eqdkaRKVTvZw2xtlpp6XP7+1m1Uz7gewhkAAAAAAAAAqEXMcKZt27aV3qdoazPULDMY8fJKkVR9682YzHAmNjZWYWHF5wDXQTgDAAAAAAAAALWI2dasspUz0vkL9lTO1DyzcsYwrDcIZ1AZhDMAAAAAAAAAUItUta2ZROWMM5nhTE7OMUk119aMcMa1Ec4AAAAAAAAAQC1RUFCgQ4cOSbq4tmZUztQ8Mxg5c8Za8UTlDCqDcAYAAAAAAAAAaoljx44pLy9P3t7etsClMmhr5jxm5cypU3sk1Vw4ExMTo/Bw6zbCGddDOAMAAAAAAAAAtYTZ0qx169Zyc6v85VvamjmPGc7k5x+Xu7u7LTypLsUrZ4xzt6v1lKgGhDMAAAAAAAAAUEtER1tbY1VlvRmpeDWFYRgOnxdKV1gonThh/pSo5s2by8PDo1rPGX6uXCY7O1sNG6ZLko4dq9ZTohoQzgAAAAAAAABALWFWzlxsOJOdna2UlBSHzwulS0mR8vPNn5LUsWPHaj+nj4+PgoODJUkeHnGSpJgYa1AE10E4AwAAAAAAAAC1hBnOtG3btkr7eXt7q0mTJpJobVaTzJZmPj5nJOWpU6dONXJeM4zLzT0qd3cpL491Z1wN4QwAAAAAAAAA1BIX29ZMKt7aDDXDDETc3JIkqUYqZ6Tzr3VCQozMJW5obeZaCGcAAAAAAAAAoBbIzc3V0aNHJV1cONOsWTNJVM7UJLNyJjf3uCTVeOVMbGysoqKs2whnXAvhDAAAAAAAAADUAkeOHFFhYaH8/f0VFhZW5f2pnKl5ZuVMfn6M3N3d1a5duxo5b9Fwpnlz67ZzuR5cBOEMAAAAAAAAANQCRVuaWSyWKu9vVs4QztQcs3JGSlSbNm3k7e1dI+elcsb1Ec4AAAAAAAAAQC1w4MABSRfX0kyirZkznA9nEmqspZlEOFMXEM4AAAAAAAAAQC1ghjNt27a9qP1pa1bzzLZmUqI6duxYY+ctWiUVGWlIIpxxNXaHM1lZWcrKyirz/rffflv9+vVT+/btdc0112jhwoX2nhIAAAAAAAAA6pyibc0uRtHKGcMwHDYvlK1oW7OarJyJiIiQJGVmZiooKEOSNZzhZXcddoUzP/30kwICAhQeHq4zZ86UuP+ee+7RlClTtH79eu3fv1+//vqrxo4dq9dff92e0wIAAAAAAABAnWNvW7Pw8HBJUk5OjpKTkx02L5QtMdFMQ2q2rZmfn58aNWokSbJYrJVSWVlSSkqNTQF2siuc+fXXX2UYhsaNG6eAgIBi961du1afffaZJOsbpXv37vLx8ZFhGHr++ee1e/due04NAAAAAAAAAHXG2bNnbe3ILratmbe3t0JCQiTR2qwmnD0rpaVZJEmenqfUunXrGj2/2cYuKSlGYWHWbUeP1ugUYAe7wpkNGzbIYrFo0KBBJe6bNWuWJGtau3fvXm3ZskX79u1Ts2bNVFBQoA8//NCeUwMAAAAAAABAnXHw4EFJUoMGDRQUFHTRxyna2gzV63xLs2xddlmYPDw8avT8ZjgTGxurqCjrNtadcR12hTNJSUmSSi+zW7x4sSwWix599FHbm6RZs2Z69NFHZRiGVq9ebc+pAQAAAAAAAKDOMFuatW3bVhaL5aKPY16LpXKm+p0PZxLUqVPHGj8/4YxrsyucOXnypCSpXr16xbbv2bPH1tPwuuuuK3Zfr169JElHqa8CAAAAAAAAAEn2rzdjonKm5iQkmLcSa3S9GRPhjGuzK5xxd3eXJJ06darY9jVr1kiSgoODddlllxW7r2HDhpKk7Oxse04NAAAAAAAAAHVGdHS0JMeFM1TOVL/zlTOEM6g6u8KZiIgISdL27duLbf/5559lsVjUr1+/EvukpaVJkho3bmzPqQEAAAAAAACgzija1swetDWrOXFxheduJahjR+e2NWve3LqNhlWuw65wpl+/fjIMQ++8846tjdmmTZu0ePFiSdKIESNK7LN3715JUmhoqD2nBgAAAAAAAIA6g7ZmrufAgTOSJA+PFLVo0aLGz0/ljGuzK5x5+OGH5ebmpiNHjqhly5bq1auXBgwYoPz8fDVs2FA33XRTiX1WrFghi8Wibt262XNqAAAAAAAAAKgT0tPTlXiuR5a94UzRC/aFhYUVjIY9Dh/OkiSFh1vk5mbXpfaLYr7Wp0+fVlBQxrnbUnp6jU8FF8Gud0yPHj30xhtvyGKxKCMjQ1u3blV2drY8PT310UcfKSAgoNj4tLQ0/fzzz5KkYcOG2XNqAAAAAAAAAKgTDh48KElq0qSJ6tevb9exIiIiZLFYlJubq5MnTzpieihDQoIhSWrdup5Tzh8QEKDAwEBJUlpanBo1sm6nesY1eNh7gMcee0xDhw7Vd999p8TERIWFhemWW25Ru3btSoxdtWqVLr/8cknS0KFD7T01AAAAAAAAALg8R7U0kyRPT0+FhoYqISFBsbGxCgkJsfuYKF1qqrckqVMn562v3rRpU+3Zs+dca7N2OnXKGs507uy0KaGS7A5nJKlz587qXIlXe+zYsRo7dqwjTgkAAAAAAAAAdUJ0dLQkx4QzkvWCfUJCgmJiYtSzZ0+HHBPFFRZKZ89aq1Z69Ypw2jyKhjPNm0vbtklHjzptOqgCu9qa3XPPPbrnnns0d+5cR80HAAAAAAAAAC4pZuVM27ZtHXK8Zs2aSbKuO4PqkZCQK8lTktSnT2unzaPoGkNRUdZttDVzDXZVzsyePVuSdNNNNzlkMgAAAAAAAABwqXFkWzPp/AX7mJgYhxwPJf3xxzFJbWSxpKhly6ZOm0fRcMZcaYRwxjXYVTkTHBwsSfQtBAAAAAAAAICL5Oi2ZmblDOFM9dmyJU6S5ONzWhaLxWnzMF/rQ4cOUTnjYuwKZzp06CBJOsarDQAAAAAAAABVlpKSolOnTkmSWrd2THss2ppVv127UiRJjRrlOHUevXr1kiT98ccfatq0QBLhjKuwK5y5/fbbZRiGrb0ZAAAAAAAAgNppzpw5uummm5SZmensqaAIs6VZRESE/P39HXJM2ppVv0OHMiRJYWHOq5qRpM6dOyswMFDp6enKzNwjSTpxQjp71qnTQiXYFc7cfffdGjJkiBYsWKAXX3xRhmE4al4AAAAAAAAAHGTp0qWaNGmSvv32W/3888/Ong6KMMOZtm3bOuyYZuVMXFycCgsLHXZcnBcXZ31eW7b0c+o83N3d1adPH0nSzp2rVK+edfvx406cFCrFrnBmzZo1evLJJ9W5c2f961//UocOHTR16lT98MMPWrlypX777bdyvy7W1KlTZbFYin2Fhoba7jcMQ1OnTlV4eLh8fX01cOBA7d69u9gxcnJy9Oijj6px48by9/fXddddR5kfAAAAAAAA6pyjR4/q5ptvtl2k5xpY7WKGM45ab0aSwsLCZLFYlJeXp6SkJIcdF1Znz57V6dM+kqT27Rs6eTZSv379JEnr1q1l3RkX4mHPzgMHDiy22FF0dLReeumlSu1rsViUn59/0efu2LGjli1bZvvZ3d3ddvv111/XjBkz9Nlnn6lt27Z6+eWXNWzYMO3fv18BAQGSpClTpuinn37S119/raCgID3xxBMaPXq0tmzZUuxYAAAAAAAAgKs6e/asJkyYYFvTRLJWU6D2iI6OluTYcMbT01NhYWGKj49XTExMsT9sh/327dsnyfqctm0b4NzJSOrbt68kazFF9+6Gdu+2EM64ALsqZyRrlcrFftnDw8NDoaGhtq/g4GDbfGbOnKnnnntOEyZMUKdOnTR79mxlZWXpyy+/lCSlpaXp448/1vTp0zV06FB1795d//vf//Tnn38WC3wAAAAAAAAAV2UYhh588EFt27ZNwcHBeuyxxyQRztQ21dHWTDrf2oxKKcfbtWuXpDBJzl9zRpIuv/xyeXp6KiEhQQ0bpkuicsYV2FU5s3LlSkfNo8oOHDig8PBweXt764orrtC0adPUsmVLHTlyRImJiRo+fLhtrLe3twYMGKD169frwQcf1JYtW5SXl1dsTHh4uDp16qT169drxIgRpZ4zJydHOTk5tp/T061v9Ly8POXl5VXTIwWqn/n+5X0M1H58XgHXwmcWcB18XgHXwme2ct577z198cUXcnd315dffqkTJ05Isl6s57mrHQzDsIUzzZs3d+jrEh4eLsna1s6Zr3dd/Lzu2LFD0hhJUlBQnpz90Dw8PNSrVy/9/vvvys6OlnS5jhwpVF5egXMndomq7HvdrnBmwIAB9ux+0a644gp9/vnnatu2rU6cOKGXX35Zffr00e7du5WYmChJCgkJKbZPSEiIjp2LCxMTE+Xl5aWGDRuWGGPuX5pXXnlFL774YontS5YskZ+fcxd+Ahxh6dKlzp4CgEri8wq4Fj6zgOvg8wq4Fj6zZdu9e7f++c9/SpLuvPNOZWZmKiYmRpJ08OBB/fLLL86cHs5JTU3VmTNn5ObmpujoaB05csRhxzaXlPjtt9/UsmVLhx33YtWlz+vKlRskNZAk/fnnEh05cvHLdziK2bouOnqJpMu1bVuqfvllrXMndYnKysqq1Di7whlnGTVqlO12586dddVVV6lVq1aaPXu2rrzySkkqthaOZE2hL9x2oYrGPPvss3r88cdtP6enp6tZs2YaPny4AgMDL+ahALVCXl6eli5dqmHDhsnT09PZ0wFQDj6vgGvhMwu4Dj6vgGvhM1u+uLg4PfjggyooKNBNN92k999/XxaLRR06dNCzzz6r1NRUjRo1qsJrZah+a9daL55HRUVp7NixDj32/v379dNPP8nLy0vXXHONQ49dFXXx8/rww29Ikjw9CzRx4nDVho+SYRiaN2+e0tJ2SpIyMho59XW/lJkdtyrikuHMhfz9/dW5c2cdOHBA48aNk2StjgkLC7ONSUpKslXThIaGKjc3V6mpqcWqZ5KSktSnT58yz+Pt7S1vb+8S2z09PevMLxZc2ngvA66DzyvgWvjMAq6DzyvgWvjMlpSTk6NbbrlFJ06cUJcuXfTxxx/Ly8tLkjUAkKTc3FylpaXZ1nCG85iVMm3atHH4e7l58+aSrGFdbfic1JXP65kzZxQfb20XFhYmeXnVjsfUv39/SdLx479JkuLiLJI8VQeecpdT2fe5m6NOmJ6erk8++UT333+/xowZoyFDhtjaiJni4+O1Z88eHT582FGnlWT9R2fv3r0KCwtTixYtFBoaWqxMLjc3V6tXr7YFLz179pSnp2exMQkJCdq1a1e54QwAAAAAAABQm02ZMkUbNmxQgwYN9MMPP8jf3992n5eXly2QiYuLc9YUUUR0dLQkazjjaM2aNZNkXWMIjrNnzx5J1hZi4eHuzp1MEY0aNVLHjh0lnZCHR4EKCyU+5rWbQypn3n33XT333HM6c+aMpPPtwTIzM4uNW716tW677Tb5+PgoNjZWjRo1uqjzPfnkkxozZowiIyOVlJSkl19+Wenp6brzzjtlsVg0ZcoUTZs2TW3atFGbNm00bdo0+fn56dZbb5Uk1a9fX/fee6+eeOIJBQUFqVGjRnryySfVuXNnDR061L4nAwAAAAAAAHCCTz75RB988IEsFou++uortWrVqsSYiIgInTx5UnFxcerWrVvNTxLFHDhwQJLUtm1bhx+7adOmkqxBXEFBgdzda0+Q4Mp27dolydqx6dwyL7VGv379tHv3btWrd0qnTwfr2DHpXAEVaiG7K2emTp2qyZMnKz09XV5eXurZs2eZY2+66SaFhYUpJydH33///UWfMzY2VrfccovatWunCRMmyMvLSxs2bLCVZj799NOaMmWKHn74YfXq1UtxcXFasmSJAgICbMd46623NG7cON144426+uqr5efnp59++olfUgAAAAAAAHA5mzZt0kMPPSRJeumllzRy5MhSxxW9YA/nM8OZ6qicCQsLk5ubm/Lz83XixAmHH/9StXv3bpmVM0VW1agV+vbtK0kqLLS2y7ugsRVqGbvCmW3btumll16SJN1+++1KTEzUxo0byz6Zm5smTpwowzCKtRSrqq+//lrx8fHKzc1VXFycvv/+e3Xo0MF2v8Vi0dSpU5WQkKDs7GytXr1anTp1KnYMHx8fvf3220pJSVFWVpZ++uknW6kfAAAAAAAA4CqSkpI0YcIE5ebmauzYsXr22WfLHBsRESGJcKY2KCwsrNZwxsPDQ+Hh4ZJobeZItb1yRpLOnNklSTp61ImTQYXsCmfefvttGYahq666Sp9//rnq169f4T5XXXWVJOnPP/+059QAAAAAAAAAJP31r39VbGys2rVrp88//1xubmVf8jPDGS7WO19cXJyys7Pl4eGh5tXUe8qslIqJiamW41+KrOGMNZWpbeFMZGSkmjVrJsOgcsYV2BXOrF69WhaLRY888kil9zF/0ZDOAwAAAAAAAPYpLCzUr7/+Kkn67LPPFBgYWO54KmdqD7NqpmXLlvLwcMjS4CWYnYII4xzj1KlTSkhIUG1tayaZrc2sqQzhTO1mVzhjfSNK7dq1q/Q+3t7ekqScnBx7Tg0AAAAAAABc8g4cOKAzZ87Ix8dHvXr1qnA84UztER0dLal6WpqZqJxxLOt6M5K7u/V5rW2VM5LZ2oxwxhXYFc54eXlJkvLy8iq9jxnoNGjQwJ5TAwAAAAAAAJe8rVu3SpK6du1aqeoL82I94YzzmZUzbdu2rbZzmJUzhDOOYQ1nLCosDJZUO8OZopUzx48bKix07nxQNrvCGfOXuZkYVsaSJUskSa1bt7bn1AAAAAAAAMAlb8uWLZKknj17Vmq8WTmTmpqqrKysapsXKmaGM9VZOUNbM8eyrjfTSIZhDUJDQpw7n9J07NhR9etnSipQbq5FiYnOnhHKYlc4M3jwYBmGoU8//bRS4w8fPqyPP/5YFotFw4YNs+fUAAAAAAAAwCWvquFM/fr15efnJ4nqGWcz25pVZ+UMbc0cyxrOWBeaCQqSzjWWqlXc3NzUt+8VkqyBHK3Nai+7wplHHnlEHh4eWrdunaZOnVru2M2bN2v48OHKyMiQt7e3HnzwQXtODQAAAAAAAFzSCgsLbW3NKhvOWCwW1p2pBfLz83X48GFJNVM5Ex8fr4KCgmo7z6XAMIxz4Yy1l1lYmHPnU56irc0IZ2ovu8KZtm3b6h//+IcMw9BLL72kK664Qq+//rrt/sWLF+u1117TkCFDdMUVV+jIkSOyWCx69dVXFVab370AAAAAAABALXf48GGlp6fL29tbHTp0qPR+rDvjfMePH1deXp58fHxsr0d1CA0Nlbu7uwoKCpRIfyu7JCUlKSUlRWblTG1cb8bUr18/meHM0aOGcyeDMlW8SlgF/vGPfygvL0/Tpk3Tpk2btHnzZlksFknSU089ZRtnGIYsFov++c9/avLkyfaeFgAAAAAAALikmS3NunTpIk9Pz0rvR+WM85ktzVq3bi03N7v+fr5c7u7uCg8PV0xMjGJiYmyvParOWjUjBQV1UkpK7Q5nevXqJXf3NSookP78M01SA2dPCaVwyCf/X//6lzZs2KAJEybI19dXhmEU+/L09NSoUaO0Zs0avfDCC444JQAAAAAAAHBJq2pLMxPhjPMdOHBAUvW2NDOZrc1iY2Or/Vx12e7duyVJDRq0k1S725p5e3urRQvrpf8//zzj5NmgLHZXzph69eql7777Tvn5+dqzZ4+SkpJUUFCgoKAgdezYUb6+vo46FQAAAAAAAHDJMytnevToUaX9zHCGi/XOU5PhjNk2LSYmptrP5WpOn5YyMqTKdJYzK2e8vVtIqt2VM5LUq1djHTwoxcRUX2UW7OOwcMZ2QA8PdenSxdGHBQAAAAAAAHCOYRhUzrgws61Z27Ztq/1cZuUM4UxxGRlSr15SQoK0b5907mkqk1k5I4VIqv3hzODBrfT111JaWgMZhnRuJRLUIsRmAAAAAAAAgIs5evSoUlNT5enpqU6dOlVpX7OSgnDGeZxROUOlVHH/+Id06JCUlSXNn1/+WMMwbJUzZ8/Wl1S725pJ0pgxXSVJhuGvvXtPOHk2KA3hDAAAAAAAAOBizJZmnTt3lpeXV5X2NStnEhISVFBQ4PC5oXy5ubk6evSopJpdc4bKmfM2b5b+85/zPy9YUP742NhYpaeny8PDQ6dOeUuq/ZUzoaEN5OGRLEn6+eddTp4NSmNXW7N77rmnyvtYLBb5+Piofv36atOmja688kq1b9/enmkAAAAAAAAAlxQznKlqSzNJCgkJkZubmwoKCpSUlKSw2l4CUMccPnxYhYWFqlevnkJr4Aq/Gc5QOWOVny/df79UWCgNGCCtXm39On1aatCg9H3MlmatWnXS/v3W/mCu8LFp1ChDSUmNtXr1UT31lLNngwvZFc589tlnsjigWV2vXr00Y8YMXX311XYfCwAAAAAAAKjrLna9Gcm6ZnRoaKji4+MVGxtLOFPDirY0c8S11YqYbc3i4+OVn58vDw+HL0PuUmbOlLZvlxo2lL79Vho0SNqzR1q0SLrlltL3MVuatWrVR/v3S97eUv36NTbli9aihZuSkqQdO9KcPRWUwq62ZpGRkYqMjFTjxo1lGIbty8vLSyEhIQoJCZGXl5dtuyQ1btxYTZs2VWBgoG37pk2bNGDAAM2ZM8chDwoAAAAAAACoqwzDsKtyRjrf2ox1Z2pedHS0pJppaSZZK6U8PDxUWFiohISEGjlnbXX0qPTCC9bbb74pNWkijR1r/fnHH8vez6ycCQvrIcna0qwGcjW7de/eUJIUG+uuM2fOOHk2uJBd4czRo0c1b948BQQEyMvLS4899pi2bdumzMxMxcfHKz4+XpmZmdq2bZumTJkiT09P1atXT/PmzVNqaqpiYmL02muvKSAgQIWFhbrvvvvofQgAAAAAAACU4/jx40pJSZGHh4c6dep0UccwqykIZ2qeWTnTtm3bGjmfu7u7wsPDJV3arc0MQ3roISkrSxo4ULr7buv2666zfl+0SMrNLblfXl6eNm7cKElq1KiDJNdoaSZJnToFnLsVqQ0bNjh1LijJrnDmxIkTuuaaa5SYmKiVK1dq+vTp6tq1q9zczh/Wzc1NXbt21YwZM7Ry5UolJibqmmuuUUJCgiIiIvTUU09p1apV8vX1VW5urt555x27HxQAAAAAAABQV5ktzTp16iQfH5+LOgaVM86zc+dOSarRdbjNdWcu5T+M/+YbafFiyctL+uCD85UvvXtLISFSWpr022/F98nLy9PNN9+sPXv2yNvbWw0aWF+zGlgqyCGiomy3tHbtWmdOBaWwK5yZPn26EhMT9fjjj+uqq66qcPxVV12lxx9/XElJSXrjjTds27t376577rlHhmFo6dKl9kwJAAAAAAAAqNPsbWkmEc44S15enrZt2ybJug53TTHDmUu1ciY1Vfrb36y3n39eatfu/H1ubtKYMdbbRVub5ebm6sYbb9QPP/wgLy8v/fDDD8rObiDJNcOZNWvWOHMqKIVd4cyCBQtksVg0YsSISu8zcuRISdLPP/9cbPuoUaMkWVulAQAAAAAAACidGc706NHjoo9hhjOX6sV6Z9mzZ4+ys7NVv359tW7dusbOa7axu1QrZ55+WkpKktq3l555puT9ZmuzBQus7c9yc3M1ceJEzZ8/X97e3lqwYMG5DlLWca7S1ux8OBOk33/fpby8PGdOBxewK5wxf3l7e3tXeh9z7IW/+M2+h1lZWfZMCQAAAAAAABfJMAwdP35cCxcutAUAqF0Mw6ByxoVt2rRJkvW1K7o0RHW7lNua/fab9N//Wm/PmmVta3ahoUMlX1/p+HFp8+Zc3XDDDfrxxx9twYxZcJCQYB3vKpUzgYFSw4aGJCk7u4mtJSJqBw97dvbz81N2drY2b95c6TI88xeQn59fse05OTmSpIYNG9ozJQAAAAAAAFRCRkaGdu3apZ07dxb7SktLkyR5eXnp+PHjCgkJcfJMUVRcXJxOnjwpd3d3denS5aKPY1ZSEM7ULPPa6OWXX16j571U25rl5EgPPGC9/cADUt++pY/z9ZWGD7dWztx++7eKjv5JPj4+WrBggYYPH24bZ1bOuEo4I0lRURalpkrmujNXXHGFs6eEc+yKZ3v27CnDMPTKK68oJSWlwvHJycl69dVXZbFYSoQ5+/fvlyQ1adLEnikBAAAAAACgDHPnztX111+vNm3aKDAwUFdddZUefPBBvfvuu1qzZo3S0tLk4eEhT09P5ebm2tbGQO1hVs106NBBvr6+F30cs3ImIyND6enpDpkbKuascOZSbWv26qvS/v1SSIj1dnlGjbK2/IqOvky+vr766aefigUzklyurZlUfN2ZtWvXOnMquIBd4czDDz8syZq4Xnnllfr5559lGEaJcYZhaOHChbrqqqtsvwD++te/FhuzePHiUkMbAAAAAAAA2C89PV233XabfvjhBx08eFCGYSg0NFTDhw/Xk08+qc8//1w7duxQZmamxo8fL0natWuXk2eNC5ltiexpaSZJ/v7+ql+/viSqZ2pKdna2/vzzT0nOq5xJSEi4ZNYd2bdPmjbNevs//5HKa9iUnZ2tb765Q1KhpF769NOlGjp0aLExhYWuWjlju6W1a9eWev0ezmFXW7PrrrtODzzwgGbNmqXDhw/ruuuuU1BQkLp162argElKStL27duLVdY8+OCDGj16tO3nxMREzZ8/X4ZhaNSoUfZMCQAAAAAAAKX47bfflJeXp2bNmunTTz9V586dy+xg0rFjR0nS7t27a3KKqARHrDdjioiIUFpamuLi4tS+fXu7j4fybd++Xfn5+WrSpIktLKkpTZo0kaenp/Ly8pSQkKDIyMgaPX9NKyy0tjHLzZWuuUaaOLHssWfPntW4ceO0cuUSubn9TYWFV+nUqatLjDt1SsrPt952pW6PZjjj5tZSycnJ2r9/vy677DLnTgqS7AxnJOmDDz5QVFSUXnrpJWVnZys5OVnLly8vNsZM47y9vfXCCy/o//7v/4rdHxgYqL1790o6X1IJAAAAAAAAx1mxYoUkadSoURoyZEi5Yzt16iSJypnayAxnevToYfexIiIitGfPnktuHRJnKdrSzGKx1Oi53dzcFBUVpYMHDyo6OrrOhzOffy6tWSP5+UnvvSeV9XRnZWVp7NixWrZsmfz8/HTHHSH68EPpxx+lhx4qPtasmgkKkry8qnf+jmSGM/7+HXXmjLRmzRrCmVrCrrZmpmeffVaHDx/WK6+8oqFDhyokJEReXl7y8vJSSEiIhgwZomnTpunw4cMlghlJ8vPzU1RUlKKiouThYXdeBAAAAAAAgAuY4czgwYMrHGuGM3v27FFhYWG1zguVl5CQoMTERLm5ualbt252H89ch4S2ZjVj8+bNkuS0ZR3M94zZGq8u+/pr6/e//71oW6+SJk2apGXLlsnf31+LFi3SlCktJUkrVkhnzhQfm5Bg/e5KLc0kqXlz63fDsFZrrVmzxnmTQTEOS0JCQ0P1zDPP6JlnnnHUIQEAAAAAAOAAycnJ2rFjhyRp4MCBFY5v1aqVvL29lZWVpaNHj6ply5bVPENUhlk10759e/n5+dl9PLODDeFMzShaOeMMPXv21HfffWd7H9VVhiGZD3H48LLHnTp1Sj/88IMk6ZdfflH//v1lGFKbNtKBA9Kvv0o33HB+vFk5ExZWTROvJmY4lZERIMlbO3fudOp8cJ5DKmcAAAAAAABQe61atUqStSImpBKLJbi7u9vWIKG1We3hyPVmJMKZmnTmzBnt27dPkvPCGbMVXl2vnImJkZKTJQ8PqXPnssetXr1ahmGoffv26t+/vyRr+7OxY633//hj8fGuWjkTFGRt72bVTNHR0VRE1hKEMwAAAAAAAHVcVVqamTp27ChJ2r17d7XMCVVnXlR3xHozEuFMTdqyZYsMw1BkZKSaNGnilDmYod7BgweVlpbmlDnUhHPd49Spk+TjU/a4lStXSir5e/G666zff/5Zys8/v92snHG1cMZiOV894+7eSmfPnmWdqVrC4Qu8pKen68yZMyooKKhwbF1feAoAAAAAAKA2uJhwxlx3hsqZ2qO6Kme4UFv9nN3STJKCgoIUFRWlY8eOaevWrRo0aJDT5lKdzJZmFX1MzN+LFz4PffpYq01SUqR166QBA6zbXbWtmWQNZ/bulYKDeykx8VdFR0dzbb4WcEjlzNKlSzV+/Hg1btxYDRs2VGRkpFq0aFHuF71KAQAAAAAAql9cXJz2798vNzc3DTCvMlYC4UztcuLECcXFxclisdgWdrdX06ZNJUlJSUnKy8tzyDFRutoQzkjng7263NqsMuHMiRMnbFWBF67D5e4ujR5tvb1gwfntrtrWTJKaN7d+Dwy09nnbv3+/8yYDG7vDmcmTJ2vkyJH68ccfderUKRmGUekvAAAAAAAAVC+zdU+PHj3UoEGDSu9ntjXbt2+f8ov29oFTmBfT27Vrp3r16jnkmI0bN5anp6cMw1CCeeUZ1WLzuV5bvXr1cuo8zJZ4ZhVWXWMYlQtnzHW4unbtqqCgoBL3F113xryM7eqVM5Lk4dFaEuFMbWFXW7Mvv/xS77zzjiTJx8dH48aNU8+ePdWoUSO5ubGcDQAAAAAAgLNdTEszSYqKipK/v78yMzN18OBBXXbZZdUxPVSSo1uaSZKbm5vCw8N17NgxxcXF0eaomiQnJ+vIkSOSHPv6XQzz/HU1nImJkZKTJQ8PqUuXsseZoXVZrd2GDZO8vaVDh6ztwDp0cN01Z6Tz4Ux+frgkKTo62omzgcmucObDDz+UJDVr1kwrVqxQq1atHDIpAAAAAAAA2M8wDC1fvlxS1cMZNzc3dejQQZs2bdLu3bsJZ5ysOsIZybrujBnOoHqYVTNt27atUvVadTArZ6Kjo5Wenq7AwECnzsfRzMypUyfJx6fscWY4U9bvxXr1pCFDpF9+sbY2a9FCOn3aep8rhzPp6Q0lOaZyZvVqafNmadQoa3iFqrOrvGXnzp2yWCx64YUXCGYAAAAAAABqmSNHjuj48ePy8PBQ3759q7w/687UHmZbM/PiuqNERERIkmJjYx16XJxXW9abkaQmTZrY1hravn27cydTDSrT0iwuLk7R0dFyc3NT//79yxxXtLXZiRPW297ekpPztYtihjMnT3pLctexY8d09uxZu445Z4705JPSxx/bP79LlV3hjLlQWPfu3R0yGQAAAAAAADiO2dLsyiuvlL+/f5X3J5ypHZKTk3X8+HFJjr8OZ16op3Km+tSmcEaq263NKhPOmFUzPXv2VP369cscN3q09fsff0hmjhUaKlksDphoDQsLkzw9pYICiwIDO8gwDB08eNCuY65ebf0+cKD987tU2RXONG/eXJKUkZHhiLkAAAAAAADAgS52vRlTx44dJUm7d+922JxQdeZF9LZt2zq8DZVZOUM4Uz0Mw6i14YxZjVVXGIa1zZZUfjhj/l4sa70ZU3i41Lu39bgffWTd5ootzSTJzU0yl5QKD79Kkn3rziQkSNHR1qCqXz9HzPDSZFc4M2HCBEmy9S4FAAAAAABA7WAYht3hjFk5Ex0drZycHIfNDVVTXevNSIQz1S0+Pl6JiYlyd3dXt27dnD0dSedb49W1ypmYGCk5WfLwkLp0KXucWTlTUTgjSdddZ/2+aJH1e1iYvbN0HrO1WVCQtfrOnnVnzKqZbt1cs81bbWFXOPPEE08oMjJSM2fO1L59+xw1JwAAAAAAANhp7969OnHihHx8fHTllVde1DHCw8NVv359FRQUOGQBaVyc6lpvRiKcqW5m1UzHjh3l5+fn5NlYmSHfvn376lRHJDNr6thR8vEpfcyRI0d09OjRSq/DZYYzhmH97qqVM9L5cMbH5zJJ9oUzq1ZZvw8YYOekLnF2hTP169fX4sWLFRISoquvvlrvvfeeUlNTHTU3AAAAAAAAXCSzaqZv377y9va+qGNYLBZb9QytzZynJipnYmNjZZhXoOEwta2lmSSFhoYqPDxchmFou7mYSh1QlfVmevfurXr16lV4zE6dpBYtzv9cF8IZw7D2N7OnrRnrzTiGhz07t2zZUpKUlZWl1NRUPfroo5o8ebIaN25cYRJssVh06NAhe04PAAAAAACAMtjb0szUqVMnrVu3Trt27XLEtFBFKSkpOnr0qCSpe/fuDj9+eHi4JCknJ0enTp1SUFCQw89xKauN4YxkDfri4+O1devWSlWQuILKhDNV/b1osVirZ/79b+vPrtzW7Nzy8UpLayLJWjljGIYsFkuVjpOYKO3bx3ozjmBXOGP+w2AyDEOGYSgpKanCfav6ogMAAAAAAKByCgoKtOpc3xl7w5mOHTtKonLGWbZt2yZJatWqlRpUw+IOPj4+aty4sZKTkxUXF0c440CGYWjzuRXqa1s406NHD/300091Zt0ZwzgfzvTqVdYYo0rrzZjGjj0fzrhy5cxVV1m///mnv6R6Sk1NVXJysoKDg6t0nN9+s37v0kVq1Mixc7zU2BXO3HnnnY6aBwAAAAAAABxkx44dSk1NVUBAgN2tsMy2ZlTOOEd1tjQzRURE2MKZLuWtpI4qOXTokFJTU+Xl5WX7HNUW5vuproQzsbHSyZOSh4c1NCjNgQMHFB8fLy8vL11lJhWV0LevNYQ4dep89YkratPG2qLtyBGLgoNv1MmTnyg6OrrK4QzrzTiOXeHMp59+6qh5AAAAAAAAwEHM1j0DBgyQh4ddl39sF5UPHz6srKysWrOo+aWipsKZHTt2KC4urtrOcSkyq2a6desmLy8vJ8+mOPP9tHfv3jrxuT73VKtjR8nHp/Qx5u/FPn36yNfXt9LH9vSU5s+3tvJy5ezSYpFGjZLee0/y9h4r6RPt379fV199dZWOw3ozjuPm7AkAAAAAAADAsZYvXy7J/pZmkhQcHKzg4GAZhqG9e/fafTxUzdatWyVZ21BVl4iICElSbGxstZ3jUlRb15uRpLCwMIWEhKiwsFA7duxw9nTsVpn1Zi6mpZmpXz/p/vsvZma1y8iR1u/p6X0kWdedqYqkJGnPHutt1puxH+EMAAAAAABAHZKbm6s1a9ZIckw4I9HazFlOnz6tQ4cOSarecKZp06aSROWMg9XmcMZisdSp1mYVhTNF15tx1O9FVzRokLUSKD29saQ2io6OrtL+5noznTtLjRs7fn6XGoeGM9nZ2Vq3bp2+//57ffHFF0pPT3fk4QEAAAAAAFCBTZs2KTMzU0FBQercubNDjtmxY0dJhDM1zayaadGihRpV48rbZuUM4YzjFBQU2F6/2hjOSOdbm5nzdFWGUXE4s3v3bp08eVJ+fn7q3bt3zU2ulqlXr2jFy8gqV86w3oxjOSSciYmJ0Z133qkGDRqof//+uvHGG3XXXXeVKIX8+OOP1bt3bw0bNkyGYTji1AAAAAAAACjCXFdh0KBBcnNzzN/lmpUzu3fvdsjxUDnmRfPqXG9GIpypDnv37lVmZqbq1aundu3aOXs6pTKrsVy9ciY2Vjp5UnJ3L3tNGPP34tVXX13r1v+paaNGmbdG6uDBg8rPz6/0vqw341h2/wu9ceNGde/eXf/73/+Um5srwzDKDF6uu+467dy5UytWrNCSJUvsPTUAAAAAAAAuYF6EdGTrHtqaOYd50bw6W5pJhDPVwWxp1qNHD7m7uzt5NqUzQ7/du3fr7NmzTp7NxTOzpY4dJV/f0sfQ0uw8c90ZaaDy8tx17NixSu2XnCyZ/wT0718tU7vk2BXOpKWlaezYsTp16pRCQ0P13nvv6c8//yxzfHBwsEadi+Z+/vlne04NAAAAAACAC5w9e1br16+X5NiLkGZbs5iYGNrY16Bt27ZJqrlwJiUlxaUv0tcmmzdvllR7W5pJ1rWGgoODVVBQUO413drODGd69Sr9/oKCAq0+V/IxaNCgGppV7dWxo2T9yPtJ6l/p1mbmejMdO0rBwdU1u0uLXeHM22+/rRMnTqhx48b6/fff9Ze//MX2j3VZzJZmGzdutOfUAAAAAAAAuMD69euVm5ur8PBwtW3b1mHHbdCgge0CPq3NakZeXp4OHTokSRVeb7NXw4YN5Xuu5CA+Pr5az3WpMCtnanM4Y7FYbNUzrtzarKL1Znbs2KHU1FQFBARUe4tAV2CxFK2eqfy6M+Z6M7Q0cxy7wpmffvpJFotFjz/+uCIjIyu1j/mPifmPCwAAAAAAABzDbGk2ZMgQWSwWhx7bvKZDa7OacfToUeXn58vPz0/h4eHVei6LxUJrMwfKzc3Vjh07JNXucEZy/XVnDEM6V6RUZjhjtjTr37+/PDw8amhmtVvRdWeio6MrtY+53syAAdbvn3zyiYYNG6ZvvvnG4fO7VNgVzhw4cECS9Y1dWQ0aNJAkSmABAAAAAAAcrDrWmzGZ685QOVMzzAumbdq0kZub3ctGV4hwxnF27typ3NxcBQUFqUWLFs6eTrnMSpKtW7c6eSYXJzZWOnlScneXunQpfYz5e5GWZucNGSK5uRVKaq/t209XOD4lRdq503rbDGd+/vlnLVu2zJYRoOrs+s1u9qD09/ev9D4ZGRmSJB8fH3tODQAAAAAAgCLS09NtrZSq4yKkGc5QOVMzzHCmXbt2NXI+whnHMT+HvXr1cngFm6OZ4cyuXbuUk5Pj5NlUnVnw07GjdK4zXzF5eXn67dxiKdURWruqBg2kzp2t1+n37o2qcPyaNdbv7dtLTZpY1/ExK5KGDh1aXdOs8+wKZ4LPrfwTExNT6X3MErmwsDB7Tg0AAAAAAIAi1qxZo4KCArVq1UpRURVfbKsq2prVLDOcceTaQeUhnHGcouFMbRcZGalGjRopLy9Pf/75p7OnU2UVrTezZcsWZWRkqGHDhuratWvNTcwFjB7tKUlKS7vSVlBRlgvXm9m2bZtSU1MVGBjoEu/z2squcKZ3796SpEWLFlVqfEFBgWbNmiWLxaK+ffvac2oAAAAAAAAUUZ0tzSSpQ4cOkqQTJ04oOTm5Ws6B88xFumsqnGnatKkkKTY2tkbOV5dtPrcISm1fb0ayrjdkVs+44rozFYUzZnXHwIEDa6Q9oCuZMMEsNRqi3bvLb0124Xozy5Ytk2R9XlnH5+LZ9Y685ZZbZBiGPvnkE23btq3csYWFhfrLX/6iPXv2SJJuv/12e04NAAAAAACAIqo7nKlXr56aN28uiXVnagKVM64pMzPT9vlwhXBGct11Zwyj8uEM682U1K2b5Ol5SlKAfvrpVJnjUlOlHTust81wZvny5ZJoaWYvu8KZ66+/Xn369FFOTo6GDBmid999V0lJSbb7LRaLTpw4oS+++EK9evXSJ598IovFopEjR2qgWQMFAAAAAAAAu6SkpGj79u2SqvcipLnuDOFM9crIyLCFJG3atKmRcxLOOMa2bdtUWFio8PBwhYeHO3s6ldKjRw9Jrlc5ExcnJSVJ7u5SaR3LcnJytHbtWkmEM6Vxc5OiovZJklau9C5z3Jo11iCsXTspNFTKzs62Pa9DhgypkbnWVXbXcs2fP1+XXXaZTp8+rcmTJyssLMy20FWPHj0UHh6uu+66Szt27JBhGOrUqZPmzJlj98QBAAAAAABgtercggAdO3ZUSEhItZ3HDGdYd6Z6HTx4UJLUuHFjNWrUqEbOaYYz8fHxKiwsrJFz1kXmejOuUjUjna+c+fPPP5Wbm+vk2VTeue5x6thR8vUtef/GjRt19uxZBQcH29bMQnGXX54iSdqzp1mZYy5cb2b9+vXKzs5WWFiY2rdvX70TrOPsDmcaN26szZs3669//au8vb1lGIbtKycnx3bbw8NDDzzwgNavX68GDRo4YOoAAAAAAACQqr+lmcm8wEk4U71quqWZJIWGhspisSg/P18nT56ssfPWNa4YzrRo0UINGzZUbm6uS1XFVdTSzPy9OGjQIFsxAYobNcpDUqFOn45SfHzpY8pab2bo0KE8r3ZyyGo9fn5+evvttzV16lT9+uuv2rx5s5KSklRQUKCgoCB1795do0aNcplSPgAAAAAAAFdSU+FM0bZmhmFwYa6amOFMu3btauycnp6eCg0NVUJCgmJjY6u1AqsuM8OZXr16OXkmlWexWNSjRw8tX75cW7ZsUffu3Z09pUqp7Hoz1f170ZVdfnkLSZskXaFFiwzde2/x3+mnT0vmUvMXhjO0NLOfQ8IZU1BQkG699VbdeuutjjwsAAAAAAAAypCamqp9+6zrBvTv379az3XZZZfJzc1Np06dUmJiosLCwqr1fJeq/fv3S6rZyhnJ2tosISFBcXFxtlZXqLzU1FRbSzpXCmckFQtn7rvvPmdPp0KGUX44c/bsWf3++++SWG+mPC1btpTF8poM4wrNn5+te+8t3h9u7Vrrc92mjRQebn2Pm2sTEc7Yz+62ZgAAAAAAAHCevXv3SpKaNm1a7euT+Pj4qHXr1pJobVadnNHWTDq/7kxcXFyNnreuMC9at2zZUkFBQU6eTdWYYdzWrVudPJPKiYuTkpIkd3epa9eS969fv165ubkKDw9XmzZtan6CLsLLy0sRETslSatWeSg/v/j9F643s2rVKhUWFqpdu3Zq2rRpjc2zrqr2cCYnJ0fLly/XN998o40bN1b36QAAAAAAAC4pZjhTUwszF21tBsczDINwxkV9/vnnkqS+ffs6eSZVZ4YzO3bsUF5enpNnUzGzaqZDB8nXt+T9RVs90n6xfF265Eg6pYwMT114+f7C9WaWL18uybreDOxnVzhz7NgxPf3003r66ad1+vTpEvdv2LBBrVq10vDhw3Xrrbfqqquu0uWXX67jx4/bc1oAAAAAAACcU9PhTMeOHSVROVNdkpOTdfr0aVksFrVq1apGz004c/GOHz+ur776SpL06KOPOnk2VdeyZUsFBgYqJydHe/bsccocsrOzKx0MldfSrLCw0PZaDB8+3FHTq7Muu6yNpCWSpEWLzm9PS5PMQqoL15shnHEMu8KZefPm6c0339SKFSvUoEGDYvedOXNG48aNU0JCggzDsH1t2bJF1157rfIvrJECAAAAAABAlVE5U7eYVTORkZHyLa0koBqZbYpiY2Nr9Lx1wVtvvaX8/HwNHjzY5dabkSQ3Nzf16NFDknNamx04cECtW7dWx44dlZOTU+H48sKZ5cuX68iRI6pfv76uv/56B8+07mnXrp2kxZKkxYvPb1+3TioslFq1kpo2tf5e2L9/v9zc3DTQ7HMGu9gVzixdulQWi0Xjxo0rcd+sWbOUlJQkSZo8ebIWLFighx9+WJK0Z88ezZ49255TAwAAAAAAQM4LZ3bt2iXDMGrknJcSZ7U0k6icuVinTp3SRx99JEl6+umnnTybi2e2NjPXzqkpsbGxGjZsmOLi4nTgwAEtWLCg3PGGIW3ebL1dWg5mvha33Xab/Pz8HD3dOsf6u+ZXSdbn9dwl/RLrzZgtzXr16lWiUAMXx65w5vDhw5LOf3CL+vbbb2WxWDR+/HjNnDlTY8aM0TvvvKOJEyfKMAx999139pwaAAAAAADgknf27FkdPXpUUs2FM23atJGnp6cyMjJoXV8N9u/fL8n8a/aaRThzcd5//31lZmaqa9euLt1Gy6ycqclwJiUlRSNGjNCxY8fk7u4uyfpH/+WJi7MGCO7uUteuxe9LSkrS/PnzJUkPPPBAdUy5zrH+rkmUtE2StHSpdfuF682YLc2GDBlSsxOsw+wKZ8zKmJCQkGLb09PTbeVvd999d7H7br75ZknWxaUAAAAAAEDt9OWXX2qV+WezqLX2798vwzDUqFEjBQcH18g5PT09bcEBrc0crzZUzqSnpysjI6PGz++Kzp49q//85z+SrFUzrrz4vPkH+Dt27KiRJSkyMjJ07bXXas+ePYqIiNCKFStksVi0fPlyHTx4sMz9zOyoQwfpws5/s2fPVl5eni6//HJ1vTC5QalCQ0MVEBAgs7XZokXSmTPnn+cBAyTDMGyVM6w34zh2hTNnzpyRJBUUFBTbvm7dOhUUFMjd3b1E/7lmzZpJspb7AQAAAACA2mfLli267bbbNGjQIE2ePFnZ2dnOnhLKULSlWU1eFO7YsaMka2szOJYzw5mAgAAFBgZKonqmsmbPnq2kpCRFRUVp4sSJzp6OXdq0aaN69erp7Nmz2rdvX7WeKycnRxMmTNAff/yhRo0aacmSJerfv79GjBghSfrvf/9b5r5lrTdjGIatpdn9999fLfOuiywWy7nfN9Zw5tdfpTVrpIICqWVLKTLS+m9NQkKCfHx81KdPH+dOuA6xK5ypX7++JCk+Pr7YdvMva7p27Sp/f/9S9/Xx8bHn1AAAAAAAoJosXLjQdvvtt99W7969qZCopWp6vRlT0XVn4DgFBQW2igFnhDPS+eqZ2NhYp5zflRQUFOjNN9+UJD3++OPy9PR08ozs4+bmpu7du0uq3tZmBQUFuuOOO7R06VL5+/tr0aJF6tChgyTpwQcflCR9+umnys3NLXX/ssKZ1atX68CBA6pXr56texMqx1oNuV7e3jlKTpZmzLBuv7ClWd++fbmu70B2hTPmP8Tz5s2zbSsoKLCtNzNo0KAS+5ip+4Wt0AAAAAAAQO2waNEiSdJdd92lJk2a6M8//1SvXr30/vvvswB8LePscIbQzrFiYmKUk5MjLy8vRUZGOmUOrDtTefPmzdOhQ4fUqFEj3Xvvvc6ejkOYrc2qK5wxDEMPPfSQ5s6dKy8vL82fP1+9e/eWJOXmStdee63CwsKUlJSkBQsWlLJ/2eGMWTVzyy23nGvThcqyhjP5Cg21Bu7nOpjJbIpFS7PqYVc4M378eBmGoS+++ELPPPOMFi5cqFtvvVXHjh2TJN14440l9tm8ebMkOe0fGAAAAAAAULaUlBRt3LhRkvTSSy9p586dGjFihLKzs/Xwww9rwoQJSklJcfIsYXJWOGO2NduzZ0+Jdve4eGZLs9atW9sWR69phDOVYxiGXn/9dUnSI488Umb3IFdjhjPmeuKO9txzz+mjjz6Sm5ubvvzyS9vF/sJCqVkzqW9fT0VFfSNptN5998sS+8fHSydOSG5uUtElZVJSUvTdd99Jkh544IFqmXtdZlbqeXgsL7Z9wAApPz/f1ilryJAhNT21Os2ucObBBx9U+/btZRiG3nzzTY0dO9b2IRgzZox69epVYp958+bJYrGUWIsGAAAAAAA435IlS2QYhjp37qymTZsqJCREv/zyi2bMmCFPT0/Nnz9fXbp00cqVK5091Utefn6+7WJ+TYczLVu2lI+Pj7Kzs3XkyJEaPXddtn//fknOa2kmEc5U1qpVq7Rp0yb5+vrqkUcecfZ0HMYMZ7Zt2+bw4PWtt97SK6+8Ikn68MMPdf3119vu27dPSkqSNm6UNmzoJ+knrV79vdq3z9Gjj0pz51pDmXN/968OHSQ/v/PH/uKLL5Sbm6tu3brZHgMqz1o5I6WmfmXb1ry5FBVlLbZIT09Xw4YNbW3v4Bh2hTPe3t5avny5JkyYIA8PDxmGIU9PT91xxx364osvSoz/7bfftGfPHknSsGHD7Dk1AAAAAACoBmZLs1GjRtm2ubm56bHHHtMff/yhdu3aKT4+XkOGDNHf//535eXlOWuql7zDhw8rLy9Pfn5+Nd6hxN3d3RYIse6M45hhm3mh1BmaNm0q6dIJZ9LT05WTk1Pl/cyqmXvuuUfBwcGOnpbTtG3bVv7+/srKyrKFhY6wfPlyPfPMM5KkV199Vffdd1+x+zt0kI4dk/73P+n++yV//xhJbtq3z1vvvCPdeKMUGipNmmQdX7QmwDAMW0uz+++/XxaLxWHzvlS0adNGknTq1Ha1a2cN5S5cb2bw4MFOq+irq+wKZyQpNDRU3333ndLT0xUXF6f09HTNnj271L5+zZo108qVK7VixQpdfvnl9p4aAAAAAAA4UGFhoRYvXixJGjlyZIn7u3fvri1btujee++VYRh65ZVX1LdvXx06dKimpwqdb2nWrl07ubnZfYmnysx1ZwhnHMcMZ2pD5UxsbKzT5lBT0tLS1Lx5c7Vt21b79u2r9H47d+7U4sWL5ebmpscff7waZ1jz3N3dbZUn69evd8gxFyxYoHfffVeS9NRTT9lCmgtFRkq33SbNmiV9/vkmSSEKDLxXDz9coK5dJYtFSk+3ju3T5/x+69ev1549e+Tr66vbbrvNIXO+1NSrV8/22b/mmhhZLOeDMDOcoaWZ4znsX25vb2+FhYXJy8urzDEtWrTQgAEDNGDAABJMAAAAAABqmW3btunkyZOqV6+err766lLH+Pv767///a++/fZbNWjQQBs3btS1114rwzBqeLZw1nozJjOc2b17t1POXxfVpnDmUqic2bRpk1JTU3X8+HH169ev0uusmFUzEydOVMuWLatzik7Rr18/SdKaNWvsPlZqaqruvPNOFRYW6q677tJrr71Wqf3GjBmjkBCL0tM/0eDB87V9u5ScLP34o/Tf/0p33XV+rFk1c9NNN6l+/fp2z/lSZVbsde36m/LypMGDpczMTP3++++SZFsfCI5T839W4WCvvPKKLBaLpkyZYttmGIamTp2q8PBw+fr6auDAgSX+QyEnJ0ePPvqoGjduLH9/f1133XWXxF8EAAAAAABQFrOl2dChQ8v940vJelFy+/bt8vDw0P79+3Xs2LGamCKKcHY407FjR0nSn3/+6ZTz1zXZ2dm2z5EzwxmzrVliYqLOnj3rtHnUhKJVX8nJyRo4cKB+++23cvc5duyYvv76a0nS008/Xa3zcxZHhjMrV65UVlaWwsPD9d5771X6D/Y9PT11zz33SJJmzZolSWrUSBozRrr3XsnT0zru9OnT+vbbbyVJDzzwgN3zvZSZ4Ux09H6Z3cvWrl2r3NxcNWvWTK1bt3bi7Oomu8OZrKwsZWVllXn/22+/rX79+ql9+/a65pprtHDhQntPabNp0ybNmjVLXbp0Kbb99ddf14wZM/TOO+9o06ZNCg0N1bBhw3TmzBnbmClTpmjevHn6+uuvtXbtWmVkZGj06NEOX+gKAAAAAABXUdp6M+WJiopS165dJUl//PFHtc0LpXN2ONOtWzdJ0r59++r8RfyacOjQIRmGofr16zt1DZMmTZooLCzs/7N339FRld3fhz+TTiihl9CbtACh995BqgpILyqCgigIIhYUhUdRREGx/EBQpChIL4beew29d0INJJCQet4/8s4I0pLMTGYm+V5rZSmZc+57T5gTkrNn741hGKn+ujYnZwYPHkzdunUJDw+nWbNmLF269InnfPPNN8TFxdG4cWMqVqyYUqGmqBo1auDm5saZM2esrqBas2YNkPD9wsPDI0nnvvrqqwAEBQVx5syZxx7zxx9/EBkZSZkyZahevbpVsaZ15uTMg7OGVq9eDSS8aUOdsGzPquTM4sWLyZgxI/7+/g8lPsz69OnD4MGD2bJlC8eOHeOff/6hbdu2ltI/a9y9e5euXbvyyy+/kCVLFsvnDcNgwoQJjBw5kg4dOhAQEMD06dOJiIhg5syZQEI/ySlTpvD111/TuHFjKlSowIwZMwgODrb00BMRERERERFJS27dusW2bduAx8+beZJq1aoBSs6kNMMwLDMyHJWc8ff3J2fOnMTFxal6xgYebGnmyJugJpOJev9/Evj69esdFkdKML9ua9asyYoVK3j++ee5f/8+7dq1Y9asWY8cf/PmTUsLrdRaNQOQKVMmS/LV2uoZc3Lmv2+uT4zChQvTtGlT4N/WZQ8yDMNSVfPqq68qeWAlc8We+XsR/DtvRi3N7CNp6cr/+OeffzAMg3bt2pExY8aHHtu0aRPTpk3DZDLh6+trGawVGRnJBx98QKtWrSzlr8nxxhtv0KpVKxo3bsxnn31m+fyZM2cICQmxXLiQMA+nXr16bNmyhX79+rF7925iYmIeOsbf35+AgAC2bNlCs2bNHrtnVFQUUVFRlj+H/f8JVDExMcTExCT7uYg4mvn1q9exiPPT9SriWnTNirgOXa8JVTPx8fGUKlWKPHnyJPprYR4cvW3btjT99UtpFy9eJDw8HHd3dwoWLOiwr31gYCBBQUHs3LmTChUqpNi+qfGaPXz4MADFihVz+POqXbs2s2fPZt26dbz//vsOjcVe4uPjLWMQSpYsiYeHB3PmzOGVV15h1qxZdO3alZs3b9KvXz/LORMnTiQiIoLAwEDq1avn8L8ne6pVqxZ79uxh/fr1vPDCC8la48qVKxw5cgSTyUSZMmWS9fXq06cPQUFBTJ06lQ8++ABPcz8zEroqHThwAG9vbzp37pyq/z5Sgnl+0okTJ4iKiuLWrVvs27cPSGh1p69v4iX2a2VVcmbbtm2YTCYaNGjwyGPmrKW/vz9bt24lX758XLhwgdq1a3Px4kV++uknvvvuu2TtO3v2bPbs2cPOnTsfeSwkJASAXLlyPfT5XLlyWfp2hoSE4OXl9VDFjfkY8/mPM3bsWD755JNHPh8UFISvr2+Sn4eIs1m5cqWjQxCRRNL1KuJadM2KuI60fL1OnToVSHjn7LJlyxJ93v379wHYvXs3ixYtSnLbGkke8w2z3LlzO7QLiPnNugsXLrTMKklJqemaXbt2reX/k3IN2oNhGABs2bKFhQsXPnRDPLW4evUq9+7dw8PDgxMnTnD69GkgYZ7WnTt3WLZsGQMHDmTbtm28+OKLREdH88033wDQqFEjSxvI1CpdunRAwmsxKdWUDzJXXhUuXJiMGTMm63r18PAgc+bMXL16lU8//ZQaNWpYHvv+++8BqF69uqXyU5IvLi4ODw8P7t+/z/Tp0zl58iSGYVCgQAH27Nnj6PBcytPGwDzIqp+Yrl27BkDx4sUfeWzFihWYTCYGDhxo+cc5f/78DBw4kGHDhiW7LPLChQu89dZbBAUF4ePj88Tj/lvGZhjGM0vbnnXMiBEjeOeddyx/DgsLI3/+/DRt2pRMmTIl8hmIOJ+YmBhWrlxJkyZNUuUPXCKpia5XEdeia1bEdaT16zU+Pp7XX38dgP79+9OwYcMknTty5Ehu375Nvnz5Uu0MBmdjvpFcqVIlWrZs6bA4IiMjmTdvHjdv3kzROFLjNWseA9CqVSuH/p1Cwj2y0aNHc+3aNbJnz06tWrUcGo89LF68GIDSpUvTunXrhx5r1aoVn3zyCWPGjOGPP/4gV65cFCpUiLCwMAoVKsTo0aNTfSK6UqVKfPnll5w/f57q1auTNWvWJK+xcOFCAMvXN7nX66uvvsq4cePYu3cvo0ePBiA8PJyuXbsC8NFHH1GnTp0kryuPKl68OEeOHCFv3ryWwoh27do5/HuSqzF33HoWq76LXL9+HYAMGTI89PnDhw9z48YNTCYTbdq0eeixypUrA3D27Nlk7bl7926uXbtmKZuGhKzehg0bmDRpkmVgUUhICHny5LEcc+3aNUs1Te7cuYmOjiY0NPSh6plr165Rs2bNJ+7t7e2Nt7f3I5/39PRMNT8ISNqm17KI69D1KuJadM2KuI60er3u3buXkJAQ0qdPT/369ZP8NahatSpBQUHs2bPHMoNG7Ms8E6BMmTIOfc1WrVoV+HewekrHkpqu2RMnTgAJyQJneE5169Zl7ty5bN68mfr16zs6HJszz2wqV67cY7/en3/+OdmzZ+edd95h/PjxlmOGDBliqSpJzfLly0eJEiU4duwYO3bseCSBlRjr1q0DEiqN4uPjk3299uvXj3HjxrFy5UouXrxI4cKFmTt3Lvfu3aNEiRI0aNBA82ZspGTJkhw5coTTp09bqvlSUxI8pST26+VmzSbu7u5AwtDAB5kHReXIkYOSJUs+9Jg5GWIue06qRo0aERwczL59+ywflStXpmvXruzbt48iRYqQO3fuh8rkoqOjWb9+vSXxUqlSJTw9PR865sqVKxw8ePCpyRkRERERERGR1Mjcnqdhw4aPfVPis5gTMtu3b7dpXPJkR44cAaBUqVIOjaNw4cL4+fkRHR1tmZkiSRcaGmp5E/TjOtQ4gjkhY77BntqYE4oBAQFPPObtt99m6tSpuLm5ERMTQ7Zs2ejTp09Khehw5moU873epDhz5gxnzpzBw8PD6sqrokWL0rhxYwzDYMqUKQD88ssvQEJVjRIztlOiRAkgYdb8qVOncHd3p169eg6OKvWyKjmTN29e4N8+p2ZLly7FZDI9tpzszp07AGTPnj1Ze2bMmJGAgICHPtKnT0+2bNkICAjAZDIxePBgxowZw/z58zl48CC9evXC19eXLl26AODn50ffvn0ZMmQIq1evZu/evXTr1o2yZcvSuHHjZMUlIiIiIiIi4qpWrFgBQIsWLZJ1vpIzKc9ZkjMmk4kKFSoAaCaBFcxVM/7+/o90qHEU8w3ZLVu2pMpB4MHBwcDTkzMAvXv3Zu7cuRQsWJAxY8akqbnT1iRnzFUXVatWtcymska/fv2AhPloO3fuZNeuXXh6etKjRw+r15Z/Pffcc8C/c6+qVatmk78/eTyrkjN16tTBMAwmTZrEjRs3ANi5c6flh7pmzZo9co75h4fcuXNbs/VTDRs2jMGDBzNgwAAqV67MpUuXCAoKeuiF9M0339CuXTs6duxIrVq18PX1ZfHixZZqIBEREREREZG04Pbt22zZsgVIfnLG3Nrq6NGj3L5921ahyRPcunXLMgf4vx1LHME8Z0jJmeQzt+k33xh1BqVLlyZbtmxERESwa9cuR4djU9HR0Za2ZmXLln3m8e3bt+fs2bO89tpr9g7NqZiTM7t27Ur0gHOzNWvWACRphtnTtGnThpw5c3LlyhW6d+8OJPy95MiRwybrSwJz5YxhGAAqZLAzq5IzAwYMwM3NjTNnzlCkSBEqV65MvXr1iI2NJUuWLHTq1OmRc9asWYPJZCIwMNCarR+ybt06JkyYYPmzyWRi1KhRXLlyhfv377N+/fpHsuA+Pj5MnDiRmzdvEhERweLFi8mfP7/NYhIRERERERFxBatWrSIuLo6SJUtSqFChZK2RI0cOihQpAmAZICz2Y37ja/78+Z2iykLJGeuZZwg5U3LGzc2NunXrArB+/XoHR2Nbx48fJzY2lowZM+p+4FMUKlSIvHnzEhsbm6TKSMMwbJ6c8fLyonfv3sC/ycy0lixLCebkjJmSM/ZlVXKmYsWKjBs3DpPJxN27d9mzZw/379/H09OTX3755ZGSpzt37rB06VIgYZCQiIiIiIiIiDiWed5McqtmzNTaLOU4S0szM3NyZt++fcTFxTk4GtdkTs7898aoo5lbm6W25MyD82Y0r+TJHhxbkZTWZseOHePKlSt4e3tTo0YNm8XzyiuvWP6/SJEiNGjQwGZrS4Js2bKRNWtWAHx9fS3/tot9WJWcgYTBWHv37uXDDz/k1Vdf5aOPPuLAgQO0b9/+kWPXrVtHlSpVqFu3rrJuIiIiIiIiIg5mGIalNXnz5s2tWkvJmZTjbMmZ5557Dl9fXyIiIiyzUyRpnLFyBv5NzmzatInY2FgHR2M75uRMYlqapXXJSc6Yq2Zq1aqFj4+PzWIpVqyY5Q3/r732Gm5uVt/alscwJ4nr1auHl5eXg6NJ3TxssUjZsmUT9c2sbdu2tG3b1hZbioiIiIiIiIiVgoODuXz5Mr6+vpb2Rcn1YHLGMAy9G92OnC054+7uTvny5dm6dSt79uxxijk4rsQwDKdNzpQtW5bMmTNz+/Zt9u7dS5UqVRwdkk0EBwcDPDIGQR5lTs5s3bqV2NhYPDyefTvZ1i3NHjR9+nSWL19Ojx49bL62JKhevTpbt26lTZs2jg4l1VN6UURERERERCSNMrc0a9CggdXvbg4MDMTT05Pr169z9uxZG0QnT+JsyRnQ3BlrXL58mYiICNzd3SlcuLCjw3mIu7u75eZ8ampt9mBbM3m6MmXKkCVLFu7du8fevXufeXx8fDxr164F7JOcyZMnD3369ElUkkiS55NPPmHFihWa6ZMClJwRERERERERSaNsNW8GwMfHh8DAQECtzewpIiKCc+fOAUrOpBbm4eZFihTB09PTwdE8KrXNnbl37x6nT58GlJxJDDc3N2rVqgUkrrXZgQMHuHXrFhkyZKBy5cr2Dk/sIGPGjDRr1kxt41KAzVOMZ8+e5caNG0RGRmIYxlOPtbZkWkRERERERESSJywsjM2bNwPWz5sxq1atGjt37mT79u107tzZJmvKw44dO4ZhGGTLlo0cOXI4OhwLc3Jm7969amuXRM7a0szMnJzZuHEjcXFxuLu7Ozgi6xw6dAiAXLlyOdU15Mzq1KnDkiVL2LhxI++8885TjzW3NKtbt65TJhtFnIlNkjPHjh1jzJgxLFq0iLCwsESdYzKZUtUgMRERERERERFXsnr1amJjYylevDhFixa1yZrVqlVj0qRJqpyxI2dsaQZQunRpvLy8uH37NmfPnnW69lzOzJycMQ/hdjaBgYFkzJiRO3fucODAASpUqODokKxibmmWmPnZksDc2m7Tpk3PTL7ac96MSGpjdW3SggULqFixIjNmzODOnTsYhpHoDxERERERERFxDFu2NDOrWrUqkNDaKjo62mbryr+cNTnj5eVlaRGl1mZJ4+yVMx4eHqlq7ozmzSRdpUqVSJcuHTdu3ODo0aNPPC4mJsbyGlFyRuTZrErOXLhwgW7duhEZGYm/vz8TJkzg559/BhIqY1avXs3cuXN577338Pf3B6B27dqsWrXKkkUVERERERERkZRlGIZdkjPFixcnS5YsREVFceDAAZutK/9y1uQMaO5Mcjl7cgb+bW22bt06xwZiA8HBwYCSM0nh5eVFtWrVgKfPndm9ezd3794lS5YslC9fPqXCE3FZViVnvvvuOyIiIsiYMSPbt29n0KBB1KhRw/J4gwYN6NChA2PGjOHEiRN07tyZzZs3M2XKFMs3dRERERERERFJWYcOHeLixYv4+PjY9Pdzk8lkqZ5RazP7UHImdYmJibEMp3eF5MzGjRuJj493cDTWUVuz5DFXTz0tOWN+M36DBg00TF4kEay6SlatWoXJZGLAgAGWypgnSZcuHTNmzKBChQrMnj2befPmWbO1iIiIiIiIiCTTihUrAKhfvz7p0qWz6drmd1crOWN7sbGxnDhxAnD+5Iza2SfOmTNniIuLw9fX95n31hypYsWKpE+fnlu3blmSG67oxo0bhISEAAlzkiTxkpKcUUszkcSxKjlz9uxZAGrWrGn53IMDoWJjYx/ezM2NQYMGYRgGU6dOtWZrEREREREREUkme7Q0M1Nyxn5OnTpFTEwMvr6+5M+f39HhPKJs2bK4ublx7do1rly54uhwXMKxY8eAhKqZpw1ZdzRPT09q1aoFuPbcGXNiqXDhwmTIkMHB0biWGjVq4O7uzrlz57hw4cIjj9+/f5/NmzcDSs6IJJZVyZl79+4BPPQDga+vr+X/79y588g5ZcqUAWD//v3WbC0iIiIiIiIiyRAeHm5557M9kjPmtmbHjx8nNDTU5uunZeaWZiVLlnTKlkG+vr6Wih61NkscV5g3Y2ZubZYakjNqaZZ0GTJkoEKFCsDjq2e2bt3K/fv3yZ07NyVLlkzp8ERcklX/kvv5+QEJmVGzbNmyWf7/1KlTj5wTFhYGJJQRioiIiIiIiEjKWrNmDTExMRQtWpTixYvbfP3s2bNTtGhRAHbs2GHz9dMyZ543Y6a5M0ljTs6UKFHCwZE8mzk5s2HDBpdtWxccHAxAQECAgyNxTXXr1gUen5x5sKWZM1eBiTgTq5Iz5n84zIPLADJmzEjBggUBCAoKeuScVatWAZA5c2ZrthYRERERERGRZDC3NGvevLnd9lBrM/tQcib1caXKmSpVqpAuXTquX79ueS26GnPljJIzyfO0uTOaNyOSdFYlZ2rUqAHAtm3bHvr8888/j2EYjBs3znJhAsydO5cJEyZgMpksfSpFREREREREJGUYhsGKFSsA+7Q0M1Nyxj5cKTmzd+9eB0fiGlwpOePl5WW5F+iKrc0Mw1BbMyvVrl0bgEOHDnHz5k3L58PDwy2VkkrOiCSeVcmZli1bYhgGf//9N3FxcZbPv/vuu/j6+nL37l2aNGlCjhw5yJQpE506dSIyMhI3Nzfeffddq4MXERERERERkcQ7fvw4586dw9vbmwYNGthtnweTM67a/sjZGIbB0aNHAedOzgQGBgJw/vx5tbR/hrt373L58mUAu7QYtAdXnjtz4cIFwsLC8PDwcIlkmDPKnj275fvPpk2bLJ/ftGkTsbGxFCpUiMKFCzsqPBGXY1Vypn79+nz88cf07t2bS5cuWT5foEAB/vrrL/z8/DAMg5s3b3L37l0Mw8Db25tffvmF6tWrWx28iIiIiIiIiCTezp07gYT2RL6+vnbbJzAwEC8vL27evPlQK3RJvosXL3L37l08PDwoVqyYo8N5okyZMlniU/XM05mrZnLkyEGWLFkcHE3iPJiccbXEq7lqpkSJEnh5eTk4Gtf1uNZmamkmkjwe1pxsMpn4+OOPH/tYixYtOHnyJH/99ReHDh0iNjaW4sWL07FjR/LmzWvNtiIiIiIiIiKSDOab5RUqVLDrPt7e3gQGBrJjxw62b99O0aJF7bpfWmBuaVasWDE8PT0dHM3TVaxYkZMnT7Jnzx6aNGni6HCcliu1NDOrVq0a3t7ehISEcOLECZeKXS3NbKNOnTr8/PPPSs6I2IBVyZlnyZo1K/369bPnFiIiIiIiIiKSSOYh7fZOzkDCTVxzcqZLly523y+1c4V5M2YVK1bkzz//tLze5PFcMTnj4+ND9erVWb9+PevXr3ep2IODgwEICAhwcCSuzVw5s2fPHu7du0dUVJQl8W/PdpkiqVGS25pdvXqVYcOGUbZsWTJlykT69OkpXrw4r732muUHBRERERERERFxLoZhsG/fPiDlkjOQMHdGrOdqyRlQW7NnMSdnSpQo4eBIksbc2mzdunWODSSJzJUzSs5Yp2DBguTPn5/Y2Fi2bdtmaXFXsmRJ/P39HR2eiEtJUnJm27ZtlClThq+//prDhw9z9+5dIiMjOX36NFOmTCEwMJCZM2faK1YRERERERERSaazZ89y+/ZtPD09KV26tN33Mydn9u7dS3R0tN33S+1cKTljTv6dOHGCsLAwB0fjvFyxcgZcc+5MbGys5RpSWzPrPTh3Ri3NRJIv0cmZsLAwXnzxRW7duoVhGBiGQbZs2ciVKxeQ8A6cmJgY+vbtqwoaERERERERESdjrmIICAhIkWHYRYsWJVu2bERHR7N//36775fauVJyJnv27OTPnx/AUq0lDzMMw2WTM9WrV8fT05NLly5x+vRpR4eTKCdPniQqKgpfX18KFSrk6HBcnpIzIraR6OTM1KlTuXz5MiaTiXbt2nHy5EmuX7/OlStXuHLlCgMHDgQgOjqar7/+2m4Bi4iIiIiIiEjSmZMzKdHSDMBkMlG1alVArc2sdfPmTa5fvw5AyZIlHRxN4phbm2nuzONdu3aNO3fuYDKZKFq0qKPDSRJfX1/Ltb1+/XoHR5M45pZmZcqUwc0tyVMe5D/MyZlNmzZx+PBhAOrXr+/AiERcU6K/Gy1btgxIyI7PmzePIkWKWB7LmTMn3377Lb1798YwDMuxIiIiIiIikroZhsHt27cdHYYkQkonZ0BzZ2zFXDVToEAB0qdP7+BoEkfJmaczV80ULFgQHx8fB0eTdA+2NnMFwcHBgFqa2UqpUqXImjWrpWVlYGAg2bJlc3BUIq4n0cmZgwcPYjKZeOONNzCZTI895q233gLg6tWr3Lx50zYRioiIiIiIiNP68MMPyZ49O3/99ZejQ5FnUHLGdblSSzMzc3LG/LqTh7lqSzMzV0vOmCtnAgICHBxJ6uDm5kbt2rUtf1ZLM5HkSXRy5tatW8DTy2cf/CEhNDTUirBERERERETEFcydO5e4uDj69+/PtWvXHB2OPMG1a9csrcrLly+fYvuaWx+dOHHCcl9Bks4VkzPmJODhw4eJiIhwcDS2sXnzZptVCq5evRpw3eRMzZo1cXd359y5c5w7d87R4TyTOTmjyhnbMbc2AyVnRJIr0ckZc5na00otPT09HzleREREREREUqcbN25w7NgxIGEmhnkWqTgfc/VC8eLFyZAhQ4rtmzVrVooXLw7Ajh07Umzf1MYVkzP+/v7kzJmT+Ph4S0spV7ZmzRpq165NjRo1uHv3rlVrzZo1i1mzZmEymejcubONIkxZGTJkoHLlyoDzV89ERkZy8uRJQJUztlS3bl0A3N3dH0rUiEjiaQKWiIiIiIiIJMu2bdsAyJ49O+7u7vz5558sWLDAsUHJYzmipZmZWptZzxWTMyaTKVXNnVmyZAkAR48e5dVXX8UwjGStc/LkSV577TUAPvjgA2rVqmWzGFOao1qbGYbBlClT2LlzZ6KOP3LkCPHx8WTLlo1cuXLZObq0o0qVKnz44YdMnjyZTJkyOTocEZek5IyIiIiIiIgky5YtWwBo06YN7777LgD9+/dXm2snpOSM67p3756lbZQrJWeAVJWcWbt2reX/Z8+ezQ8//JDkNaKioujUqRN3796lbt26fPTRR7YMMcXVr18fSPnkzKxZs3jllVdo3rx5ov69ebCl2ZPmaEvSmUwmPv30U1599VVHhyLisjySesIHH3xA5syZrT7OZDIxZcqUpG4vIiIiIiIiTsKcnKlZsyZdu3Zl/vz5HDt2jCFDhjB16lQHRycPcobkzI4dOzAMQzdHk8jcOjB79uxkz57dwdEkjTk5Y379uapbt26xf/9+AIYPH84XX3zB22+/TZUqVSxzlRJj+PDh7Nmzh2zZsjFz5kw8PJJ8W86p1KpVCzc3N06dOsXly5fx9/e3+57x8fF8/vnnQMLfy5gxYxg3btxTzzG31VNLMxFxNkn+V2DhwoVPfdz8Q9azjgOUnBEREREREXFRMTExlhkiNWvWxMfHhylTplCnTh1+/fVXOnfuTNOmTR0cpQCEh4dz4sQJwDHJmXLlyuHl5cXNmzc5deoUxYoVS/EYXJkrtjQzM7/egoODiY6OxsvLy8ERJc+GDRswDIOSJUsyduxYTp48ybx583jppZcsyZZnWbhwId9++y0A06dPJ2/evPYO2+4yZcpEQEAABw4cYPv27bRv397uey5YsIDDhw/j5eVFdHQ03333HQMGDKBw4cJPPMdcOaPkjIg4myS1NTMMw2YfIiIiIiIi4rr2799PZGQkWbJkoUSJEkDCu6jffPNNAF577TWrh2aLbZjf8Z83b15y5MiR4vt7e3tbbtKnhdZm27ZtIyAggHHjxhEfH2/1eq6cnClcuDB+fn5ER0dz+PBhR4eTbOvWrQMS2niZTCamTp1K8eLFOX/+PN27d3/m3/P58+fp3bs3AO+88w6tWrWyd8gppnr16sC/M8jsyTAMS9XMu+++S+PGjYmOjmbEiBFPPe/BtmYiIs4k0cmZM2fO2PTj9OnT9nxeIiIiIiIiYkfmlmY1atTAze3fXy3HjBlDoUKFOHfu3DNvmEnKMLeUMreYcoS0NHfm119/5dChQwwbNoznn3+e69evJ3ut8+fPWwbRu2JyxmQypYq5M+Z5Mw0aNAASKkbmzp1LunTpWL58OWPGjHniuTExMbz88suEhoZSpUoVxo4dmyIxp5SUTM78888/7NmzB19fXwYPHsxXX32FyWRizpw5T9w/NDSUixcvAlCmTBm7xygikhSJTs4ULFjQ5h8iIiIiIiLimh6cN/OgDBky8PPPPwMwadIkNm3alOKxycMcOW/GzHwDd+vWrQ6LIaXs3r3b8v/Lly8nMDCQjRs3JmmNuLg4JkyYQOnSpdm/fz8+Pj60bNnS1qGmCFdPzty8eZMDBw4AUK9ePcvny5Urx+TJkwH46KOPWLVq1WPP//jjj9myZQuZMmVi9uzZLtva7UnM1/bOnTuJjY212z6GYfDZZ58B8Prrr5M9e3bKly9Pr169ABgyZMhjO/UcOnQIgPz58+Pn52e3+EREkiNJbc1ERERERERE4MnJGYAmTZrQp08fAPr27UtkZGSKxiYPM98Ud2Ryxvw62bdvHxEREQ6Lw96ioqIsN/IXLlxIyZIluXz5MvXr1+fzzz9PVJuzvXv3Ur16dd5++23u3btH7dq12b17N88995y9w7cL8+vOnCR0NevXrwegdOnS5MqV66HHevbsySuvvIJhGHTp0oVLly499PjKlSv53//+B8D//d//UaRIkZQJOgWVKFGCzJkzExkZSXBwsN322bBhA5s3b8bb25shQ4ZYPj969Gh8fX3ZsmUL8+bNe+Q8tTQTEWem5IyIiIiIiIgkyYULF7hw4QLu7u5UqVLlscd8/fXX5MmTh+PHj/PJJ5+kcIRiFhUVZXnnuCOTMwUKFMDf35/Y2Fh27drlsDjs7eDBg8TExJA1a1Zat27Nzp076dGjB/Hx8XzwwQc0b96cq1evPvbce/fuMXToUKpUqcKuXbvw8/Pj559/Zv369ZQuXTqFn4ntmCtn9u3bR1xcnIOjSboH5808znfffUdgYCDXr1+nU6dOxMTEABASEkK3bt0wDIN+/frx0ksvpVDEKcvNzc3SttCerc3MVTN9+vTB39/f8vm8efMydOhQAIYPH050dPRD55kTRgEBAXaLTUQkuZScERERERERkSQxt6YqX748GTJkeOwxmTNntrT8+eqrrx5q9SQp59ChQ8TGxpIlSxYKFCjgsDhMJpOlesZcdZUamRNPlSpVwmQykSFDBqZPn86vv/6Kr68vK1euJDAwkDVr1jx03vLlyylTpgxff/01cXFxdOzYkSNHjvDqq68+NNPJFT333HP4+voSERHB8ePHHR1Okv133sx/pUuXjrlz5+Ln58fmzZt57733iIuLo1u3bly7do2yZcvyzTffpGTIKc7ec2e2b9/OqlWr8PDwYNiwYY88/u6775I7d25Onz7NDz/88NBj5soZJWdExBm59r/wIiIiIiIikuKe1tLsQW3btqVTp07ExcXRp0+fR97RLPb34LwZk8nk0FjSUnKmcuXKD32+V69e7Ny5kzJlyhASEkLjxo0ZNWoUly9f5uWXX6Zly5acO3eOAgUKsGTJEubMmUOePHkc8RRszt3dncDAQMD15s5cv37dcnP/wXkz/1W0aFGmTZsGwPjx42nXrh2rV6/G19eXOXPmkC5dupQI12HsnZz5/PPPAejWrRuFChV65PEMGTIwevRoAD799FNu3boFJMypMVfOqK2ZiDgjJWdEREREREQkScyVM89KzgBMnDiRbNmyceDAAb744gt7hyb/8WByxtEeTM48bnB3amCuEKtUqdIjj5UuXZodO3bQp08fDMPgk08+oUCBAsyePRs3NzfefvttDh06RKtWrVI6bLsztzZzteSMed5MQEAAOXLkeOqx7dq1s7TXWrJkCQDff/89pUqVsm+QTqBq1aoAHD9+nJs3b9p07QMHDrB48WJMJhPvvffeE4/r3bs3AQEBhIaGWpI5V65cITQ0FDc3N0qWLGnTuEREbEHJGREREREREUm0yMhIyw3WxCRncuTIwXfffQckDG4+cuSIXeOThzlTcqZChQp4e3tz8+ZNTpw44ehwbO7+/fuWd+n/t3LGzNfXlylTpvD777+TPn164uLiqFChAjt27GD8+PFPbBPo6syvP/Pr0VU8a97Mf40ZM4Y6deoACVUePXv2tFNkziVr1qyUKFECgB07dth07TFjxgDQsWNHyx6P4+7uzldffQUkvCng1KlTlqqn4sWL4+PjY9O4RERsQckZERERERERSbRdu3YRGxuLv79/omeYvPzyy7Ro0YKYmBh+/vlnO0coZnFxcezfvx9wjuSMl5cXVapUAVJna7Pg4GBiY2PJnj37M6+Nbt26cfDgQf7++2927Njx2Eqb1MScrNqxYwcxMTEOjibxnjVv5r88PT1ZsWIFy5YtY+rUqQ5vJZiSzK3NzJWVtnDs2DH+/PNPAN5///1nHt+sWTOaNWtGTEwMI0aMUEszEXF6Ss6IiIiIiIhIoj04byaxNx5NJhOvvfYaAAsXLky1La2czcmTJ7l37x7p0qV76jvOU1JqnjtjnjdTqVKlRF0bhQoVon379nh4eNg7NIcLCAgga9as3Lt3z/J1cnbXrl3j8OHDANStWzfR5/n6+tKiRQs8PT3tFZpTssfcmf/9738YhkGbNm0oV65cos4ZN24cbm5u/PXXX/z2229AwutPRMQZKTkjIiIiIiIiifZgciYpmjRpgo+PD2fOnOHQoUP2CE3+w9xCqly5cri7uzs4mgRpITnzpJZmaZmbm5ulNZi5GsXZmVualStXjuzZszs2GBdgTs5s376d+Ph4q9c7e/Ysv//+OwAjR45M9Hlly5alT58+QMK8GlByRkScl5IzIiIiIiIikiiGYVhuqteoUSNJ56ZPn57GjRsDCdUzYn/ONG/GzPy6OXToELdv33ZsMDa2e/dugFTfoiy5zK3B1qxZ4+BIEiep82bSuoCAAHx9fQkLC+Po0aNWr/fll18SFxdHkyZNqFq1apLO/fTTT0mfPr3lz2prJiLOyqrkjC1LFUVERERERMS5nTx5khs3buDt7Z2sG/5t2rQBYNGiRbYOTR7DGZMzOXPmpFixYkDquqcQGRlpGT6uypnHa9iwIQCbN28mKirKwdE8W1LnzaR1Hh4elplS1l7bly9fZurUqUDSqmbM8uTJw7BhwwDw9vamaNGiVsUjImIvViVnatasSZkyZfj666+5du2arWISERERERERJ2SumqlcuTLe3t5JPr9169ZAwlDwy5cv2zQ2eZhhGE6ZnIHU2drswIEDxMXFkTNnTvLly+focJxSqVKlyJUrF/fv32f79u0psufFixf5448/uHnzZpLOCwkJ4ejRo5hMpiTNm0nrbDV35uuvvyYqKoratWsn++s/ZMgQOnXqxKeffuo0bR1FRP7L6rZmR48eZdiwYeTPn58OHTqwePFim/SWFBEREREREeeS3HkzZrlz56ZatWoALFmyxGZxyaMuXbrEjRs3cHd3d7qWPqkxOWOeN1OpUiVMJpODo3FOJpMpRVqbhYWFMW3aNBo1akSBAgXo1q0bPXr0SNIa5pZm5cuXJ2vWrHaIMnWyRXLmxo0b/Pjjj0BC1Uxyr6f06dMze/ZsSwWNiIgzsio58+233xIYGIhhGMTExLBw4ULatWtHvnz5GDFiBMePH7dVnCIiIiIiIuJg1iZn4N/WZpo7Y1/mqplSpUrh4+Pj4GgeZn79bN++ndjYWAdHYxvm5Ixamj2dOTljbhlmKzExMSxdupTOnTuTK1cuevfuzZo1azAMA4Bly5YRHByc6PU0byZ5zMn3gwcPEh4enqw1JkyYQEREBJUqVaJZs2a2DE9ExOlYlZwZOHAgu3fvZt++fQwcOJBs2bJhGAYhISF8+eWXlCpVitq1a/Prr79y7949W8UsIiIiIiIiKez27dscOnQI+Heoe3K0bdsWgNWrV3P37l2bxCaPctaWZgClS5cmU6ZM3L171zKnxdXt3r0bSKickSczJ2e2bt1KRESEVWsZhsHx48d5++23yZs3L88//zxz5szh/v37lChRgs8++4zTp0/TsWNHIKFVVmJp3kzy5MmTh4IFC2IYBjt37kzy+Xfu3GHSpEmAdVUzIiKuwuq2ZgDlypXj22+/5dKlS8ydO5dWrVrh5uaGYRhs3bqVV155hTx58vDKK6+wefNmW2wpIiIiIiIiKWj79u0YhkHRokXJlStXstcpXbo0RYoUISoqiqCgIBtGKA9y5uSMu7u75R32qaG1WUREhCVxqcqZpytWrBj58uUjJibGqr/706dPExgYyLBhw/j++++5fv06OXPm5K233mLnzp0cOXKEkSNHUrhwYYYOHQrAzJkzuXTp0jPXvnz5MsePH8dkMlGnTp1kx5hWWdPa7Ndff+XOnTuULl3aksgXEUnNbJKcMfP09LTMnblw4QJjx46lRIkSGIbB3bt3+fXXX6lbty6lSpVi3LhxXL161Zbbi4iIiIiIiJ3YoqUZJMydMN90W7RokdVxyeM5c3IG/n0dbd261cGRWG///v3Ex8eTO3du/P39HR2OU7PV3JnRo0dz5MgRvLy86Ny5M8uWLePSpUtMmDCBypUrP1RxUaVKFerVq0dMTAzffffdM9c2tzSrUKECWbJkSXaMaZW5sjKpyRnDMCyzZgYOHIibm01vWYqIOCW7fafLnTs3w4cP5/Dhw2zevJlXXnmFDBkyYBgGx44d47333iN//vy0a9eOFStW2CsMERERERERsQFbJWfg37kzS5YsSTUzR5zJzZs3OXfuHACBgYGODeYJzK+j1FA5Y543U6lSJbVhSoSGDRsCyZ87ExkZybx58wD4+OOP+e2332jRogUeHh5PPMdcPfPjjz8SFhb21PU1b8Y6D1bOmGf+JMbatWs5duwYGTJkoGvXrvYKT0TEqaRIGjo6OpqoqCji4uIsP6gYhkFsbCyLFy+mVatWVKhQIVkljyIiIiIiImJfcXFxbN++HbBNcqZ27dpkyZKFmzdvporKCWezb98+AIoUKULmzJkdGsuTVKtWDZPJxOnTpwkJCXF0OFYxJ2fU0ixxzJUzO3fuTNbQ+MWLFxMeHk7BggUpVapUos5p2bIlpUqVIiwsjF9++eWpx2rejHUCAwPx8vLi+vXrnDlzJtHnTZ48GYDu3buTMWNGe4UnIuJU7JacOX/+PKNHj6Zo0aI0bNiQGTNmEBERgZubm2VI2wcffEC+fPkwDIP9+/dTv359yw/8IiIiIiIi4hwOHTpEeHg4GTNmpEyZMlav5+HhQatWrQBYuHCh1evJw5y9pRmAn58fAQEBgOu3Ntu9ezeQUDkjz1awYEEKFy5MXFwcGzduTPL5f/zxBwCdOnVKdOsrNzc3hgwZAsCECROIiYl57HEXL17k5MmTuLm5ad5MMnl7e1OxYkUg8df25cuXWbBgAQD9+/e3V2giIk7HpsmZ+/fvM3PmTJo0aUKRIkUYNWoUZ86cwTAMChcuzGeffcb58+dZtGgRL730Ep9++ilnzpxhxowZZM+enejoaD766CNbhiQiIiIiIiJWMreeql69Ou7u7jZZ0zx3ZuHChUlqfSPP5grJGUgdrc3u3r3LkSNHACVnkiK5rc1u3rzJsmXLAOjSpUuSzu3WrRu5cuXi4sWLzJkz57HHmFuaVaxYET8/vyStL/96sLVZYvzf//0fsbGx1KpVi7Jly9ozNBERp2KT5Mz27dt5/fXXyZMnD927d2fNmjXEx8fj5eVFp06dWLlyJSdPnuT9998nT548Dwfg5kaXLl0YP3488O87TkRERERERMQ52HLejFmzZs3w8vLi5MmTHD161GbripIzKWnfvn3Ex8fj7++Pv7+/o8NxGeaWYWvWrEnSeX/99RexsbFUqFCB0qVLJ+lcb29vBg0aBMBXX3312KSwOTmjlmbWSUpyJjY2lp9//hmAAQMG2DUuERFnY1VyZty4cZQuXZqaNWvyyy+/cOfOHQzDoHTp0nzzzTdcunSJWbNm0ahRo2euVaVKFQBCQ0OtCUlERERERERszB7JmYwZM1rePb9o0SKbrZvWRUREcOzYMcB1kjO7du0iKirKwdEkj1qaJY85+bF3794k3QeaMWMGQLIHxr/++uukT5+e/fv3s2rVqkceN1fy1K9fP1nrSwJzcmbfvn1ERkY+9dglS5Zw6dIlcuTIwQsvvJAS4YmIOA2rkjPDhw/n2LFjGIaBr68vffr0YcuWLQQHB/PWW2+RNWvWRK/l4eFhTSgiIiIiIiJiB1evXuXUqVOYTCaqVatm07XbtGkDaO6MLR04cID4+Hhy5cr1SOcKZ1O0aFFy5MhBdHQ0e/bscXQ4ybJr1y4AKleu7OBIXIu/vz8lSpTAMAw2bNiQqHPOnDnD5s2bMZlMvPzyy8naN2vWrPTt2xdIeMPxg86fP8/p06dxd3endu3ayVpfEhQoUIDcuXMTGxv7zGt78uTJAPTp0wdvb++UCE9ExGlY3dascuXK/PTTT1y5coX/+7//s2THk6po0aLEx8cTFxdnbUgiIiIiIiJiI+aBzgEBATafwdC6dWsgofXN1atXbbp2WuUqLc0ATCaTy7c2U+VM8pkr5xLb2mzmzJmW86xpIff222/j7u7OypUr2b9/v+Xz5pZmlSpVIlOmTMleXxKu7cS0Njt58iRBQUGYTCb69euXUuGJiDgNq5Iz+/fvZ/v27bz66qtkyJDBVjGJiIiIiIiIk7BHSzOzfPnyUalSJQzDYMmSJTZfPy1ypeQMuPbcmfDwcMu8JCVnks7c2szcSuxpDMOwtDTr1q2bVfsWKlSIl156CUiYPWOmeTO2lZjkzE8//QRA8+bNKVy4cIrEJSLiTKxKzpQtW9ZWcYiIiIiIiIgTsmdyBqBt27aA5s7YiisnZx43oN2Z7d27F8MwyJcvH7lz53Z0OC7HPNclODiY69evP/XYvXv3cvToUXx8fOjQoYPVew8dOhSA2bNnc+HCBUDzZmztWcmZyMhIpk6dCkD//v1TLC4REWdidVszERERERERSZ2ioqIsMzVq1Khhlz3Mc2dWrlxJRESEXfZIK2JiYggODgZcJzlTqVIlPD09CQkJ4ezZs44OJ0nU0sw6OXLksLzp11y18iTmqpk2bdrYpOVYpUqVaNCgAbGxsXz77becPXuWs2fPat6MDVWuXBk3NzcuXrzIxYsXH3n8r7/+4tatWxQoUICWLVs6IEIREcfzSMxB58+ft8vmBQoUsMu6IiIiIiIiYr29e/cSFRVF9uzZKVasmF32KFeuHAULFuTcuXOsWrXKkqyRpDt69ChRUVFkzJiRIkWKODqcREmXLh0VK1Zk+/btbNmyxaVaG5kTl5UrV3ZwJK6rQYMGBAcHs2bNGkursf+Ki4tj1qxZgPUtzR40dOhQ1q5dy88//2y5P1WlShW17beR9OnTU65cOfbt28f27dvJly/fQ49PnjwZgNdeew13d3dHhCgi4nCJSs7Y44cjk8lEbGyszdcVERERERER23iwpZnJZLLLHiaTiTZt2jBx4kQWLlyo5IwVzC3NAgMDcXNznUYZNWvWtCRnunbt6uhwEs1cOaPkTPI1bNiQ77777qlzZ9asWUNISAhZs2alWbNmNtu7RYsWlC5dmsOHDzNy5EhA82ZsrXr16uzbt49t27bxwgsvWD5v/pyHhwd9+/Z1YIQiIo6VqJ/WDMOwy4eIiIiIiIg4L3vPmzEzz51ZvHgxcXFxdt0rNXO1eTNm5pZ55tebKwgLC+PYsWOA2ppZo27duphMJo4dO8bly5cfe4y5pVmnTp3w8vKy2d4mk8kye+bu3buA5s3Y2pPmzpirZl544QXNaxKRNC1RlTO//vqrveMQERERERERJ2IYRoolZ+rWrYufnx/Xr19n+/btdt8vNYqNjbXcAHXV5MyBAwe4e/euS7SV2rNnD5DQrj1HjhwOjsZ1ZcmShYoVK7J7927Wrl37SOVUREQEf//9N2DblmZmXbp0YeTIkVy5cgUPDw9q1apl8z3SMvO1vWvXLmJiYvD09CQsLIw//vgDgP79+zsyPBERh0tUcqZnz572jkNEREREREScyPnz5y03LO3dtsnT05OWLVsya9YsFi1alGaSM0ePHuX333+nYcOGNGjQIFmtyMLCwpgyZQoTJkywzIt1tTZb+fLlo0CBApw/f54dO3bQsGFDR4f0TOaWZqqasV6DBg2emJxZtGgRd+/epXDhwpYb/bbk7e3NoEGDGDFiBDVq1CB9+vQ23yMtK168OFmyZCE0NJT9+/dTuXJlfv/9d+7du0fp0qWpW7euo0MUEXEo12lCKyIiIiIiIinGXDVTsWJF0qVLZ/f9zLNmFi5caPe9nMXAgQMZM2YMjRs3plChQowcOZLjx48n6twLFy7w7rvvkj9/ft555x3Onz9Pjhw5+PLLLylTpoydI7c9c0LOVVqb7dq1C3C9RJgzMs95WbNmzSOPmSssunbtare5V0OGDOGbb77hp59+ssv6aZnJZHqotZlhGJaWZq+//rrd/k5FRFyFkjMiIiIiIiLyiJRqaWbWokULPDw8OHr0aKITFK7s3r17bNiwAYBMmTJx4cIFxowZQ4kSJahZsyY//fQTt2/ffuS8vXv30q1bN4oUKcJXX31FWFgYJUuW5JdffuH8+fO8++67LnnD09HJmb/++os2bdpw4MCBRB1vrpxRcsZ6derUwd3dnTNnznDu3DnL52/cuMGKFSsAHqmosSVPT08GDx5MqVKl7LZHWvZgcmbjxo0cOnQIX19fevTo4eDIREQcT8kZERERERERecSmTZuAlEvO+Pn5WYZxL1q0KEX2dKR169YRHR1NoUKFuHr1KnPmzKFly5a4ubmxdetWXn/9dXLnzk3nzp1Zvnw5y5Yto1GjRlSsWJE//viD2NhY6tevz+LFizl06BCvvPIKPj4+jn5ayWZ+nW3dupX4+PgU2zcuLo733nuPjh07snjxYtq3b094ePhTz7l9+zYnTpwA1NbMFjJmzEiVKlUAWLt2reXzf/75J7GxsVSqVImSJUs6Kjyx0oPJGXPVTJcuXfDz83NkWCIiTiFRM2cSY//+/WzcuJHTp08THh5OXFzcU483mUxMmTLFVtuLiIiIiIiIjdy5c4f9+/cDCe9qTylt27Zl1apVLFq0iKFDh6bYvo7wzz//ANCsWTN8fHzo2LEjHTt25MqVK/zxxx9MmzaNQ4cOMWfOHObMmWM5z93dnY4dOzJkyJBUlRgoV64cvr6+3L59m6NHj1K6dGm773n79m26dOnC8uXLgYQKptOnTzNw4ECmTZv2xPP27NkDQKFChciWLZvd40wLGjZsyLZt21izZg29evUCYMaMGQB069bNgZGJtapWrQrAqVOnLJVR/fv3d2RIIiJOw+rkzLFjx+jTpw/btm1L9DmGYSg5IyIiIiIi4qS2bNmCYRgUK1aM3Llzp9i+rVu3ZuDAgWzevJkbN26QPXv2FNs7pT2YnHlQnjx5GDp0KEOGDGHPnj1Mnz6dmTNnEh0dzauvvspbb71FgQIFHBGyXXl6elK1alXWrVvHli1b7J6cOXr0KG3btuX48eOkS5eOKVOmkC9fPurXr8/06dNp0aIFnTp1euy55pZmqSk55mgNGjRgzJgxrF27FsMwOH36NFu3bsXNzY3OnTs7OjyxQubMmSlVqhRHjhwhNjaWqlWrUrFiRUeHJSLiFKxqa3bp0iXq1q1rGeplGAbp06cnX758FChQ4IkfBQsWTJU/TIqIiIiIiKQGGzduBFK2agagYMGClCtXjvj4eMusidTo7NmzHD9+HHd3dxo2bPjYY0wmE5UqVeK7777j2rVr3Llzh6+//jpV/y6dUnNnlixZQrVq1Th+/Dj58+dn06ZNvPzyy9SpU4f3338fgH79+j00/+RBu3btAjRvxpZq1qyJl5cXFy9e5OTJk8ycOROAxo0bp2iCWOzD3NoMYMCAAQ6MRETEuViVnPn888+5fv06AK+88gpHjx4lLCyMc+fOcebMmWd+iIiIiIiIiPNxVHIGoFWrVgAsW7YsxfdOKeaqmRo1aiRq7oKbmxsmk8neYTmcvZMzhmEwZswY2rRpQ1hYGHXq1GHXrl0PvYv/o48+onr16ty5c4du3bo9tmW7kjO25+vra7mBv3btWktLs65duzoyLLER899tlixZ6Nixo4OjERFxHlYlZ1asWIHJZKJHjx78/PPPPPfcc7aKS0RERERERBzg/v377NixA3BscmbFihXExsam+P4p4UktzdI68w3cY8eOcePGDZuufe/ePTp37szIkSMxDIPXX3+dVatWkTNnzoeO8/T05I8//iBjxoxs2rSJMWPGPPR4aGgop0+fBlBrJhtr0KABABMmTLC0m2vfvr2DoxJb6Ny5My+++CKTJ08mXbp0jg5HRMRpWJWcuXz5MgA9evSwSTAiIiIiIiLiWDt27CA6OprcuXNTtGjRFN+/WrVqZMmShdDQULZv357i+9tbTEwMq1evBpSc+a9s2bJRsmRJgCTNtX2Wc+fOUbt2bf788088PDz48ccfmTx5Ml5eXo89vkiRInz//fcAfPLJJ2zdutXymHneTJEiRciaNavNYhQsLf6OHDkCQLt27ciYMaMjQxIbyZQpE3/99dcT5ziJiKRVViVnsmTJAiQM9xIRERERERHX92BLM0e00vLw8LAkLVJja7Pt27cTFhZG1qxZVXnxGLZubbZnzx4qV67Mvn37yJEjB2vWrKFfv37PPK9bt268/PLLxMXF0bVrV8LCwoB/kzOVKlWySXzyr2rVquHj42P5s1qaiYhIamdVcsbcX/X48eM2CUZEREREREQcy5HzZszMrc2WLl3qsBjsxdzSrEmTJri7uzs4GudTq1YtAEt1kbVGjBjBjRs3qFixIrt27Ur069pkMjF58mQKFizImTNnePPNNwHNm7Enb29vateuDUD27Nlp2rSpgyMSERGxL6uSM4MGDcIwDH7++WdbxSMiIiIiIiIOEhcXZ6lYcGRyplmzZphMJvbv38+lS5ccFoc9aN7M0zVv3hxIaK8XEhJi1VqhoaGsWbMGgNmzZ1OgQIEkne/n58cff/yBm5sbv//+O7NmzVJyxs7atWsHQO/evfH09HRsMCIiInZmVXKmSZMmDBs2jLVr19K/f39iYmJsFddTTZ48mXLlypEpUyYyZcpEjRo1WL58ueVxwzAYNWoU/v7+pEuXjvr163Po0KGH1oiKimLgwIFkz56d9OnT06ZNGy5evJgi8YuIiIiIpFWGYTg6BHmK/fv3Ex4eTqZMmShbtqzD4siRIwfVqlUDUldrsxs3blhu7qsq4PH8/f2pUqUKAIsXL7ZqraVLlxIbG0uZMmUoXrx4staoVasWH374IQD9+vXj7NmzAGpJZyf9+/dn48aNfP75544ORURExO48EnPQb7/99sTHSpcuTc2aNfn5559ZvHgxL774IiVLlsTX1/eZ6/bo0SPxkT4gX758/O9//6NYsWIATJ8+nbZt27J3717KlCnDl19+yfjx45k2bRrPPfccn332GU2aNOHYsWOWYXKDBw9m8eLFzJ49m2zZsjFkyBCef/55du/erdJyERERERE76N27N8uXL2fatGmWd8eLczG3NKtVq5bDfy9q2bIl27ZtY9myZbz66qsOjcVWVq1ahWEYBAQEkDdvXkeH47Tatm3Lzp07WbRokVV/9/Pnzwegffv2VsXzwQcfsHLlSktVWbFixTR7107c3Nwsrc1ERERSu0QlZ3r16pWoQZBXrlxh4sSJidrYZDIlOznTunXrh/78+eefM3nyZLZt20bp0qWZMGECI0eOpEOHDkBC8iZXrlzMnDmTfv36cefOHaZMmcLvv/9O48aNAZgxYwb58+dn1apVKi8XEREREbGx0NBQfv/9d+Li4mjVqhX/+9//GDp0qEMGzsuTOcO8GbNWrVrx0UcfsXLlSqKiovD29nZ0SFZTS7PEadOmDR988AGrVq3i3r17pE+fPslrREREsGLFCsD65IyHhwczZswgMDCQsLAwKlWqZNV6IiIiIpDI5Aw4b/uBuLg4/vrrL+7du0eNGjU4c+YMISEhD5WIe3t7U69ePbZs2UK/fv3YvXs3MTExDx3j7+9PQEAAW7ZseeIPylFRUURFRVn+HBYWBkBMTEyKtXQTsQfz61evYxHnp+tVxLXomv3XsmXLiIuLw8vLi+joaIYNG8aePXv46aefSJcunaPDExJ+5zMnZ2rUqOHw122ZMmXInTs3ISEhrF27lkaNGtl1P3tfr4ZhEBQUBECjRo0c/vV1ZiVKlKBw4cKcOXOG5cuX07Zt2ySvsWzZMiIiIihYsCABAQFWf73z5cvH1KlTee+99+jZs6f+/pyA/o0VcR26XiWtSexrPVHJmTNnzlgVjD0EBwdTo0YN7t+/T4YMGZg/fz6lS5e2lBnnypXroeNz5crFuXPnAAgJCcHLy4ssWbI8cszTBg6OHTuWTz755JHPBwUFJaqNm4izW7lypaNDEJFE0vUq4lp0zcL//d//AQmtqnLmzMmUKVOYPXs2O3bsYMSIEeTIkcPBEcqlS5e4du0anp6e3LhxwylmvZQpU4aQkBB++OGHh94oZ0/2ul7Pnj3L5cuX8fLy4u7du07x9XVmZcqU4cyZM0yePDlZg+F/+OEHAMqWLfvQjFpreHh48NVXXxEdHa2/Pyeif2NFXIeuV0krIiIiEnVcopIzBQsWtCoYeyhRogT79u3j9u3bzJs3j549e7J+/XrL4/9tj2AYxjNbJjzrmBEjRvDOO+9Y/hwWFkb+/Plp2rQpmTJlSuYzEXG8mJgYVq5cSZMmTZL1i4+IpBxdryKuRddsgri4OF555RUA3njjDerVq0fHjh3p3Lkzp0+fZuTIkcyZM4datWo5ONK07ddffwWgWrVqyapUsIf79++zevVqjh49SsuWLe26l72v1/HjxwPQoEED2rVrZ/P1UxtfX1+WLFnCgQMHaNasWZJmIMXExNC7d28gYd5s3bp17RWmOJD+jRVxHbpeJa0xd9x6lkS3NXM2Xl5eFCtWDIDKlSuzc+dOvv32W4YPHw4kVMfkyZPHcvy1a9cs1TS5c+cmOjqa0NDQh6pnrl27Rs2aNZ+4p7e392P7HHt6euobi6QKei2LuA5dryKuJa1fs3v27OHGjRv4+flRr149PD09adSoEbt27aJt27bs37+fpk2bMmnSJF577TVHh5tmmbsQ1K1b12lery1atMDDw4MTJ05w7tw5y++A9mSv63XVqlUANG/e3Gm+vs6sfv36ZM6cmRs3brBr164kDYnfsGEDoaGh5MiRg/r16ycpsSOuJ63/GyviSnS9SlqR2Ne5mzWbNGzYkEaNGlnahSXG5cuXLefZkmEYREVFUbhwYXLnzv1QmVx0dDTr16+3JF4qVaqEp6fnQ8dcuXKFgwcPPjU5IyIiIiIiSbd06VIAmjZt+tAvKgULFmTz5s107NiRmJgY+vXrR//+/YmOjnZUqGmaed6MM1UZZMqUiTp16gC4dBupiIgIy9f3STNO5WGenp60atUKgEWLFiXp3Pnz5wPQpk0bJWZERETEaVmVnFm3bh3r1q3j3r17iT4nMjLScl5yvf/++2zcuJGzZ88SHBzMyJEjWbduHV27dsVkMjF48GDGjBnD/PnzOXjwIL169cLX15cuXboA4OfnR9++fRkyZAirV69m7969dOvWjbJly9K4ceNkxyUiIiIiIo8yJ2ce15Yqffr0zJ49mzFjxmAymfjxxx9p3Lgx165dS+kw07TLly9z+vRp3NzcqFGjhqPDeYj5Br35deSK1q9fT1RUFPnz56dkyZKODsdltGnTBkhaciY+Pp4FCxYA0L59e3uEJSIiImITViVnHOXq1at0796dEiVK0KhRI7Zv386KFSto0qQJAMOGDWPw4MEMGDCAypUrc+nSJYKCgsiYMaNljW+++YZ27drRsWNHatWqha+vL4sXL9a7akREREREbOjKlSvs2bMHSGhR9Tgmk4kRI0awaNEiMmbMyMaNG6latSo3b95MyVDTNHNVR2BgoNPN0zQn9ZL6xkBn8s8//wAJVTPPmoUq/zK3gDt27BjHjh1L1Dm7du3i0qVLZMiQweYdO0RERERsKcWTM+Yfpn18fJK9xpQpUzh79ixRUVFcu3aNVatWWRIzkPDL3ahRo7hy5Qr3799n/fr1BAQEPLSGj48PEydO5ObNm0RERLB48WLy58+f7JhERERERORRy5cvB6BKlSqWGZBP8vzzz7Njxw4KFizIuXPnmDVrVkqEKPybnDG3EHMmJUuWpHDhwkRHR7N69WpHh5MsDyZnJPEyZcpEgwYNgMRXz/z9999AQlLPmvsOIiIiIvaW4skZ8y9n+fLlS+mtRUREREQkhT2tpdnjlCxZkoEDBwL/zo0Q+3Pm5IzJZLK8flxx7sz58+c5evQobm5uquRIBnNrs4ULFz7zWMMwLN831NJMREREnJ1HUg7u06fPYz//wQcfkDlz5qeeGxUVxalTp9i5cycmk4l69eolZWsREREREXEx0dHRrFy5Evh3bkhitGvXjqFDh7J+/Xpu3rxJtmzZ7BWiAKGhoQQHBwNQu3ZtB0fzeK1ateL7779n6dKlGIbhUq3BgoKCAKhWrRpZsmRxcDSup02bNrz55pts2bKF69evkyNHjicee+TIEY4fP46Xl1eiE8IiIiIijpKk5My0adMe+SHYMIxEvYPFfCxA1qxZGTFiRFK2FhERERERF7Np0ybCw8PJlSsXlSpVSvR5RYsWpWzZsgQHB7NkyRJ69uxpxyhl8+bNGIbBc88998zWc45Sv3590qVLx8WLFzl48CBly5Z1dEiJppZm1smfPz8VKlRg7969LFmyhN69ez/xWHPVTKNGjZxudpKIiIjIfyWprVmBAgUe+oCEEvM8efI88tiDHwULFqREiRI0aNCAkSNHcuDAAQoXLmyXJyQiIiIiIs7B3NKsRYsWuLklraOyuSWRWpvZnzO3NDNLly4dDRs2BP59XbmC2NhYVq1aBSg5Y422bdsCz547o5ZmIiIi4kqSVDlz9uzZh/5s/gUrKCiI0qVL2ywoERERERFxfUmdN/Og9u3b8+mnnxIUFERERAS+vr62Dk/+P1dIzkDC62jp0qUsW7aM9957z9HhJMrOnTu5ffs2WbJkoUqVKo4Ox2W1adOGUaNGERQURGRkJOnSpXvkmPPnz7N7925MJpNlTo2IiIiIM0va29f+o27dutStW5f06dPbKh4REREREUkFTp06xbFjx/Dw8KBp06ZJPr98+fIUKlSIyMhIS1sosb3IyEh27doFuEZyBmDLli2EhoY6OJrEMb92GzdujLu7u4OjcV2BgYHkz5+fiIgIVq9e/dhjFixYACTMTXLW9nwiIiIiD7IqObNu3TrWrl1LwYIFbRWPiIiIiIikAsuWLQMSbpT6+fkl+XyTyaTWZilg+/btxMTE4O/v7/StpwsVKkTp0qWJi4sjKCjIITGcPn2a1157jWHDhnH37t1nHq95M7bxYDXMk2be/v3334BamomIiIjrsCo5IyIiIiIi8jjWtDQza9euHQCLFy8mJibGFmHJfzzY0sxkMjk4mmczv55Seu7M9evXGTRoECVLluSXX35h3LhxlC9fng0bNjzxnNDQUHbs2AEoOWML5rkzixcvJj4+/qHHrl+/bnktKzkjIiIirsLmyZmwsDAuXbrE+fPnn/khIiIiIiKpz71791i3bh0ArVq1SvY6tWrVIkeOHNy+fZv169fbKDp5kKvMmzEzv56WL1/+yA16e7h37x6jR4+maNGiTJw4kZiYGBo3bkz+/Pk5ffo09evX5+233yYiIuKRc1etWkV8fDylS5cmX758do81tatXrx6ZMmXi6tWrlqSXmTlhExgYSKFChRwToIiIiEgS2SQ5s3LlStq3b0/27NnJkiULBQoUoHDhwk/9KFKkiC22FhERERERJ7NmzRqioqIoVKgQpUqVSvY67u7ullZG5nkSYjuxsbFs3boVcJ3kTK1atciUKRM3btywzMqxh5iYGH788UeKFSvGRx99RHh4OJUqVWLVqlWsXLmS4OBg+vbti2EYTJgwgQoVKli+lmZqaWZbXl5etGjRAoBFixY99Ji59aGqZkRERMSVWJ2cGTRoEM2bN2fRokXcunULwzAS/SEiIiIiIqmPueVUq1atrG6VZb7ZumDBghSplEhL9u3bx927d8mcOTMBAQGODidRPD09adq0KWCf1maGYfD3338TEBBA//79CQkJoUiRIsyePZsdO3bQqFEjAPz8/Pi///s/li5dir+/P8ePH6d27doMHz6c+/fvYxiGkjN2YE7WPpicCQ8PZ+XKlYCSMyIiIuJaPKw5eebMmUyaNAkAHx8f2rVrR6VKlciaNStubhpnIyIiIiKS1hiGYZN5M2aNGjUiQ4YMXLp0iV27dlG1alWr15QE5pZmtWrVcqnf31q2bMncuXNZtmwZn3zyic3W3bZtG8OHD+f48eMAZM+enY8++oh+/frh5eX1xFgOHjzIW2+9xe+//86XX37JkiVLeO+997h48SI+Pj7UrVvXZjGmdS1atMDDw4NDhw5x6tQpihYtyooVK4iKiqJo0aIuk2QUERERASuTMz/99BMA+fPnZ82aNRQtWtQmQYmIiIiIiGs6ePAgFy9eJF26dDRo0MDq9Xx8fGjZsiV//vkn8+fPV3LGhlxt3oyZubXVrl27CAkJIXfu3FaveenSJZo1a0ZkZCS+vr4MGTKEoUOHkilTpmeemyVLFn777TdeeOEFXnvtNQ4fPkyPHj0AqFu3LunSpbM6PkmQJUsW6taty5o1a1i0aBFvv/32Qy3NrK3UExEREUlJVr096sCBA5hMJj7++GMlZkRERERExFI107BhQ5vdlG7Xrh3w71wJsZ5hGGzatAlwveRM7ty5qVSpEgArVqywyZorVqwgMjKSAgUKcPToUT799NNEJWYe1LZtWw4dOkSnTp0sn1NLM9tr27YtAAsXLiQqKoolS5YAamkmIiIirseq5ExMTAwAFSpUsEkwIiIiIiLi2h6cN2MrLVu2xNPTk2PHjnH06FGbrZuWHTt2jOvXr+Pj40PlypUdHU6SmV9ftpo7Y55ZUqNGDasqcbJnz87s2bOZN28eAwYMoG/fvjaJT/7VunVrADZt2sTcuXMJDw8nd+7cVK9e3cGRiYiIiCSNVcmZQoUKAXD37l1bxCIiIiIiIi4sNDSULVu2ALaZN2Pm5+dnGcSu6hnbMLc0q1at2hPnqTgz8+srKCjI8qbB5IqPj2fVqlUABAYGWhsaAB06dOD777/Hz8/PJuvJvwoXLkzZsmWJi4tj6NChQEI1jSvNTRIREREBK5MzHTp0AGD16tU2CUZERERERFzXP//8Q3x8PGXKlKFgwYI2XdvcskjJGdtw1XkzZlWqVCFHjhyEhYWxefNmq9bau3cvN2/eJGPGjBQvXtxGEYo9mVubhYSEAP/emxARERFxJVYlZ4YMGUKBAgWYMGGC2guIiIiISIq6cuUKL774Ii+++CJxcXGODkewT0szs7Zt22Iymdi5cycXL160+fppjTk5U7duXQdHkjxubm40b94cgGXLllm1lrmlWf369fHw8LA6NrG/Nm3aWP7fz8+P+vXrOy4YERERkWSyKjnj5+fHihUryJUrF7Vq1eKHH34gNDTUVrGJiIiIiDzWkiVLKFeuHPPmzWPevHls3brV0SGleXFxcZbh7LZsaWaWK1cuatasCcCCBQtsvn5acvHiRc6ePYu7uzs1atRwdDjJZqu5M+bkTOPGja2OSVJGpUqV8Pf3B+D55593ydZ8IiIiIla9LahIkSIAREREEBoaysCBAxk0aBDZs2fH19f3qeeaTCZOnTplzfYiIiIiksbcv3+fYcOGMXHiRADc3d2Ji4tj4cKF1K5d28HRpW07d+7kxo0b+Pn5WZIottauXTs2b97M/PnzefPNN+2yhyuLiYnh1KlTXL58matXrxISEsLVq1cf+bh27RoAFSpUIEOGDA6OOvmaNm2Ku7s7hw8f5uzZs5aZqEkRERHBpk2bAGjUqBEnT560cZRiD25ubrzxxht8/PHHvP76644OR0RERCRZrErOnD179qE/G4aBYRiWH/afxmQyWbO1iIiIiKQxhw4d4uWXXyY4OBiAt99+m4oVK9K9e3cWLVrEuHHjHBxh2mauXmjWrBmenp522aN9+/a8++67rF+/nlu3bpE1a1a77OMK7ty5w/79+9m3b5/lvwcPHiQ6OjpR57u7u9O3b187R2lfWbJkoWbNmmzcuJFly5YxYMCAJK+xYcMGoqOjKVCgAMWLF1dyxoWMGDGC4cOH4+7u7uhQRERERJLFquRMz549bRWHiIiIiMhjGYbBjz/+yDvvvMP9+/fJmTMn06dPp3nz5oSFheHp6cnx48c5evQoJUuWdHS4aZY9582YFS1alLJlyxIcHMySJUvo0aOH3fZyNps2bWL16tXs27ePffv2PfJGObMMGTKQP39+cuXK9dSPnDlz4uPjk7JPwg5atmxpVXLG3NKsadOmegOhizGZTErMiIiIiEuzKjnz66+/2ioOEREREZFH3Lx5k1deecUyY6R58+ZMmzaNXLlyAZApUyYaNmzIP//8w6JFi5SccZDLly+zd+9eTCaTZUi7vbRv357g4GDmz5+fZpIzhw8fpm7duhiG8dDnCxQoQGBgIIGBgZQvX57AwEAKFSqEm5tVo0VdSqtWrRgxYgRr1qwhMjKSdOnSJel8c3KmSZMm9ghPREREROSJ0s5P7SIiIiLiUtasWUO5cuVYsGABXl5efPPNNyxdutSSmDFr06YNAAsXLnREmAIsX74cgCpVqpAzZ0677tW+fXsA/vnnHyIiIuy6l7OYM2cOhmFQpkwZvvnmG9asWcPNmzc5d+4cCxcu5JNPPqFDhw4UKVIkTSVmAAICAsiXLx+RkZGsW7cuSedeuXKF4OBgTCYTjRo1sk+AIiIiIiJPkLZ+chcRERERlzB69GgaN27M5cuXKVGiBNu2bWPw4MGPvfFsTs5s3bo1UbMPxfZSoqWZWfny5SlYsCCRkZH8888/dt/PGcybNw+A4cOHM3jwYBo0aJCm5+08yGQyWV535tdhYq1atQqAihUrki1bNpvHJiIiIiLyNDZPzly9epXVq1fz119/8ddff7F69WquXr1q621EREREJJXavHkzH330EYZh8Morr7B7924qVKjwxOPz5ctHxYoVMQyDJUuWpGCkAnDv3j1LkiQlkjMmk8lSPWNud5eaHT16lEOHDuHp6Unr1q0dHY5TatmyJZCQnPlv67enUUszEREREXEkmyRnDMPgp59+omzZsvj7+9O0aVM6d+5M586dadq0Kf7+/pQtW5aff/45ST8si4iIiEjaYhgGI0aMAKBv37788ssvpE+f/pnntW3bFoBFixbZNT551IIFC4iIiKBo0aJUrFgxRfY0J2cWL15MTExMiuzpKOaqmcaNG5M5c2bHBuOkGjZsiJeXF2fPnuXo0aOJOscwDEtypmnTpvYMT0RERETksaxOzoSGhlKnTh0GDBjA4cOHMQzjsR+HDx+mf//+1K1bl9u3b9sgdBERERFJbVasWMHGjRvx9vZm1KhRiT7P3NosKCgozcwhcRZ//PEHAN26dcNkMqXInrVq1SJHjhyEhoayYcOGFNnTUebOnQvACy+84OBInFeGDBmoX78+AMuWLUvUOQcPHiQkJARfX19q1qxpx+hERERERB7PquSMYRi0bduWLVu2YBgGWbNmpX///kybNo0VK1awfPlypk2bxoABA8iWLRuGYbBlyxbLOxtFRERERMzi4+MtVTNvvvkm+fLlS/S55cuXp0CBAkRGRrJ69Wp7hSj/cfXqVYKCggDo2rVriu3r7u5uScjNnz8/xfZNaadOnWLfvn24u7vrd6hneLC1WWKYq2bq1q2Lt7e33eISEREREXkSq5IzM2fOZNOmTZhMJrp27crp06f5/vvv6dGjB02bNqVZs2b06NGDSZMmcfr0abp3745hGGzatIlZs2bZ6jmIiIiISCrw559/sn//fjJlymRJ0iSWyWSy3KxfuHChPcKTx5gzZw5xcXFUrVqV4sWLp+jeD86diY+PT9G9U4q5pVn9+vXJnj27g6NxbuZ5Rxs3biQsLOyZx2vejIiIiIg4mtXJGYB69erx+++/kzFjxicemyFDBqZPn069evUwDIMZM2ZYs7WIiIiIpCIxMTF8+OGHAAwdOpRs2bIleQ1zZcHixYtT7c16Z/NgS7OU1qhRI/z8/Lh06RLr1q1L8f1Tgjk58+KLLzo4EudXrFgxihcvTmxsrCXx8iRRUVGsX78e0LwZEREREXEcq5Ize/bswWQy8eabbyb6nIEDBwKwd+9ea7YWERERkVTk119/5eTJk+TIkYPBgwcna426deuSKVMmrl27xvbt220boDzixIkT7NixA3d3dzp16pTi+/v4+Fj2nT59eorvb2/nz59nx44dmEwm2rVr5+hwXIK5euZZc2c2b95MZGQkefLkoUyZMikRmoiIiIjII6xKzty6dQuAwoULJ/oc87Hmc0VEREQkbYuMjOSTTz4BYOTIkU+txn4aLy8vy9yJRYsW2Sw+eTxz1UzTpk3JmTOnQ2Lo2bMnkFBhcvfuXYfEYC9///03ALVr1yZ37twOjsY1mK//ZcuWYRjGE48zV9Y0btwYk8mUIrGJiIiIiPyXVckZPz8/AC5fvpzoc8zHZsqUyZqtRURERCSVmDRpEpcvX6ZAgQK8/vrrVq2luTMp48E2xV27dnVYHDVq1KBYsWLcu3fPksxILebOnQuopVlS1K1bl/Tp0xMSEvLUTg2aNyMiIiIizsCq5ExAQACQ0IYisaZOnfrQuSIiIiKSdt25c4f//e9/AHzyySd4e3tbtV6LFi3w8PDgyJEjnDhxwhYhymPs2LGDU6dOkT59eoe23DKZTPTo0QOA3377zWFx2Nrly5fZsmULAB06dHBwNK7D29ubxo0bA09ubXbjxg327NkDYDlWRERERMQRrErOvPjiixiGwfz58xk1atRTS8cNw2DUqFHMnz8fk8nESy+9ZM3WIiIiIpIKfPXVV9y6dYtSpUrRvXt3q9fLnDkz9erVA9TazJ7MVTPt27cnffr0Do3F/LpZs2YNFy5ccGgstjJ//nwMw6B69erky5fP0eG4FPPcmaVLlz728dWrV2MYBmXLliVPnjwpGZqIiIiIyEOsSs68+uqrlCxZEsMwGD16NOXKlePrr79m06ZNnDhxgpMnT7Jp0ya+/vprypcvz+jRowEoWbIkr776qk2egIiIiIi4pqtXr/LNN98A8Nlnn+Hu7m6Tdc2tzZScsY+YmBhmz54NOLalmVmhQoWoV68ehmHw+++/Ozocm5g3bx4AL7zwgoMjcT0tWrQAYPv27dy4ceORx9XSTERERESchVXJGU9PT5YvX07hwoUxDIPDhw8zbNgw6tWrR8mSJSlRogT16tVj2LBhHDp0CMMwKFKkCMuXL8fDw8NWz0FEREREXNCYMWO4d+8eVapUoX379jZb15yc2bRpEzdv3rTZupJg5cqV3Lhxg5w5czpNW6iePXsCCa3NnlbN7wquX7/O+vXrASVnkiNfvnyUL18ewzBYsWLFQ48ZhqHkjIiIiIg4DauSMwAFCxbkwIEDDBkyBD8/PwzDeOyHn58fQ4cOZd++fRQoUMAWsYuIiIiIizp79iyTJ08GEpI0JpPJZmsXKlSIcuXKER8f/8TWRpJ85pZmnTt3dpo3XL344oukS5eOY8eOsWPHDkeHY5UFCxYQHx9PxYoVKVy4sKPDcUktW7YEHp07c/z4cc6fP4+Xlxd169Z1RGgiIiIiIhZWJ2cA0qdPz7hx4wgJCWHz5s389NNPjB07lrFjx/LTTz+xefNmQkJC+PLLL8mQIYMtthQRERERFzZq1ChiYmJo1KiRXaov2rZtC6i1ma2Fh4ezYMECALp16+bYYB6QMWNGOnToACRUz7gyc0uzF1980cGRuC7z3JkVK1YQGxtr+by5aqZ27dr4+vo6JDYRERERETObvtXNy8uLGjVqUKNGDVsuKyIiIiKpyOHDhy2zQcaMGWOXPdq0acPo0aNZsWIF9+/fx8fHxy77pDULFiwgMjKS4sWLU7lyZUeH85CePXvyxx9/MGvWLMaPH4+3t7ejQ0qy0NBQVq9eDailmTWqVatGlixZCA0NZfv27dSqVQvQvBkRERERcS42qZwREREREUmsDz74gPj4eNq3b0/VqlXtskelSpXw9/fn3r17rF271i57pEV//PEHkFA1Y8tWdLbQsGFD8ubNS2hoKEuWLHF0OMmyaNEiYmNjKVu2LM8995yjw3FZHh4eNG/eHMDS2jAmJsbyvUDJGRERERFxBkrOiIiIiEiK2bFjB/Pnz8fNzY3PPvvMbvuYTCbatGkDwMKFC+22T1oSEhJiqTzo0qWLg6N5lLu7u6XVmqu2Nps7dy6gqhlb+O/cme3btxMeHk62bNmoUKGCI0MTEREREQGS0NZsw4YNNt9cQxhFRERE0g7DMBgxYgQAPXr0oHTp0nbdr23btvz4448sXryYH374ATc3vS/JGrNnzyY+Pp7q1atTrFgxR4fzWD169OCLL75g2bJlXL9+nRw5cjg6pEQLCwsjKCgI0LwZW2jevDkmk4n9+/dz8eJFS2KxcePG+l4gIiIiIk4h0cmZ+vXr27R1gclkemg4o4iIiIi93Lt3j/fee48KFSrQp08fR4eTZv3www+sWbMGLy8vRo0aZff9GjRoQIYMGbh8+TK7d++mSpUqdt8zNXuwpZmzKl26NJUrV2bXrl3MnDmTt956y2Gx3Lp1i/fff5+aNWvSo0ePZx6/ZMkSoqOjKVGihN0Tl2lB9uzZqVatGtu2bWP58uWaNyMiIiIiTifJbxkyDMNmHyIiIiL2Fh0dzYsvvsikSZMYMGAA4eHhjg4pTdqxYwdvv/02AGPHjqVgwYJ239Pb29syd2LRokV23y81O3bsGLt27cLd3Z2OHTs6Opyn6tmzJ+DY1mbR0dF06NCBn376iZ49e/L+++8/8/efefPmAQlVM842z8dVtWrVCoCZM2eyY8cOQMkZEREREXEeia6cMUuXLh1t27alSZMmKgcXERERpxYfH0+vXr1YsWIFAFFRUSxbtoxOnTo5OLK05ebNm7z00kvExMTQoUMHS5ImJbRp04a5c+eycOFCRo8enWL7pjbmqpnmzZs7fauwzp07884777Bnzx4OHjxIQEBAiu5vGAavvfYa69evx8fHh/v37zN27FguX77ML7/8gqen5yPn3Lt3j+XLlwOaN2NLLVu25MMPP2TdunUAPPfccxQoUMCxQYmIiIiI/H+JTs5kzJiR8PBwIiMjmTNnDuvWraNLly50796d8uXL2zNGERERkSQzDIOBAwcya9YsPDw8qFu3LmvWrGHu3LlKzqSg+Ph4unXrxvnz5ylWrBhTp05N0aqAVq1a4e7uTnBwMGfOnKFw4cIptndqYRiGJTnTtWtXB0fzbNmzZ6dVq1YsWLCA3377jS+//DJF9x87dizTp0/H3d2dBQsWcOnSJV577TWmT5/OtWvX+Ouvv0ifPv1D5yxfvpzIyEiKFClCYGBgisabmgUGBpI7d25CQkIAVc2IiIiIiHNJdOnL1atXmTVrFi1btsTd3Z2QkBC++eYbKlasSPny5fnqq6+4fPmyPWMVERERSbRRo0bxww8/YDKZ+P333y03aJctW0ZERISDo0s7xowZw4oVK/Dx8WHevHn4+fml6P5Zs2aldu3agFqbJde2bds4ffo0GTJkoG3bto4OJ1HMrc1mzJiRonMu58yZw8iRIwGYOHEizZo1o0+fPixcuJB06dKxfPlyGjRowPXr1x86b+7cuUBC1YxamtmOm5sbLVu2tPy5adOmDoxGRERERORhiU7O+Pj40KlTJ5YsWcKlS5f45ptvqFChAoZhEBwczPDhwylYsCBNmjTh999/5969e/aMW0REROSJvvvuOz799FMAvv/+ezp37kzFihUpVKgQERER/PPPPw6O0PFiYmLYsGEDO3bs4Pz580RFRdl8j1WrVvHRRx8BMHnyZMqVK2fzPRLDnFAwz/SQpJkxYwYA7du3x9fX18HRJE7Lli3Jli0bV65cYdWqVSmy59atWy1Jobfffpv+/ftbHmvVqhVr1qwhW7Zs7Ny5k1q1anH69GkAIiMjWbp0KZAwb0Zsy5yccXd3p379+o4NRkRERETkAckaGpMjRw7eeustdu3axaFDhxg+fDj58uUjLi6O1atX06tXL3LlykX37t35559/njn8UkRERMRWZsyYwVtvvQXAp59+arlBajKZLLMcdJMexo8fT7169ahWrRoFCxbEx8eHrFmzUrp0aRo0aMDLL7/M22+/zRdffMGCBQuIi4tL0vqXLl2iS5cuGIZB37596dWrl32eSCK8+OKLuLu7s3HjRg4ePOiwOFJCfHw8S5cu5cqVKzZZLyYmhjlz5gDQrVs3m6yZEry8vHj55ZcB+O233+y+35kzZ2jbti1RUVG0bt2acePGPXJM9erV2bx5MwULFuTEiRPUrFmTvXv3EhQUxN27d8mfPz9VqlSxe6xpTatWrWjfvj0ffvghmTJlcnQ4IiIiIiIWyUrOPKhUqVKMHTuWc+fOsWbNGnr16kXGjBmJiIjgjz/+oGXLluTNm5fhw4fbIl4RERGRJ1qyZIklCfDWW2/xwQcfPPS4OTmzePFiu1SKuBJzgipr1qyWAeWhoaEcOXKEdevWMXv2bCZMmMB7771H+/btKV++PIsXL07Um25iYmLo1KkT169fp3z58kycONGuz+VZ8ufPT7t27QCYNGmSQ2Oxt/nz5/P8889TpkwZFi9ebPV6y5Yt4+bNm+TOnZuGDRvaIMKU06NHDyDha3Lnzh277XP79m2ef/55rl+/ToUKFZg5cybu7u6PPbZEiRJs2bKFcuXKcfXqVerVq8fnn38OqKWZvfj4+PD333/z8ccfOzoUEREREZGHWJ2ceVD9+vWZOnUqISEhzJw5kxYtWljm0zj6l3IRERFJ3TZu3MhLL71EXFwc3bt3Z/z48Y/c6KxWrRr+/v6EhYWlWKsjZ3Tjxg127doFQHBwMFFRUdy8eZNDhw6xZs0aZs6cyfjx4xk2bBjdu3cnS5YsHDp0iDZt2lCvXj22bt361PXfe+89Nm/eTKZMmZg7dy7p0qVLiaf1VAMHDgTg999/JzQ01MHR2M/KlSuBhERbmzZtGDJkCNHR0UleJyYmhnHjxlmqTzp37oyHh4dNY7W3ypUrU6pUKe7fv2+Z6WJrMTExdOzYkcOHD+Pv78/ixYvJkCHDU8/x9/dnw4YN1K9fn/DwcHbu3An8mzwWEREREZG0wabJGTOTyYSbmxsmk0nv/hIRERG727dvH88//zz379+ndevWTJkyBTe3R3/McXNzo0OHDkDabm22atUqDMOgbNmy+Pv7YzKZntjS7LfffuP06dMMHz4cHx8fNm7cSM2aNXnhhRc4duzYI2v//fffjB8/HoDp06dTrFixlH56j1W3bl3Kli1LREQEU6dOdXQ4drNp0yYA6tWrByS0r6tTpw5nzpxJ9Bo7d+6kSpUqDBs2jMjISBo0aMCHH35ol3jtyWQyWWbATJ8+3ebrG4bBm2++ycqVK/H19WXJkiXkzZs3Uef6+fmxYsUKXnrpJQDy5s1LzZo1bR6jiIiIiIg4L5smZ9avX88rr7xCrly5ePnll1m+fDkxMTHkyZOHQYMG2XIrEREREQBOnDhBs2bNCAsLo06dOsyZM8fSputxzAO3Fy5cSExMTEqF6VT++ecfAJo1a5ao4zNnzsz//vc/Tpw4QZ8+fXBzc+Pvv/+mTJkyvP7665b5JidOnKB3794ADB061NJKzBmYTCbLz6Pff/99kmfouIJbt25x6NAhAP766y8WLFhA5syZ2bFjBxUqVGD+/PlPPT88PJy33nqLatWqsX//frJly8a0adNYvXo1WbNmTYmnYHNdu3bFZDKxceNGTp8+bdO1x48fz88//4zJZGLWrFlUqFAhSed7e3sze/Zspk+fzqJFix6bUBYRERERkdTL6t8Ajhw5wvvvv0/BggVp2LAhv/76K2FhYaRLl44uXbrwzz//cOHCBf73v//ZIl4RERERi0uXLtGkSROuXbtGYGAgixcvfmYLrdq1a5MzZ05u3brFunXrUiZQJ2IYBkFBQUDikzNm+fLlY8qUKRw4cIA2bdoQFxfHTz/9RLFixfjggw948cUXCQsLo3bt2owZM8Ye4VulS5cuZMmShTNnzrBs2TJHh2NzmzdvBhLmmuTIkYO2bduyb98+qlevzp07d+jQoQODBg167LylRYsWUbp0ab777jsMw6B79+4cOXKEnj17unQlfL58+WjcuDGQ0NLOVhYsWMC7774LJCRp2rRpk6x13Nzc6NGjBxUrVrRZbCIiIiIi4hqSlZy5du0a3377LZUrVyYgIIAvvviCCxcuYDKZaNiwIdOnT+fq1av8/vvvNGnSRO8CExEREZu7desWzZo149y5cxQrVowVK1bg5+f3zPPc3d0tFR1psbXZwYMHuXz5MunSpaN27drJWqNMmTIsXLiQDRs2UKNGDSIiIvj88885cOAAOXPmfGb1kqP4+vryyiuvAKTKeYjmlmZ16tSxfK5gwYJs2LCBoUOHAgnPu1atWpw6dQqAy5cv8+KLL9K2bVsuXrxIkSJFCAoK4rfffiNHjhwp/yTsoEePHkBCa7P4+Hir1ztx4gRdunTBMAz69+/PW2+9ZfWaIiIiIiKS9iQ6a3L//n1mz55Nq1atyJcvH++88w579uzBMAzKlCnDF198wfnz51m5ciXdu3cnffr09oxbRERE0rC7d+/SsmVLDh06hL+/PytXriRXrlyJPt88eHv+/Pmpsr3V05hbmtWvXx8fHx+r1qpTpw6bN2/m77//pkSJEvj6+jJr1iz8/f1tEapdDBgwADc3N1auXMmRI0ccHY5Nbdy4EeCRpJunpyfjxo1jyZIlZMuWjd27d1OxYkXeffddSpUqxbx583B3d+e9994jODiYJk2aOCJ8u2nfvj2ZMmXizJkzrF692ur1xo8fT2RkJPXq1eO7775z6coiERERERFxnEQnZ3LmzEnXrl1ZsWIFsbGx5MqVi7fffps9e/Zw4MAB3n33Xaf+RVxERERSh6ioKF544QW2b99OlixZCAoKolChQklao0GDBmTJkoVr165Zqg3SiqTOm3kWk8lE+/btOXLkCNevX6dhw4Y2WddeChUqROvWrQGYNGmSg6OxncjISHbt2gU8mpwxa9WqFfv27aNWrVqEhYXx1VdfERYWRtWqVdmzZw9jx47F19c3JcNOEenTp7dUz/zwww9WrRUaGspvv/0GwKhRo/Dw8LA6PhERERERSZsS/dvE3bt3MZlM+Pj40KZNG5o2bYq7uzsHDhzgwIEDydrc/EuSiIiISGLExcXRo0cPgoKCSJ8+PcuWLaNMmTJJXsfT05O2bdsybdo05s2bR7169ewQrfOJiIiwVFfYKjljZjKZXObG/qBBg1i4cCHTp09nzJgxiWqH5+x27txJTEwMefLkoUiRIk88Ll++fKxbt45Ro0bx559/MmjQIPr374+7u3sKRpvy+vfvz6RJk1i0aBEXLlwgf/78yVrn119/JSIigoCAgDTzfUNEREREROwjyW/1un//Pn/++Sd//vmnVRubTCYlZ0RERCTRDMPgjTfe4M8//8TT05O///6b6tWrJ3u9F154gWnTpvH3338zYcKENDEjb/369URFRVGgQAFKlCjh6HAcpkGDBpQpU4ZDhw4xbdq0VDEz5MGWZs9qs+Xh4cFnn33GZ599lhKhOYXSpUtTv3591q1bxy+//MKnn36a5DXi4uL4/vvvgYQEn9qZiYiIiIiINZJ0F8IwDJt+iIiIiCTWBx98wE8//YTJZGLGjBk0bdrUqvWaNGlCxowZuXTpEjt27LBRlM7twZZmafnGsslk4s033wQSWpvZYki8o5nb8z2ppZkkVM8A/PLLL8TExCT5/OXLl3P69GmyZMlC165dbR2eiIiIiIikMYmunFm7dq094xARERF5ovHjxzNmzBgAJk+eTMeOHa1e09vbm9atWzNz5kzmzp1rVRWOq7D1vBlX1q1bN9577z1OnjzJihUraNmypaNDSra4uDi2bNkCQJ06dRwcjfNq164duXPnJiQkhAULFvDSSy8l6fyJEycC0LdvX5dp4SciIiIiIs4r0ckZ9VQWERERR5g+fTpDhgwB4PPPP6dfv342W/uFF15g5syZzJs3j3HjxqXqapLz589z9OhR3N3dadSokaPDcbgMGTLQp08fvvnmGyZOnOjSyZng4GDCwsLImDEj5cqVc3Q4TsvLy4tXX32V0aNH88MPPyQpOXP06FGCgoIwmUwMGDDAjlGKiIiIiEhakfqbq4uIiIjLWrhwIX379gXgnXfeYcSIETZdv3nz5vj6+nL27Fn27t1r07Wdjblqplq1amTOnNmxwTiJN954A5PJxIoVKzh+/Lijw0k2c0uzmjVr4u7u7uBonNurr76Km5sb69at4/Dhw4k+b9KkSQC0bt2awoUL2ys8ERERERFJQ5ScEREREae0bt06OnXqRFxcHL169eKrr76yeWWLr68vLVq0AGDevHk2XdvZqKXZo4oWLUqrVq0ALIPeXdHGjRsBzZtJjPz589OmTRsAfvzxx0SdExYWxvTp0wEYOHCg3WITEREREZG0RckZERERcTqXLl2iTZs2REVF0bZtW3755Re7tRx78cUXAZg7dy6GYdhlD0eLjY1l1apVgJIz/2W+2f7rr78SHh7u4GiSzjAMS+WMkjOJY25LNn36dO7evfvM46dNm8bdu3cpVaqUWgKKiIiIiIjNKDkjIiIiTmfOnDmEh4dToUIFZs+ejYdHosfkJVmrVq3w9vbm+PHjHDp0yG77ONKOHTu4c+cOWbNmpXLlyo4Ox6k0btyYEiVKEB4ebqmOcCVnzpzh8uXLeHp6UrVqVUeH4xIaNWpEsWLFCAsLY+bMmU89Nj4+nokTJwIJibzUPJdKRERERERSlpIzIiIi4nQWLlwIQK9evfDx8bHrXhkzZqRp06ZA6m1tZm5p1rhxY80k+Q83NzfefPNNIGGuSHx8vIMjShpz1UylSpXw9fV1cDSuwc3Njf79+wMwefLkp1bM/fPPP5w8eRI/Pz+6d++eUiGKiIiIiEgaoOSMiIiIOJWbN29abjibZ0PY2wsvvACk/uSMWpo9Xs+ePcmYMSPHjh2ztH9zFeZrpU6dOg6OxLWYE7/79u1j27ZtTzzOXDXTu3dvMmTIkFLhiYiIiIhIGqDkjIiIiDiVpUuXEh8fT7ly5ShUqFCK7NmmTRs8PDwIDg7m+PHjKbJnSrl16xY7d+4EsFQIycMyZsxI7969gX9vxruKjRs3Apo3k1RZs2alc+fOAPzwww+PPebEiRMsX74ck8nEG2+8kZLhiYiIiIhIGqDkjIiIiDiVRYsWAdC2bdsU2zNLliyWQd+prXpm1apVxMfHU6ZMGfLly+focJyW+eb70qVLOXXqlIOjSZzr169z9OhRAGrVquXgaFzPgAEDAPjzzz+5cePGI49///33ALRo0YJixYqlaGwiIiIiIpL6KTkjIiIiTuP+/fusWLECSLmWZmaptbWZWpolznPPPUfz5s0xDMNyU97Zbd68GYDSpUuTLVs2B0fjeqpUqULlypWJjo5m6tSpDz0WHh5u+dygQYMcEZ6IiIiIiKRySs6IiIiI01i7di337t3D39+fSpUqpeje7dq1w83Njd27d3P27NkU3dteDMNQciYJBg4cCMBvv/1GTEyMg6N5NvO8GbU0S77+/fsD8OOPPxIfH2/5/G+//UZ4eDjPPfccTZo0cVR4IiIiIiKSiik5IyIiIk5j4cKFQELVjMlkStG9c+TIQb169YCENkepweHDh7l06RI+Pj4aGJ8ITZs2JWfOnNy8eZNVq1Y5OpxnMidn9HebfJ07dyZz5sycOXPGksg0DINJkyYB8Oabb+Lmpl+ZRERERETE9vSbhoiIiDiF+Ph4Fi9eDKTsvJkHvfzyywB8+eWX3Lx50yEx2JL5ZnO9evVIly6dg6Nxfh4eHnTs2BGAWbNmOTiap7t37x67d+8GVDljDV9fX3r37g3ADz/8ACTMaTp69CgZMmSgZ8+ejgxPRERERERSMSVnRERExCns3r2by5cvkyFDBho0aOCQGHr16kVAQAA3b95k+PDhDonBltTSLOk6d+4MwIIFC4iMjHRwNE+2Y8cOYmNjyZs3LwULFnR0OC7t9ddfB2Dp0qWcPXuW7777Dkj4fpApUyZHhiYiIiIiIqmYkjMiIiLiFBYtWgRA8+bN8fb2dkgMnp6e/PjjjwBMmTLFMnDdFUVGRrJhwwZAyZmkqFGjBgUKFCA8PJxly5Y5Opwn2rhxI5DQ0iylWwCmNs899xyNGzfGMAzee+89li5dCiS0NBMREREREbEXJWdERETEKTw4b8aRatWqRd++fYGEd9S7wmD4x9mwYQP3798nX758lCpVytHhuAw3Nzc6deoEwOzZs1Nkz2vXrhEUFJSkSh3zvBm1NLONAQMGADBnzhwMw6BZs2aUKFHCwVGJiIiIiEhq5pLJmbFjx1KlShUyZsxIzpw5adeuHceOHXvoGMMwGDVqFP7+/qRLl4769etz6NChh46Jiopi4MCBZM+enfTp09OmTRsuXryYkk9FREREgDNnzhAcHIy7uzutWrVydDh88cUXZMuWjYMHDzJhwgRHh5MsD7Y0U2VF0phnDy1ZsoSwsDCbrx8ZGcnKlSt59913CQwMJFeuXDRr1ozu3bsn6vzY2Fi2bt0KJFTOiPVat25N3rx5LX8eOHCgA6MREREREZG0wCWTM+vXr+eNN95g27ZtrFy5ktjYWJo2bcq9e/csx3z55ZeMHz+eSZMmsXPnTnLnzk2TJk0IDw+3HDN48GDmz5/P7Nmz2bRpE3fv3uX5558nLi7OEU9LREQkzTK3NKtduzZZs2Z1cDSQLVs2vvrqKwBGjRrFuXPnHBxR0mneTPIFBgZSokQJ7t+/b6noskZ8fDz79u3jyy+/pEmTJmTJkoWmTZvy1VdfsX//fgBMJhPz5s2zXAtPs3//fu7evYufnx9lypSxOj4BDw8PXnvtNQCKFi1KixYtHByRiIiIiIikdi6ZnFmxYgW9evWiTJkylC9fnl9//ZXz58+ze/duIKFqZsKECYwcOZIOHToQEBDA9OnTiYiIYObMmQDcuXOHKVOm8PXXX9O4cWMqVKjAjBkzCA4OZtWqVY58eiIiImmO+YZ027ZtHRzJv3r27EmdOnWIiIjgrbfecnQ4SXLhwgUOHz6Mm5sbjRs3dnQ4LsdkMtG5c2fAutZm165do0+fPvTu3ZuqVasyfPhwVq1aRVRUFHnz5qV3797MnDmTq1evMmzYMCBhzsndu3efuq65pVnNmjVxd3dPdnzysCFDhjBs2DBmzJiBm5tL/pokIiIiIiIuxMPRAdjCnTt3ACzvtD1z5gwhISE0bdrUcoy3tzf16tVjy5Yt9OvXj927dxMTE/PQMf7+/gQEBLBly5bHvss0KiqKqKgoy5/NbS5iYmJcth+9CGB5/ep1LOL8UuP1Ghoayvr16wFo0aKFUz237777jipVqrBw4ULmzZvn8Hk4ibV8+XIAqlSpQoYMGZzqa+oqXnjhBT755BOCgoIICQkhW7ZsSV7jtddes1TepE+fnnr16tGoUSMaN25MyZIlH2o3N2LECP7880/OnDnDBx98wLhx4564rvl6qVmzpv5ubcjLy4vPPvsMSF3fYyXxUuO/sSKpma5ZEdeh61XSmsS+1l0+OWMYBu+88w61a9cmICAAgJCQEABy5cr10LG5cuWytCUJCQnBy8uLLFmyPHKM+fz/Gjt2LJ988skjnw8KCsLX19fq5yLiaCtXrnR0CCJ2s3HjRhYsWEB8fPwzj/X19eWNN97A398/BSJLntR0va5fv564uDgKFCjAsWPHHpkj52ht27Zl3rx59O/fn9jYWHx8fBwd0jNNnz4dgEKFCrFs2TIHR+O6ChcuzJkzZ/j000+T3B7u+PHjLFy4EJPJxIgRI6hQoQKenp5AwhuJzpw588g53bt359NPP2XixIkUKFCAokWLPnKMYRisXbsWADc3N/39ithBavo3ViQt0DUr4jp0vUpaERERkajjXD458+abb3LgwAFLe4cH/Xf4rWEYzxyI+7RjRowYwTvvvGP5c1hYWxnkbAAASTJJREFUGPnz56dp06ZkypQpGdGLOIeYmBhWrlxJkyZNLDeORFKTW7du0bNnT0ulZWL8/PPPbNy4EW9vbztGlnSp8Xr9448/AOjcuTMtW7Z0cDSPql+/Prt37+bs2bPs3LmTsWPHOjqkp4qLi6N3794ADBgwgBo1ajg4Itd1+PBh3n//fQ4fPsy3336bpHO/++47ALp06ULVqlUTdc22bNmSo0eP8ueff/LHH3+wefPmR9qWnTx5ktu3b+Pl5cXAgQNdIlko4ipS47+xIqmZrlkR16HrVdIac8etZ3Hp5MzAgQNZtGgRGzZsIF++fJbP586dG0iojsmTJ4/l89euXbNU0+TOnZvo6GhCQ0Mfqp65du0aNWvWfOx+3t7ej71J5+npqW8skirotSyp1TfffMOdO3coU6YMX3/99VOPjY6Opnfv3uzbt49Ro0ZZhsI7m9RyvUZHR1sG13fo0MEpn5Ofnx8TJ06kdevWfPvtt/Ts2ZOyZcs6JBbDMLh+/fpTK8D27dtHaGgofn5+1KxZEw8Pl/5xz6G6dOnC+++/z4YNG7h+/Xqiq+lWrVrFmjVr8PT05OOPP+bw4cOJvma//fZbgoKC2LNnDz///DODBg166PFt27YBCS3rMmbMmPQnJSLPlFr+jRVJK3TNirgOXa+SViT2de6Sv60bhsHAgQOZP38+69ato3Dhwg89XrhwYXLnzs3KlSupUKECkHDzZ/369XzxxRcAVKpUCU9PT1auXEnHjh0BuHLlCgcPHuTLL79M2SckIiJ2c+XKFcs72MeMGZOo1kRTp06lbdu2fP311zRr1owmTZrYO8w0a/369YSFhZE7d26qVKni6HCe6Pnnn6d9+/bMnz+f/v37s2HDBrsPDA8LC+PgwYMcOHCAAwcOsH//foKDgwkPD0/U+Y0bN1ZixkoFCxakZs2abNmyhT///JPBgwc/8xzDMHj//fcBeP311ylUqBCHDx9O9J65c+fmiy++oF+/fowcOZL27duTP39+y+PmavHatWsn7cmIiIiIiIiIU7HvXQU7eeONN5gxYwYzZ84kY8aMhISEEBISQmRkJJDQzmzw4MGMGTOG+fPnc/DgQXr16oWvry9dunQBEt4F27dvX4YMGcLq1avZu3cv3bp1o2zZsjRu3NiRT09ERGxo9OjRREZGUqNGDVq3bp2oc9q0acPrr78OQM+ePblx44Y9Q0zTzMPSW7dubfdkh7W+/fZb0qdPz+bNm5k2bZpN146Li2P+/Pl8/PHHtGvXjiJFiuDn50etWrXo378/kydPZsuWLZbEjMlkeupHxowZee2112waY1r18ssvAzBr1qxEHT9//nx27txJ+vTpGTlyZLL2fOWVV6hZsyZ37959pHJm48aNANSpUydZa4uIiIiIiIhzcO67IE8wefJk7ty5Q/369cmTJ4/lY86cOZZjhg0bxuDBgxkwYACVK1fm0qVLBAUFPdT+4ZtvvqFdu3Z07NiRWrVq4evry+LFix/p7S0iIq7p1KlT/PLLLwCMHTv2mXPHHvT1119TqlQprly5Qt++fTEMw15hOr07d+6wdu3ap7bSSg7DMFi0aBGQkBBzdvnz5+fTTz8F4N1337Vp0q5Xr1506NCBTz/9lIULF1qGxefNm5cWLVrw3nvvMXPmTA4ePEh0dDTx8fFP/QgLC6Np06Y2iy8te+mll3Bzc2PHjh2cPn36qcfGxcXxwQcfAPD2229b2ukmlZubGz/99BMeHh4sWLCABQsWAHD16lVOnDiByWR6YhteERERERERcQ0umZwxDOOxH7169bIcYzKZGDVqFFeuXOH+/fusX7+egICAh9bx8fFh4sSJ3Lx5k4iICBYvXvxQ2wgREXFtH3/8MbGxsTRr1ox69eol6VxfX19mzpyJl5cXixYt4qeffrJTlM4tNDSUatWq0bBhQwYNGmTTJNW+ffu4cOECvr6+NGrUyGbr2tOgQYMoV64ct27dYtiwYTZZc9++fcyYMQOTyUTv3r359ttvWbt2LTdu3ODixYssW7aMsWPH8vLLL1OmTBn1aE5huXLlomHDhgDMnj37qcf+/vvvHDlyhKxZszJ06FCr9g0ICODdd98FEuYshoeHs3nzZstjD85MFBEREREREdfjkskZERGRZzlw4AAzZ84EEmbNJEdgYCBjx44F4J133uHIkSM2i88VREdH88ILL3Ds2DEAvv/+e8vsNlswV800bdqUdOnS2Wxde/Lw8ODHH38E4Ndff7W0mLLGJ598AkCnTp2YOnUqgwYNon79+mTLls3qtcU2OnfuDDw9ORMVFcXHH38MwHvvvYefn5/V+3744YcUKVKEixcv8uGHH1peb5o3IyIiIiIi4vqUnBERkVRp5MiRGIbBSy+9RMWKFZO9zuDBg2natCmRkZG8/PLLREVF2TBK52UYBv3792ft2rVkyJCBt956C4ARI0bw22+/2WQP87yZtm3b2mS9lFKjRg3LPJeBAwcSFxeX7LX27t3LggULMJlMfPTRR7YKUWysQ4cOeHp6EhwczKFDhx57zI8//sj58+fx9/fnzTfftMm+6dKlY/LkyQBMnDjR0sJXyRkRERERERHXp+SMiIikOps3b2bJkiW4u7szevRoq9Zyc3Nj2rRpZM+enf379/P+++/bKErn9sUXXzB16lTc3NyYM2cOEyZMsLRp6tu3LytWrLBq/QsXLrB3717c3Nxo1aqVLUJOUWPGjCFz5szs37+fadOmJXudUaNGAQlD50uVKmWb4MTmsmTJQosWLQCYNWvWI4+Hh4fz+eefAwntFG1ZCda0aVO6dOlCfHw8V65cAaBOnTo2W19EREREREQcQ8kZERFJVQzDsCRQevfuTYkSJaxeM0+ePPz6668AjB8/nqCgIKvXdGZz585lxIgRAHz77be0bNkSSEjYdO3aldjYWF588UV27dqV7D3MLc1q1qxJjhw5rA86hWXLls1S6fLBBx8QHh6e5DV2797NokWLcHNzU9WMC3iwtdl/Zy9NmDCB69evU6xYMXr37m3zvcePH0/mzJkBKFCggGYkioiIiIiIpAJKzoiISKryzz//sGHDBry9vS3zH2zh+eefZ8CAAQD07NmT69ev22xtZ7J9+3a6d+8OJLTserA9k5ubG1OnTv1/7d13eM7X/8fx150pIfaMIMRoqa1V1VbUboKW1ia2lKrZ2sSM2kVr71U1vzVqtUaNora0VSOoGXtFZH1+f/jm/jVfm3vkTp6P63Jdcn/O55z3ceWI6/NyPkeVK1fWvXv3FBAQoJMnT77UOAnhTK1atV69aDvp0KGD8ufPr0uXLr3UWTwJu2YaN25skRAR1lWrVi15enrq5MmTiYLJa9euadSoUZKkwYMHy9XV1eJjZ8uWTePGjZMkffTRRxbvHwAAAABge4QzAIBkIz4+3rxrpkOHDvLx8bFo/6NGjVLhwoV16dIltWrV6pH/Pe/oTp8+rVq1aikqKkoBAQEaO3bsI23c3Ny0bNkylShRQhEREapWrZoiIiJeaJxbt25p8+bNkhzvvJl/c3Nz08iRIyVJo0eP1tmzZ5/73r1795pfvdevXz9rlQgLSp06tWrWrCnp4e6ZBMOHD9ft27dVokQJ1atXz2rjBwUFKTw83BwEAQAAAAAcG+EMACDZWLp0qQ4cOCAvLy/za7ksycPDQ4sWLZKbm5tWrVplPqg7Obh165YCAwMVERGhYsWKadGiRXJ2dn5s27Rp0+qnn36Sr6+vTp48qYCAAN29e/e5x1q/fr1iYmJUqFAhFSxY0FJTsIvatWurQoUKioqKeqHvuYRdM02aNFGBAgWsVB0srWHDhpKkxYsXKz4+XufOndOECRMkSUOHDpWTk3X/ae3r62uVnTkAAAAAANsjnAEAJAsxMTHq27evJKl79+7KnDmzVcYpVqyY+RVW3bp107lz56wyji3Fxsaqfv36CgsLU44cObR69Wp5eXk99Z7s2bNr/fr1ypQpk37//XfVq1dPMTExzxzr5s2b5gPVHXnXTAKTyaQxY8bIZDJp4cKF2r179zPv2b17t9auXcuuGQdUvXp1pUuXTufPn9f27ds1aNAgPXjwQO+9955q1Khh7/IAAAAAAA6EcAYAkCzMnj1bx48fV5YsWdSlSxerjvXFF1/o3XffVVRUlEJDQ606lrUZhqGOHTtq/fr18vT01KpVq577sPGCBQtqzZo18vDw0E8//aS2bduaX/UWGxurP//8U4sXL1afPn1Us2ZN5cmTRxkyZNDKlSslOfZ5M/9WqlQpBQUFSZK6dOnyzNfdJeyaadasmfz8/KxdHizI3d1dderUkfRwp8zMmTMlSaGhoTKZTPYsDQAAAADgYAhnAAAO7/79+xo4cKAkqXfv3s/c9fGqnJycNHjwYEnS9OnT9c8//1h1PGsaN26cJk+eLJPJpAULFqh06dIvdH/ZsmX1ww8/yNnZWbNnz1bVqlVVpkwZeXl5qXDhwmrQoIGGDRum1atXm89kyZMnjz777DOVK1fOGlOyi6FDhyp16tTatWuXfvjhhye227Vrl9atWycXFxfzTi84loRXm23YsEFxcXEKCAhQ+fLl7VwVAAAAAMDREM4AABzed999p/PnzytXrlwKDg62yZj+/v7y9/dXdHS0hg0bZpMxLW3FihXq1q2bJGnkyJH66KOPXqqfwMBATZ48WZK0adMm7du3T1FRUUqdOrXefvtttW3bVhMnTtS2bdt048YNnT59Wt99953Vz+ewJW9vb/Xo0UOS1KNHD0VFRT223YABAyQ9PNw9X758NqsPllOxYkVlzZrV/PXQoUPtWA0AAAAAwFG52LsAAABexe3bt82vFhs4cKBSpUpls7EHDhyoChUqaMaMGerZs6fy5Mljs7Ff1ZQpU9ShQwcZhqG2bduqa9eur9Rf69at5eXlpb/++ktFixZV8eLFlTdv3mQVwDxLt27dNHXqVJ05c0bjxo1Tz549E13fsWOHNm7cyK4ZB+fi4qKGDRvqm2++UaNGjVS8eHF7lwQAAAAAcEAp54kJAMCqIiMj1ahRI40dO9ZmY965c0dffPGFrl27ptdee01Nmza12diS9P7776tSpUqKiYlxmP89Hx8frx49eig4OFhxcXEKCgrSxIkTLXJeRv369TVgwADVqVNHfn5+KSqYkSRPT09zUDhs2DBdvnw50fWEXTMtWrSQr6+vrcuDBQ0ZMkQzZszQlClT7F0KAAAAAMBBpaynJgAAq5k7d64WLVqkrl27au3atVYdKzY2VlOnTlWBAgU0Z84cSQ8P5HZxsf2G0ISzbmbNmqXw8HCbj/8ioqKi1KBBA40YMUKSNGjQIM2aNUuurq52riz5aNSokcqUKaM7d+6oX79+5s9//fVX/fzzz3J1dVWfPn3sWCEsIU2aNGrZsqXSpElj71IAAAAAAA6KcAYAYBHTpk0z/75FixaP7BqwlPXr16tkyZJq166dLl++rPz582vlypUvfV7KqypfvryqVKmi2NjYJL175urVq6pUqZKWLFkiV1dXzZ07V/369bPIjhn8PycnJ/PusRkzZujw4cOS/n/XTMuWLR3q9XcAAAAAAMA6CGcAAK9s37592r9/v9zc3FS4cGFFRESoRYsWMgzDYmMcPXpU1atXV/Xq1XX06FFlzJhR48aNU1hYmGrXrm2xcV5Gwu6Z2bNn69SpU3at5XGOHz+ucuXKaefOnUqfPr02bNhg81fApSTvvvuuPv30U8XHx6tbt27aunWrNm/eLFdXV/Xu3dve5QEAAAAAgCSAcAYA8MoSds3UrVtXP/zwg1KlSqWffvpJEyZMeOW+L126pLZt26p48eJav369XF1d1bVrV504cUKdOnWSm5vbK4/xqsqVK6dq1aopLi5OQ4YMsXc5iezYsUPlypXTiRMn5Ovrq507d8rf39/eZSV7w4cPl5ubmzZt2qQmTZpIklq3bq3cuXPbuTIAAAAAAJAUEM4AAF7J3bt3tXDhQklSmzZtVKRIEY0aNUqS9NVXX5lf6/SiHjx4oKFDh6pAgQKaNm2a4uPj9cknn+jPP//U6NGjlSFDBovNwRISds/MnTtXJ06csHM1Dy1evFiVKlXStWvX9Oabb+q3337T66+/bu+yUoR8+fKpc+fOkqRz587Jzc2NXTMAAAAAAMCMcAYA8EoWL16sO3fuKH/+/OYdGe3bt1dgYKAePHighg0b6v79+y/U58WLF+Xv76++ffvq7t27Klu2rLZv364lS5bIz8/PCrN4dWXLllWNGjWSxO6ZqKgoDRkyRA0aNNCDBw9Uu3ZtbdmyRdmyZbNrXSlN7969lSVLFkkPg0sfHx87VwQAAAAAAJIKF3sXAABJzaZNm7RmzZrnaluwYEG1bdtWzs7OVq4q6Up4pVmbNm3Mh8ubTCbNnDlTxYoV0x9//KEvv/xSEydOfK7+du/erTp16ujChQtKnz69vv32WzVs2NAhDq4PCQnRTz/9pHnz5qlPnz4qUKCATce/evWqJk2apIkTJyoiIkKS1KlTJ40ePTpFf4/aS7p06bRo0SItWrTIvLMKAAAAAABAIpwBgEQuXbqk2rVrKzIy8rnvOXz4sL777juHCA8s7fDhw9q9e7dcXFwUFBSU6FqWLFk0Z84cVatWTd9++62qV6+uwMDAp/Y3Z84ctW3bVtHR0SpcuLD+85//KH/+/NacgkW99dZbCggI0Jo1azR48GDNnTvXJuMeP35cY8eO1ezZs827lHLlyqUBAwaoVatWNqkBj1epUiVVqlTJ3mUAAAAAAIAkhnAGAP5lyJAhioyMVOHChVW7du2ntr17964mTpyoyZMnK2fOnOrbt6+Nqkw6EnbNfPTRR499ZVbVqlXVpUsXjR07Vi1atNCRI0eUPXv2R9rFxsbqyy+/1Lhx4yRJtWvX1rx58+Tl5WXV+q0hJCREa9as0YIFC9SnTx8VKlTIKuMYhqHt27dr1KhR+vHHH2UYhiSpVKlS6t69uz755BO5urpaZWwAAAAAAAC8GsIZAPiv8PBwTZ06VZI0ceJEVaxY8Zn3FCpUSJ9//rn69esnb29vtWzZ0tplJhmRkZGaP3++pIevNHuS0NBQ/fLLLzp06JCaN2+utWvXysnp/488u3btmurXr6+ff/5ZktS/f38NGDAgURtHUqZMGdWsWVOrVq3S4MGDzX9GlhIbG6vt27dr6NCh2rt3r/nzwMBAdevWTRUqVEiRu7gAAAAAAAAciWM++QIAKxgwYIBiYmJUpUqV5wpmJKlDhw7q1auXJKlt27bPfVZNcrB06VLdvHlTvr6+qly58hPbubu7a+HChUqVKpXWr1+v8ePHm68dPXpUb731ln7++WelTp1aS5cu1cCBAx02mEkQEhIiSVq0aJH+/PNPi/V7/fp1vfnmmxo1apT27t0rd3d3tWnTRn/88YdWrVolf39/ghkAAAAAAAAH4NhPvwDAQo4cOWLe4TBs2LAXunfo0KEKCgpSXFyc6tWrpz179lijxCQn4ZVmrVu3fmaYUrhwYY0ZM0aS1KNHDx06dEjLly/X22+/rVOnTilv3rzatWuX6tata/W6baFUqVL66KOPFB8fr0GDBlms3yFDhigsLExeXl7q06ePzp49q6lTp+r111+32BgAAAAAAACwPsIZAJDUt29fGYahunXrqkyZMi90r8lk0rRp01StWjVFRkYqICBAx48ft1KlScOff/6p7du3y9nZWS1atHiue4KDg1WrVi1FR0erSpUqqlu3ru7du6cPPvhAe/fuVdGiRa1ctW0l7J5ZvHixwsLCXrm/kydPauLEiZKkrl27asCAAcqaNesr9wsAAAAAAADbI5wBkOLt2rVLP/74o5ycnDRkyJCX6sPV1VVLly5V6dKldfXqVVWrVk2XL1+2cKVJR8KumcDAQHl7ez/XPSaTSTNmzFCOHDl05coVSVKnTp20fv16ZcqUyWq12kvx4sVVp04dGYZhkd0zvXv3VkxMjKpWraqSJUtaoEIAAAAAAADYC+EMgBTNMAz17t1bktS8eXO99tprL91XmjRptGbNGvn5+Sk8PFwffvih7ty5Y6lSk4yoqCjNnTtXktSmTZsXujdz5sxasmSJ3n//fc2ePVvjxo2Ti4uLNcpMEgYMGCBJWrJkiXbu3PnS/ezatUs//PCDnJycFBoaaqnyAAAAAAAAYCeEMwBStI0bN2rLli1yc3MzP0h/FdmyZdO6deuUJUsW7d+/X5988omio6MtUGnSsWLFCl27dk0+Pj6qXr36C99fvnx5bd26VUFBQVaoLmkpVqyYmjdvLsMw1Lx5c0VGRr5wH4ZhqHv37pKkFi1aJLvXvwEAAAAAAKREhDMAUqx/75pp3769cufObZF+8+fPrzVr1sjT01MbNmxQ69atZRiGRfpOChJeadaqVSs5OzvbuZqkb8yYMfL29tbx48fVt2/fF75/+fLl2rlzpzw9PS3yejQAAAAAAADYH+EMgBRr2bJl2rdvn9KkSWMOaSzlzTff1NKlS+Xs7Kx58+apX79+Fu3fXo4fP67NmzfLZDKpZcuW9i7HIWTIkMEcaI0bN07bt29/7nujo6PVo0cPSdKXX3753Of7AAAAAAAAIGkjnAGQIsXGxpp3MXTt2lVZsmSx+Bg1atTQjBkzJEnDhw/X2bNnLT6GrU2fPl3Sw7lZaqdRSvDhhx+qRYsWMgxDLVq00L17957rvkmTJunkyZPKnj27+dVmAAAAAAAAcHyEMwBSpDlz5ujYsWPKlCmTunXrZrVxgoKC9MEHHyguLk4TJkyw2ji2EB0drdmzZ0uS2rRpY99iHNCYMWPk4+OjEydOPNdOrRs3bphfYzZo0CClSZPG2iUCAAAAAADARghnAKQ4UVFRCgkJkST17t1badOmtep4Xbt2lfTwrJY7d+5YdSxr+vHHHxUREaEcOXIoICDA3uU4nPTp05t3Ho0fP15bt259avthw4bp+vXrKlKkiFq0aGGLEgEAAAAAAGAjhDMAUpxJkybp3Llz8vHxUfv27a0+Xo0aNVSoUCHdunVLs2bNsvp41pJwbkqLFi3k6upq52ocU7Vq1dS6dWtJUsuWLXX37t3HtgsPD9f48eMlSSNHjpSLi4vNagQAAAAAAID1Ec4ASFHu3LmjYcOGSZIGDBigVKlSWX1MJycnde7cWdLDA+Hj4uKsPqalhYeHa+PGjZKkVq1a2bkaxzZ69GjlypVLp06dUs+ePR/bpnfv3oqOjlblypVVvXp1G1cIAAAAAAAAayOcAZCijBkzRlevXlXBggXVvHlzm43brFkzZcyYUeHh4frxxx9tNq6lzJgxQ4ZhqEqVKsqXL5+9y3FoadOm1cyZMyVJ3377rX755ZdE13fv3q3vv/9eJpNJI0eOlMlkskeZAAAAAAAAsCLCGQApxpUrVzR69GhJ0uDBg236qihPT08FBwdLehgQOZLIyEjz69jatGlj52qSh8qVK5u/H1q1amU+i8gwDHXv3l2SFBQUpBIlStirRAAAAAAAAFgR4QyAFCM0NFR37txRyZIl9cknn9h8/A4dOsjV1VXbt2/X3r17bT7+i4qMjNTYsWOVL18+XbhwQVmyZFHt2rXtXVayMWLECOXJk0enT5/WV199JUlauXKltm/fLg8PDw0ePNjOFQIAAAAAAMBaOGEYeEmGYWjixIn67bffnqv9e++9p3bt2vGKIju5cuWKJk2aJEkaNmyYnJxsn017e3urQYMGmjdvnsaOHauFCxfavIbnERkZqSlTpujrr7/W5cuXJUm+vr6aNm2a3Nzc7Fxd8uHl5aWZM2eqUqVKmjx5smrVqmUOabp16yYfHx87VwgAAAAAAABrIZwBXtLAgQM1cODA526/cOFCXb16VX379rViVXiSyZMnKyoqSqVLl1a1atXsVkeXLl00b948LVmyRF9//bVy5cplt1r+V2RkpCZPnqwRI0YkCmX69OmjZs2aEcxYwQcffKAOHTro22+/Ve3atRUTE6OsWbOaQxoAAAAAAAAkT4QzwEuYP3++OZjp0qWLcufO/dT2p0+f1jfffKN+/fopR44catWqlS3KxH9FRUVp4sSJkh7uSLDn7qWSJUvK399fW7Zs0cSJE/X111/brZYECaHM119/rYiICEkPQ5m+ffuqWbNmcnV1tXOFydvw4cP1008/6dSpU5KkQYMGycvLy85VAQAAAAAAwJoIZ4AX9Ouvv5rDla+++uq5H657enoqNDRU7dq1U/bs2RUQEGDNMvEvCxcuVEREhHx8fOxy1sz/6tq1q7Zs2aKpU6eqX79+SpMmjV3quHbtmiZNmqQJEyYQythRmjRpNGvWLFWqVElFihQhvAUAAAAAAEgBbH/oAuDATpw4oY8//ljR0dGqU6eOQkNDn/veoUOHKigoSHFxcfr000+1e/duK1aKBIZhaMyYMZKkTp06JYnAISAgQAUKFNDNmzc1e/Zsm49//PhxtW/fXrly5VK/fv0UEREhX19fTZ8+XX///bdatWqVJP6cUpL3339fJ06c0LZt2+Tiwv+bAAAAAAAASO4IZ4DndP36dQUEBOjatWt68803NW/evBc6VN5kMmnatGmqXr267t+/r4CAAP39999WrBiStGHDBoWFhSlNmjRq3bq1vcuRJDk5Oalz586SpG+++UZxcXFWH9MwDO3YsUMff/yxChUqpEmTJun+/fsqWbKkFixYQCiTBOTJk0dp06a1dxkAAAAAAACwAcIZ4DlER0erbt26+vvvv5U7d279+OOP8vT0fOF+XF1dtWTJEpUpU0bXrl1TtWrVdOnSJStUnLQZhqG9e/fq1q1bVh9r9OjRkqTWrVsrffr0Vh/veQUFBSlDhgw6ceKEVq9ebbVxYmNjtWTJEpUrV07vvvuuVq5cKcMwFBAQoF9++UX79u1To0aNCGUAAAAAAAAAGyKcAZ7BMAwFBwdry5Yt8vLy0urVq5U9e/aX7i9NmjRas2aN/Pz8dPr0aX344Ye6ffu2BStO+oYNG6a33npLfn5+mjhxomJiYqwyzpEjR7Rx40Y5OTnpiy++sMoYLyt16tRq166dJGns2LEW798wDE2aNEkFCxZUvXr1tHv3brm7u6t169b6448/tHr1alWsWFEmk8niYwMAAAAAAAB4OsIZ4BmGDx+uWbNmycnJSYsXL1bRokVfuc+sWbNq/fr1ypIliw4cOKC6desqOjraAtUmfdu2bVP//v0lPTyQvmPHjipatKh+/PFHGYZh0bESzpqpW7eu8ubNa9G+LeHzzz+Xi4uLtm7dqn379lm071mzZql9+/YKDw9XpkyZ1L9/f505c0bTpk3T66+/btGxAAAAAAAAALwYwhngKZYsWaLevXtLkiZMmKAaNWpYrG8/Pz+tXbtWqVOn1qZNm9SyZUvFx8dbrP+k6OrVq2rUqJHi4+PVpEkTTZo0SVmyZNGxY8dUu3ZtffDBB9q/f79Fxrp48aIWLFggSeratatF+rS0nDlzqn79+pIsu3vGMAxzf506ddLZs2c1cOBAZcuWzWJjAAAAAAAAAHh5hDPAE+zevVvNmjWT9PABd/v27S0+RpkyZbR06VK5uLhowYIF6tmzp8XHSCoMw1Dz5s11/vx584H0wcHBOnHihHr27Cl3d3dt2bJFZcqUUVBQkM6dO/dK43377beKiYnRO++8o7fffttCs7C8Ll26SJIWL16s8+fPW6TPrVu36ujRo/L09FRISMhLnY8EAAAAAAAAwHoIZ4DHOH36tGrVqqWoqCgFBgaaD5W3hurVq2v69OmSpJEjR+rbb7+12lj2NHbsWK1Zs0bu7u5avHix0qRJI0lKmzatQkNDdezYMTVq1EiGYWju3LkqWLCg+vXrp7t3777wWJGRkZo0aZKkpLtrJkHp0qX1/vvvKzY2VhMnTrRInxMmTJAkNWvWTOnTp7dInwAAAAAAAAAsh3AG+B93795VYGCgIiIiVKJECS1atEjOzs5WHTMoKEjDhg2TJHXr1k3Hjh2z6ni2tnfvXvOuoLFjx6p48eKPtMmTJ48WLFig3bt3691339X9+/c1ZMgQFShQQL/++usLjTdnzhxdv35defPm1UcffWSJKVhVQoA0ZcoU3bt375X6Onv2rFauXCnp4Zk2AAAAAAAAAJIewhngXwzDUJs2bRQWFqYcOXJo1apV5h0e1tazZ09VrVpVDx48UOvWrZPN+TO3bt1S/fr1FRMTo7p16yo4OPip7d966y1t27ZNy5Ytk5+fny5duqQqVapoxYoVzzVefHy8+byVzp07Wz1Ys4TAwED5+fnpxo0bmjNnziv1NWnSJMXHx6tSpUoqUqSIhSoEAAAAAAAAYEmEM0jSDMPQ+fPnbRZUTJo0Sd9//71cXFy0ZMkS+fj42GRcSTKZTJoyZYpSp06t7du3m1/L5cgSwq7w8HD5+vpq+vTpMplMz7zPZDKpTp06OnLkiGrXrq0HDx7ok08+0ZQpU5557+rVq3X8+HGlT59eLVu2tMQ0rM7Z2VmdO3eW9HBnUUxMzEv1c//+fU2dOlWS1LFjR0uVBwAAAAAAAMDCCGeQpHXr1k0+Pj7KkSOHmjZtqgULFigiIsIqY+3Zs8f8gHzEiBEqX768VcZ5Gl9fXw0fPlzSw500Z86csXkNljR16lQtWbJELi4u+v7771/4/BMPDw8tXbpUbdq0UXx8vIKDgxUSEiLDMJ54z5gxYyRJ7dq1s9muJ0to3ry5smTJohMnTjxXCPU4ixYt0vXr1+Xr66vAwEALVwgAAAAAAADAUghnkGTNnTvX/HqqiIgIzZ8/X02aNFG2bNlUpkwZ9e3bV7/++utL7zL4t2vXrunTTz9VTEyM6tSpYw5p7KF9+/Z69913dffuXbVt2/apQURSduTIEfOfY2hoqMqWLftS/bi4uGjKlCnq37+/JGngwIEKDg5WXFzcI2337dunrVu3ysXFxeHOW0mTJo0GDRokSQoJCdGNGzde6H7DMDRhwgRJD7+HHOF1bgAAAAAAAEBKRTiDJGn//v1q166dJKlPnz7asmWLevbsqRIlSkh6+BB+6NChev/995U5c2bVqVNH8+bNe6nXn8XHx6tp06Y6e/as8ufPr5kzZz7Xq7esxcnJSdOnT5e7u7s2bNjwymeQ2MO9e/dUr149RUVFqUaNGuYD71+WyWTSwIEDNWnSJJlMJk2dOlWffPKJ7t+/n6hdwq6ZBg0a2PSVdJbSunVrFSlSRNeuXdOQIUNe6N4dO3bo4MGD8vDwUKtWraxUIQAAAAAAAABLIJxBknP16lXVqVNHUVFRCggI0KBBg1ShQgWFhobqwIEDunjxoubMmaOGDRsqU6ZMun37tlasWKFmzZqpevXqunjx4guNFxoaqp9++kmpUqXS0qVLlS5dOivN7PkVKlRIAwcOlCR16dLlhedkbx07dtRff/0lb29vzZkzR05OlvmrJjg4WEuXLpW7u7tWrlypqlWrmneY/PPPP1q8eLEkvXIYZC8uLi4aPXq0JGnChAk6fvz4c987fvx4SVLjxo2VMWNGq9QHAAAAAAAAwDIIZ5CkxMXFqWHDhjpz5oz8/Pw0f/78Rx7sZ8+eXc2aNdPChQt1+fJl7dmzR/3795eHh4c2btyoYsWKac2aNc813s8//2x+XdZ3332n4sWLW3xOL6tbt24qXbq0bt68qQ4dOjjM683mz5+vWbNmycnJSQsWLFCWLFks2n+dOnW0fv16pUuXTtu3b9d7772nc+fOacKECYqLi1PFihVVsmRJi45pS9WqVVONGjUUExOjHj16PNc9586d0/LlyyU9DMYAAAAAAAAAJG2EM0hS+vTpo02bNsnT01MrV6585gHyzs7OevPNNzVw4EDt379fJUqU0NWrVxUYGKgvvvhCUVFRT7z3/PnzatiwoeLj49WqVSu1aNHCwrN5NS4uLpoxY4ZcXFy0YsUKLV261N4lPdNff/2l4OBgSVL//v3l7+9vlXEqVKigX3/9Vd7e3goLC1O5cuU0depUSY67a+bfRo0aJWdnZ61YsUJbtmx5ZvvJkycrLi5OFSpUULFixaxfIAAAAAAAAIBXQjiDJGPp0qX6+uuvJUmzZs3SG2+88UL3v/baa/rtt9/Mh9BPmDBBb731lv74449H2sbExKh+/fq6cuWKihcvbj5IPakpXry4evXqJUn6/PPPde3aNTtX9GTnz59XtWrVdO/ePfn7+6tv375WHa9o0aLauXOnChUqpHPnzunWrVsqVKiQPvzwQ6uOawuFCxc2n7nUtWtXxcXFPbFtVFSUOZhi1wwAAAAAAADgGAhnkCSEhYWpefPmkqTu3burXr16L9WPu7u7xo4dq7Vr1ypr1qw6cuSISpcurcmTJyd6LVivXr20Y8cOpU2bVkuXLpWHh4clpmEVffr0UeHChRUREWEOnpKa69evq1q1ajp79qwKFiyoH374Qc7OzlYfN0+ePNqxY4fefvttSVLPnj0tdr6NvYWEhChdunQ6cOCA5s2b98R2P/zwg65cuaJcuXKpdu3aNqwQAAAAAAAAwMtKHk8x4dBu3bqljz/+WPfu3VOlSpUUGhr6yn3WqFFDhw8fVrVq1RQVFaXPPvtMderU0bVr17R8+XLzoeuzZ89W/vz5X3k8a3J3d9fMmTPl5OSk+fPna+3atfYuKZHIyEjVrFlTYWFh8vb21vr16y1+zszTZMqUSdu2bdPhw4cVFBRks3GtLUuWLObdR71799bdu3cfaWMYhsaPHy9J+uyzz+Ti4mLTGgEAAAAAAAC8HMIZ2FV8fLyaNm2q48ePK3fu3Pr+++8t9oA5W7ZsWrt2rcaMGSNXV1etXLlSxYsXN58t061bN3388ccWGcvaypYta941065dO92+fdu+Bf1Xwuvhdu7cqfTp02vdunXy9fW1eR2urq4qWrSoTCaTzce2po4dOypfvny6ePGiRo4c+cj13377Tfv27ZO7u7vatGljhwoBAAAAAAAAvAzCGdjVkCFDtGrVKrm7u2v58uXKnDmzRft3cnJSly5dtHv3bhUqVEjnz5/X7du39e6771pkh44tDR48WH5+fjp37py++uore5cjwzDUtm1brV69WqlSpdKqVatUtGhRe5eVrLi7u2vEiBGSpJEjR+rcuXOJriecldSwYUOLrx0AAAAAAAAA1kM4A7tZs2aNQkJCJEmTJ09W6dKlrTZWyZIltW/fPnXs2FGVK1fW999/L1dXV6uNZw2enp6aPn26JGnKlCnasmWLXevp2bOnZs+eLWdnZy1evFjvvvuuXetJrurUqaP33ntP9+/fV69evcyfX7x4UUuWLJH0cIcNAAAAAAAAAMdBOAO7CAsLU+PGjWUYhtq3b6/mzZtbfczUqVNr/Pjx2rhxo3LmzGn18azB399f7dq1kyS1aNFCt27deuU+r1+/rgkTJujQoUOKiop6rnvGjBlj3tExdepU1apV65XrwOOZTCaNGTNGkjR//nzt3btX0sOALjY2VuXLl1epUqXsWSIAAAAAAACAF0Q4A5uKjIxU3759VapUKd26dUvly5fX2LFj7V2WQxkxYoTy5s2r06dPq0OHDq/UV3R0tGrWrKlu3bppwIABypo1q6pVq6bRo0fr8OHDMgzjkXvmzZunbt26SZJCQ0PVsmXLV6oBz1amTBk1a9ZMktSlSxc9ePBAkydPlsSuGQAAAAAAAMAREc7AJgzD0PLly/X6669r6NChio6OVrVq1bRs2TK5ubnZuzyHkjZtWi1YsEDOzs5asGCBFixY8NJ9de7cWTt37pSXl5cyZMigqKgobdiwQd27d1fx4sWVI0cONW3aVHPnztWFCxe0du1atWjRQtLDkKBHjx6WmhaeYejQofLw8NCOHTvUpEkTXb58Wd7e3qpTp469SwMAAAAAAADwgghnYHV///23atSoobp16+rs2bPKnTu3li9frp9++knZsmWzd3kOqVy5curfv78k6bPPPlN4ePgL9zFr1ixNmjRJJpNJ8+bN08yZM3XgwAGNGTNGNWrUkKenpy5fvqz58+crKChIOXPmVK1atRQXF6cmTZpo1KhRMplMlp4ansDHx0dfffWVJGnp0qWSpODgYIc7OwkAAAAAAAAA4Qys6N69e+rdu7eKFi2q9evXy83NTX369NGff/6pjz/+mAf7r6h3794qX7687ty5o8aNGys2Nva57/3999/12WefSZJCQkL04YcfymQyqUiRIurSpYvWrl2r69eva/PmzerVq5fKlCkjk8mkuLg4Va9eXTNnzpSTE3992NqXX34pb29vSZKbm5vatm1r54oAAAAAAAAAvAyersLiDMPQsmXL9Prrrys0NFTR0dGqUaOGjh49qiFDhsjT09PeJSYLLi4umj9/vtKmTatdu3ZpyJAhz3XflStXVKdOHT148EC1atVS3759H9vO3d1d/v7+GjZsmPbu3asrV65o8+bN+s9//sNuDTtJnTq1Ro8eLUlq2bIlO88AAAAAAAAAB0U4A4uKj49XzZo19cknn+iff/5Rnjx5tHLlSq1Zs0YFChSwd3nJjq+vr6ZMmSJJGjx4sLZv3/7U9rGxsWrQoIH++ecfFSxYUHPnzn3uHTCZMmWSv78/ZwTZWYMGDXT27FmNHz/e3qUAAAAAAAAAeEmEM7AoJycnvfbaa3Jzc1O/fv30xx9/qHbt2rzCzIoaNGigZs2aKT4+Xk2aNNHNmzef2LZnz5765ZdflCZNGq1YsULp0qWzXaGwmFy5crF7CQAAAAAAAHBghDOwuAEDBigsLEyDBg3iFWY2MnHiROXLl09nzpxR+/btZRjGI20WL15sfiXW7NmzVbhwYVuXCQAAAAAAAAAQ4QyswMvLS/nz57d3GSmKl5eXFi5cKGdnZy1atEjz589PdP3IkSNq2bKlJKlHjx6qW7euPcoEAAAAAAAAAIhwBkg2ypYtq5CQEElShw4ddOrUKUnSjRs39PHHHysyMlJVqlTR0KFD7VglAAAAAAAAAIBwBkhGevXqpffee0937txR48aNFR0drSZNmujkyZPy9fXVokWL5OzsbO8yAQAAAAAAACBFI5wBkhFnZ2fNnz9f6dKl02+//aYyZcpo7dq1SpUqlZYvX65MmTLZu0QAAAAAAAAASPEIZ4BkJnfu3Jo6daqkh2fNSNK0adNUsmRJe5YFAAAAAAAAAPgvhwxntm3bppo1a8rb21smk0krV65MdN0wDIWEhMjb21seHh7y9/dXWFhYojYPHjxQx44dlTlzZqVOnVq1atXSuXPnbDgLwHrq1aunNm3aSJI6d+6sJk2a2LkiAAAAAAAAAEAChwxn7t27p+LFi2vixImPvT5ixAiNGTNGEydO1N69e5U9e3ZVqVJFd+7cMbfp3LmzVqxYoe+//17bt2/X3bt3FRgYqLi4OFtNA7CqKVOm6MSJExo7dqy9SwEAAAAAAAAA/IuLvQt4GTVq1FCNGjUee80wDI0bN059+vRRnTp1JElz5sxRtmzZtHDhQrVr1063bt3SjBkzNG/ePFWuXFmSNH/+fOXKlUubNm1StWrVbDYXwFpMJpP8/PzsXQYAAAAAAAAA4H84ZDjzNOHh4bp06ZKqVq1q/szd3V0VKlTQzp071a5dO+3bt08xMTGJ2nh7e+uNN97Qzp07nxjOPHjwQA8ePDB/ffv2bUlSTEyMYmJirDQjwPoSvn/5PgaSPtYr4FhYs4DjYL0CjoU1CzgO1itSmuf9Xk924cylS5ckSdmyZUv0ebZs2XTmzBlzGzc3N2XIkOGRNgn3P05oaKgGDhz4yOcbNmyQp6fnq5YO2N3GjRvtXQKA58R6BRwLaxZwHKxXwLGwZgHHwXpFShEZGflc7ZJdOJPAZDIl+towjEc++1/PatOrVy917drV/PXt27eVK1cuVa1aVWnTpn21ggE7iomJ0caNG1WlShW5urrauxwAT8F6BRwLaxZwHKxXwLGwZgHHwXpFSpPwxq1nSXbhTPbs2SU93B2TI0cO8+cRERHm3TTZs2dXdHS0bty4kWj3TEREhN55550n9u3u7i53d/dHPnd1deUvFiQLfC8DjoP1CjgW1izgOFivgGNhzQKOg/WKlOJ5v8+drFyHzeXNm1fZs2dPtE0uOjpaW7duNQcvpUuXlqura6I2Fy9e1NGjR58azgAAAAAAAAAAALwqh9w5c/fuXZ04ccL8dXh4uA4ePKiMGTMqd+7c6ty5s4YNG6YCBQqoQIECGjZsmDw9PdWoUSNJUrp06dSqVSt169ZNmTJlUsaMGdW9e3cVLVpUlStXtte0AAAAAAAAAABACuCQ4czvv/+uihUrmr9OOAcmKChIs2fP1ldffaX79++rffv2unHjhsqWLasNGzbIy8vLfM/YsWPl4uKievXq6f79+6pUqZJmz54tZ2dnm88HAAAAAAAAAACkHA4Zzvj7+8swjCdeN5lMCgkJUUhIyBPbpEqVShMmTNCECROsUCEAAAAAAAAAAMDjJbszZwAAAAAAAAAAAJIywhkAAAAAAAAAAAAbIpwBAAAAAAAAAACwIcIZAAAAAAAAAAAAGyKcAQAAAAAAAAAAsCHCGQAAAAAAAAAAABsinAEAAAAAAAAAALAhwhkAAAAAAAAAAAAbIpwBAAAAAAAAAACwIcIZAAAAAAAAAAAAGyKcAQAAAAAAAAAAsCHCGQAAAAAAAAAAABsinAEAAAAAAAAAALAhF3sX4MgMw5Ak3b59286VAK8mJiZGkZGRun37tlxdXe1dDoCnYL0CjoU1CzgO1ivgWFizgONgvSKlScgLEvKDJyGceQV37tyRJOXKlcvOlQAAAAAAAAAAgKTizp07Spcu3ROvm4xnxTd4ovj4eF24cEFeXl4ymUz2Lgd4abdv31auXLn0zz//KG3atPYuB8BTsF4Bx8KaBRwH6xVwLKxZwHGwXpHSGIahO3fuyNvbW05OTz5Zhp0zr8DJyUk+Pj72LgOwmLRp0/JDEnAQrFfAsbBmAcfBegUcC2sWcBysV6QkT9sxk+DJsQ0AAAAAAAAAAAAsjnAGAAAAAAAAAADAhghnAMjd3V0DBgyQu7u7vUsB8AysV8CxsGYBx8F6BRwLaxZwHKxX4PFMhmEY9i4CAAAAAAAAAAAgpWDnDAAAAAAAAAAAgA0RzgAAAAAAAAAAANgQ4QwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMkExs27ZNNWvWlLe3t0wmk1auXJno+uXLl9W8eXN5e3vL09NT1atX1/HjxxO18ff3l8lkSvSrQYMGidrcuHFDTZs2Vbp06ZQuXTo1bdpUN2/etPLsgOTFFuv19OnTatWqlfLmzSsPDw/5+flpwIABio6OtsUUgWTFVj9jEzx48EAlSpSQyWTSwYMHrTQrIHmy5Xpds2aNypYtKw8PD2XOnFl16tSx5tSAZMlWa/bvv/9W7dq1lTlzZqVNm1bly5fX5s2brT09IFmxxHqVpF27dumDDz5Q6tSplT59evn7++v+/fvm6zx3QkpCOAMkE/fu3VPx4sU1ceLER64ZhqGPPvpIp06d0n/+8x8dOHBAefLkUeXKlXXv3r1Ebdu0aaOLFy+af02ZMiXR9UaNGungwYNat26d1q1bp4MHD6pp06ZWnRuQ3Nhivf7111+Kj4/XlClTFBYWprFjx2ry5Mnq3bu31ecHJDe2+hmb4KuvvpK3t7dV5gIkd7Zar8uWLVPTpk3VokULHTp0SDt27FCjRo2sOjcgObLVmg0ICFBsbKx++eUX7du3TyVKlFBgYKAuXbpk1fkByYkl1uuuXbtUvXp1Va1aVXv27NHevXv1+eefy8np/x9R89wJKYoBINmRZKxYscL89bFjxwxJxtGjR82fxcbGGhkzZjSmTZtm/qxChQpGp06dntjvH3/8YUgyfvvtN/Nnu3btMiQZf/31l0XnAKQU1lqvjzNixAgjb968r1oykKJZe82uXbvWeO2114ywsDBDknHgwAELVg+kLNZarzExMUbOnDmN6dOnW6NsIMWy1pq9cuWKIcnYtm2b+bPbt28bkoxNmzZZdA5ASvGy67Vs2bJG3759n9gvz52Q0rBzBkgBHjx4IElKlSqV+TNnZ2e5ublp+/btidouWLBAmTNnVpEiRdS9e3fduXPHfG3Xrl1Kly6dypYta/7s7bffVrp06bRz504rzwJIGSy1Xh/n1q1bypgxo+WLBlIwS67Zy5cvq02bNpo3b548PT2tXzyQwlhqve7fv1/nz5+Xk5OTSpYsqRw5cqhGjRoKCwuzzUSAFMJSazZTpkx6/fXXNXfuXN27d0+xsbGaMmWKsmXLptKlS9tmMkAy9zzrNSIiQrt371bWrFn1zjvvKFu2bKpQoUKi9cxzJ6Q0hDNACvDaa68pT5486tWrl27cuKHo6GgNHz5cly5d0sWLF83tGjdurEWLFmnLli3q16+fli1blujd2ZcuXVLWrFkf6T9r1qxsBwcsxFLr9X+dPHlSEyZMUHBwsC2mAaQYllqzhmGoefPmCg4OVpkyZewxFSDZs9R6PXXqlCQpJCREffv21erVq5UhQwZVqFBB169ft/m8gOTKUmvWZDJp48aNOnDggLy8vJQqVSqNHTtW69atU/r06e0wMyD5eZ71+u+fn23atNG6detUqlQpVapUyXw2Dc+dkNK42LsAANbn6uqqZcuWqVWrVsqYMaOcnZ1VuXJl1ahRI1G7Nm3amH//xhtvqECBAipTpoz279+vUqVKSXr4D9v/ZRjGYz8H8OIsuV4TXLhwQdWrV9enn36q1q1b22QeQEphqTU7YcIE3b59W7169bL1FIAUw1LrNT4+XpLUp08f1a1bV5I0a9Ys+fj4aMmSJWrXrp3tJgUkY5Zas4ZhqH379sqaNat+/fVXeXh4aPr06QoMDNTevXuVI0cOW08NSHaeZ70m/Pxs166dWrRoIUkqWbKkfv75Z82cOVOhoaGSeO6ElIWdM0AKUbp0aR08eFA3b97UxYsXtW7dOl27dk158+Z94j2lSpWSq6ur+X8wZM+eXZcvX36k3ZUrV5QtWzar1Q6kNJZYrwkuXLigihUrqly5cpo6daq1SwdSJEus2V9++UW//fab3N3d5eLiovz580uSypQpo6CgIJvMA0gJLLFeEx7kFi5c2NzG3d1d+fLl09mzZ607ASCFsdTP2NWrV+v7779X+fLlVapUKX333Xfy8PDQnDlzbDUVINl71np93M9PSXr99dfNPz957oSUhnAGSGHSpUunLFmy6Pjx4/r9999Vu3btJ7YNCwtTTEyM+QdouXLldOvWLe3Zs8fcZvfu3bp165beeecdq9cOpDSvsl4l6fz58/L391epUqU0a9YsOTnxYx+wpldZs+PHj9ehQ4d08OBBHTx4UGvXrpUkLV68WEOHDrVJ/UBK8irrtXTp0nJ3d9exY8fMbWJiYnT69GnlyZPH6rUDKdGrrNnIyEhJeuTfwk5OTub/yQ/Acp60Xn19feXt7Z3o56ck/f333+afnzx3QkrDa82AZOLu3bs6ceKE+evw8HAdPHhQGTNmVO7cubVkyRJlyZJFuXPn1pEjR9SpUyd99NFHqlq1qqSH51EsWLBAH374oTJnzqw//vhD3bp1U8mSJVW+fHlJD/83Q/Xq1dWmTRtNmTJFktS2bVsFBgaqUKFCtp804KBssV4vXLggf39/5c6dW6NGjdKVK1fM42XPnt22EwYcnC3WbO7cuRONmSZNGkmSn5+ffHx8bDRTwPHZYr2mTZtWwcHBGjBggHLlyqU8efJo5MiRkqRPP/3U9pMGHJgt1my5cuWUIUMGBQUFqX///vLw8NC0adMUHh6ugIAAu8wbcESvul5NJpO+/PJLDRgwQMWLF1eJEiU0Z84c/fXXX1q6dKkknjshBTIAJAubN282JD3yKygoyDAMw/jmm28MHx8fw9XV1cidO7fRt29f48GDB+b7z549a7z//vtGxowZDTc3N8PPz8/44osvjGvXriUa59q1a0bjxo0NLy8vw8vLy2jcuLFx48YNG84UcHy2WK+zZs167Bj86AdenK1+xv5beHi4Ick4cOCAlWcHJC+2Wq/R0dFGt27djKxZsxpeXl5G5cqVjaNHj9pyqkCyYKs1u3fvXqNq1apGxowZDS8vL+Ptt9821q5da8upAg7vVddrgtDQUMPHx8fw9PQ0ypUrZ/z666+JrvPcCSmJyTAMw6rpDwAAAAAAAAAAAMx4+TwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMAAAAAAAAAACADRHOAAAAAAAAAAAA2BDhDAAAAAAAAAAAgA0RzgAAAAAAAAAAANgQ4QwAAAAAAAAAAIANEc4AAAAAAAAAAADYEOEMAAAAAAAAAACADRHOAAAAAEh2AgICZDKZ5OTkpO3btz/XPdu3b5eTk5NMJpMCAwOtXCEAAACAlMxkGIZh7yIAAAAAwJLOnTunIkWK6Pbt2ypUqJAOHjyoVKlSPbH9gwcPVLx4cR07dkxp06ZVWFiYfHx8bFgxAAAAgJSEnTMAAAAAkh0fHx99/fXXkqRjx45p4MCBT20/aNAgHTt2TJI0YsQIghkAAAAAVsXOGQAAAADJkmEYqlixorZu3SoXFxft2bNHJUuWfKTdoUOHVKZMGcXGxsrf31+//PKLTCaTHSoGAAAAkFIQzgAAAABItk6cOKFixYrp/v37KlGihPbu3SsXFxfz9bi4OJUtW1b79u2Th4eHjhw5Ij8/PztWDAAAACAl4LVmAAAAAJKt/Pnza9CgQZKkgwcPauTIkYmujxkzRvv27ZMkDR48OFEwc+7cOfXq1UulSpVShgwZlCpVKuXOnVv169fX5s2bnzrujRs3NGvWLDVp0kSFCxdWmjRp5ObmpuzZs6tatWqaOnWqoqOjn3j/6dOnZTKZZDKZNHv2bEnS8uXL9eGHH8rb21suLi7y9/d/iT8RAAAAAEkBO2cAAAAAJGtxcXEqV66c9u7dK3d3dx06dEiFChXSyZMnVbRoUd2/f19vvvmmdu3aJWdnZ0nSjBkz1LFjR92/f/+J/bZq1UqTJ09OtBMnga+vr86cOfPUukqWLKm1a9cqe/bsj1w7ffq08ubNK0maOXOmNm/erHnz5iVqU6FCBW3ZsuVZ0wcAAACQBBHOAAAAAEj2jhw5otKlSysmJkbly5fXtm3bVLlyZW3evFmurq7av3+/3njjDUkPw5BWrVpJkt544w21a9dOJUuWlKenp8LDwzVjxgytXbtWktS1a1eNHj36kfFy5cqlnDlzKjAwUCVLllS2bNkUHR2t8PBwzZ8/X+vWrZP05IDl3+FMsWLFdPjwYb333nv67LPPVLBgQd28eVOnT5821wkAAADAsRDOAAAAAEgRBgwYYH7FWaVKlfTzzz+bPw8JCZEk/fPPP3rttdcUGRmpoKAgTZ8+/bE7Y/r06aNhw4bJyclJf/75pwoWLJjo+vHjx1WgQIEn1jJr1iy1bNlSkrRp0yZVqlQp0fV/hzOS1KxZM82ePVsmk+nFJw4AAAAgySGcAQAAAJAiREdHq1SpUgoLCzN/9sYbb2jfvn1yc3OTJHXv3l2jR4+Wt7e3Tp48qVSpUj22r9jYWPn6+ur8+fPq06ePhgwZ8sL1lCpVSgcOHNDnn3+uCRMmJLr273Amffr0Onv2rLy8vF54DAAAAABJk5O9CwAAAAAAW3Bzc9PMmTPN58o4OztrxowZ5mBGkv7zn/9IkmrWrPnEYEaSXFxcVK5cOUnSrl27njquYRi6dOmS/v77bx09etT8y9vbW5J06NChp95fs2ZNghkAAAAgmXl0fz4AAAAAJFNvvfWWfHx8dObMGfn4+Oitt94yX7t165ZOnDghSZoyZYqmTJnyXH1eunTpsZ+vWbNGkyZN0rZt23Tnzp0n3n/16tWn9l+sWLHnqgMAAACA4yCcAQAAAABJERERL3VfZGRkoq8Nw1CbNm00Y8aM57r//v37T72eIUOGl6oLAAAAQNJFOAMAAAAAkuLi4sy/79y5s1q1avVc9/37tWiSNHPmTHMwU6JECXXu3Flly5ZVzpw55enpaX6tWrNmzTRv3jw96xjQhPYAAAAAkg/CGQAAAACQlClTJvPvIyMj9cYbb7xUP9OmTZMk+fn5aefOnfLw8Hhsuxs3brxU/wAAAAAcn5O9CwAAAACApCBLlizKmTOnJGnTpk3P3NHyJGFhYZKk2rVrPzGYMQxD+/fvf7lCAQAAADg8whkAAAAA+K9atWpJkk6dOqWlS5e+VB+xsbGSHj2L5t9+/PFHXbhw4aX6BwAAAOD4CGcAAAAA4L++/PJLubu7S5KCg4P1+++/P7X92rVrdfjw4USfFShQQJK0atWqx7667OTJk2rfvr2FKgYAAADgiAhnAAAAAOC/8ubNq8mTJ0uSrl+/rvLly6t169ZauXKl9u/frz179mj58uXq2bOn8ufPr4CAAJ09ezZRH82aNZMknT9/Xu+8845mzZqlPXv2aNu2bQoJCVHp0qV1/fp1lSpVyubzAwAAAJA0uNi7AAAAAABISpo3by4PDw+1bdtWt2/f1owZMzRjxozHtnVyclLq1KkTfdapUydt3LhRGzZs0F9//aWWLVsmuu7h4aG5c+dqzZo1nDsDAAAApFDsnAEAAACA/1G/fn2dPn1aw4cPl7+/v7JmzSpXV1d5enoqX758qlmzpsaMGaPTp0+rYsWKie51dXXVmjVrNH78eJUpU0aenp7y8PBQ/vz5FRwcrP379+vTTz+108wAAAAAJAUmwzAMexcBAAAAAAAAAACQUrBzBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGyIcAYAAAAAAAAAAMCGCGcAAAAAAAAAAABsiHAGAAAAAAAAAADAhghnAAAAAAAAAAAAbIhwBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGyIcAYAAAAAAAAAAMCGCGcAAAAAAAAAAABsiHAGAAAAAAAAAADAhghnAAAAAAAAAAAAbIhwBgAAAAAAAAAAwIYIZwAAAAAAAAAAAGzo/wBEbXnHNnTIpwAAAABJRU5ErkJggg==",
- "text/plain": [
- "