From 6b0bca5dd81365a34f07c9c4c3ee53fd54abc3a7 Mon Sep 17 00:00:00 2001 From: Marco Date: Fri, 5 Apr 2024 10:51:39 -0400 Subject: [PATCH] [FEAT] - Add iTransformer to neuralforecast (#944) * Add iTransformer and AutoiTransformer to nf * Add docstring to iTransformer * Fix config for auto version * Use Multivariate windows and fix encoder, decoder and output shapes * Fix AutoiTransformer and correct error when n_series is 1 * Add n_series parameter for AutoiTransformer tests * Add n_series parameters to test AutoiTransformer * Remove windows_batch_size arg * Clean notebook and add another missing n_series param * Fix conflict in model/__init__ * Run and clean itransformer notebook * Run and clean core and models notebooks * Place imports in separate cells --- nbs/core.ipynb | 3 +- nbs/imgs_models/iTransformer.png | Bin 0 -> 340236 bytes nbs/models.ipynb | 152 ++++ nbs/models.itransformer.ipynb | 1170 +++++++++++++++++++++++++ neuralforecast/_modidx.py | 33 +- neuralforecast/auto.py | 102 ++- neuralforecast/core.py | 3 + neuralforecast/models/__init__.py | 4 +- neuralforecast/models/itransformer.py | 293 +++++++ 9 files changed, 1749 insertions(+), 11 deletions(-) create mode 100644 nbs/imgs_models/iTransformer.png create mode 100644 nbs/models.itransformer.ipynb create mode 100644 neuralforecast/models/itransformer.py diff --git a/nbs/core.ipynb b/nbs/core.ipynb index 737a12420..a4f164ed5 100644 --- a/nbs/core.ipynb +++ b/nbs/core.ipynb @@ -87,7 +87,7 @@ " TFT, VanillaTransformer,\n", " Informer, Autoformer, FEDformer,\n", " StemGNN, PatchTST, TimesNet, TimeLLM, TSMixer, TSMixerx,\n", - " MLPMultivariate\n", + " MLPMultivariate, iTransformer\n", ")" ] }, @@ -228,6 +228,7 @@ " 'tsmixer': TSMixer, 'autotsmixer': TSMixer,\n", " 'tsmixerx': TSMixerx, 'autotsmixerx': TSMixerx,\n", " 'mlpmultivariate': MLPMultivariate, 'automlpmultivariate': MLPMultivariate,\n", + " 'itransformer': iTransformer, 'autoitransformer': iTransformer\n", "}" ] }, diff --git a/nbs/imgs_models/iTransformer.png b/nbs/imgs_models/iTransformer.png new file mode 100644 index 0000000000000000000000000000000000000000..01605df9abd09552be6b7b30258d0e575da177d8 GIT binary patch literal 340236 zcmeEug;yKv_I9uqN+}dA?k*`%TwC1TwYUd&ZIRLzDO$X^yIY{p;!@nD#odDjzM|e^fj}S(8EJ7<5D0Y{1VU;;eE{qc z#Azx3fgX!mi-{@Ah>1}sJ3}n2?aVF{{1huUhr`008v(W0nWqN1{!3RuzDqOz#0 zfu~f{s4{`dCXbPy3N#fg&wfYbcGVECL^6@uWqH#Ie$T+LWAe4EMFzp(JpN$td@$|q z)@5D9awx6w{0XQ=O}~=&;RJ|6D-IlvfoA+sLGg8T6T%}aQFPPz@Ay#Cmf{#u)C?OUV_ylkZ2aA;>yO6Go>&x$gmej?ihih&-0}4(u6P+&q~fX z5DOgl^D#wE67RYyY2w+&ix_=G5x_}|EbeH(?oG0>_JC4Z@q!tnC4`^@pPh*1cGwM1JW3m8P3?xvIZ__-Z5h7;iBSDQ)-4yvx5cL^sPCY7-C8Jtf)VA z_5G?3Y{in0~6texv;?XbA)TRE8YN-+nUyl40$rpD?++jXb4qs~TSd&H;A zua%{udALm+*?eCbN1N_PGMyf|I{CY{P${-Bd?3azefQAl0TqZC8Sz1MNAd%@w=5KPd!+{<9`DnQ+flHi z5s=$o_CAi3jyZp~%=H8}NQ4qQuqD$8;n)y?A@F93Qq#!|v~|3Qc=^um5ciip))VLD zR&`<77ptsK1%o~wk}oz^92>XrRrFom35oRhTWUv#D|3v#jCwr#g_ix@GwH{)4{+?A zkmd=_yQr5Z$TbO4!+o9%tuzb$WXw!E{OtJl$IAvz8EuwJ#y<8hNZSvYT|U7~*&LY* zwn85+3oDZ{tu!?tIJO&PlH>0`6l#8%Q2J3X0k2DGHX!9IrjnSolsi@S>T9!rs=;CE ziM{cKP<6A$TXvE6+GC-|gJj#6Ga}bvyC<)SZ>wqRums+vbt{?@RGMlF85`4AJ}5yE zVCxhs-U;`0!|?tP-yMtL7JPTeb75wlG~iO?wC!}2wb@UA+qXCpD5N8(KsC@aU|F$D z@UngRoo6KVGd4xGGEff`{C;XG<=LeN(un=#(BL%^C?ggL2}!EW<%cb%X}TVETAm23~!4%JzC>jQtmW#*YVrFjAw?9Um^XlOqQ`$3pq_lH)UK_Hgiy zK4RV*LSr@t1ao6TZH&pc3dYRSXs|$}FJvT0`Cs`Q32TCgm&x>n43<$gkq+7|kzY!q z;$>1_y+bnzpQdI*#W|9A6OBrPFC(e?>9KgQ^e4g|!JNlBK_yak6cauEtEkRIjqhrx zJ))(gF^`EZgG~yEiXw!mEBbz935rwD_X-gUVI73EAL-W@hsU|LF^F!qy=7 zFW?{kkBy5yvst|7GnW4tA@Q0~o1gBh#p_&cKFyE`lZZn;qfY(`!(D2{Z(F=b9)Zlf zxJvC_7r4Io&}T+b2j6xMEpCWzQ4c!Xo)#dBy%GBQp`G$0tr=Dxwk+ye@Lq6daJ3`Y z?djsvaB+hyt`VgD?`9_WPW(>nPDoDRBizcgX_;O6PtsR3J~5b#@4wNm#mY+WNH@#S z%V^0M&^RYy;w(Q;`J_;;U}BteJZv0u+tp3VEt22Jug*KfJMBv2 zEb#@$U`$t*LJrox(8aO36ddQPb2h*;K{BEmV*p~`h(w-n_qx! z+-*PAl+?VbxzIhSt+PoR+0HR_b>UAL${x;!WM|}hSmV@|*7D8j%$m>o)acb-yVkhs zyJ5RMa$|Ch+;QDBY0_*WSs+=+ZF=Ym+4d*0c=3@-{<+;q#q4XXu+}N!vW;^3AIuYT z#U5e@vBF{^(js~RjsC5-NJ#VTLlj-cMPDV~RzGO%tPS(Q+`s^n`Ws&uh>iakdOqpc z^i#7Fztf-EG#iV$a)dvdQ?j+Isq3~&r>pp*(zEl=KNNfwg6WFo6_W)mH=k>NBWAyNE_q%}mrN&gC&K7BAK39ZS!`JLbz@kQ z5|R>ZS%&qX^;LDURl3F+kO})z%fU*vs|)M++`ubs=sEiZozoYB5byC z#(Y*|+MrTuZ(%P4M!Y*Gg(c}3i4{>m_&Z2ivu>yURM75Y4?BI)(uPn(}kKX*FGrKTmMsffD2n09oPkhqA9a;W0!kfUVr zsxW7hiR(!zg$omjeGHE*eCI{9Ln1&8^Cb~-P@OMp@Hj#^l3O{Tou-k-NyfGgU%@HH zS)xawE0x}UCg8j~P?;Eu5fjpj!I%^GEpCqyzVfE4lx&J?(cZWBA_b>}9#^q}cf{Ca z=-W!HRcu4-lRRwISXGZ)|DTdh#SL)l)SA8;VX~C^(DOG3!$#i^o?f78qNe9w=afqy z3?24rCym5zCF-QlFq@%Ip&OZpSlIV@XOPCXQu|QQGg?B*WF2hwpMFYU&>I(=@pS&V z>R#E}AU@Cj-L`L=(J#ia7bZvpd1WXD<-Yj@`7|pX@JX2IkhOr};yIVo_SaW~uT)<5 zzi77pkSE0ai0#UrUpS4Y)jD+RVQdRMoN!sTdn;+kL*~gC8wL%1YT(P*dSlCyYAe!CZJ_i#-KaW=seKZr14QBw|KEE zz2?fK(e^TrD~@ZFi`15SlDni@yWVag@hoWvqK>S-Tl%6zU;WY_DWG#A;+EK!htQsB z?$o;4@nnycQg6Gcq^PeRyB^=puZh)Z?sDmKn+Aku+OQ73^JFA4GObb|rC6w_*n@Ci zSNH9tw5_*$)Y3v7y`z#?sn}jZYm-kuEXZ%vZ}>cazs-x{Ms)1u`qx>pgfJ$|G0enC zO1H7?t8LC50iqb<*{EPrYnxLCLErJC%}CR{Zl=f`5+m<7&L+3vL9r6_*Gl0^XX!({ z3o|bYw-%EsEz5YiU(}~#i1_@}KWyaO(AiKjJZyB_&6@g7o%lI%8{BMEX6t0jchfv~ z5T>`Fw^Qb+Z*6sAXKP2k;Qy;=X<}>&u{^DLsL}sYay0^$g2n?`A_^#8;l6V}PfHaj z-^ZVa`$C5NI^d%Zi7@-fiG)k8I$=?*r2C}Z6UL@xihV=5nvKl^m7kPMn6D4c{60?z3L1oecLSa)UA9Yj;|5OViLYtr#t&a)P#zfa;af zow>Z*&D*d8=OsUXqpO#9okLLrQ5zz(e%>&zZGzFnS|j^5Zh!PU_W%kHW6^N7|3w3@`*Z&IM2ZOoJp{gC124}nh<}YnUH*df*EUiUa18WPO-x1x_*64>HaB;0 zv4XgIjTn^!JJ1}ZbzDFoeA@dLf{ZH7Au#`xwYs*ewt_srDa4-bwHd_3oXykT@qQkV zpeH}DX>acOn!?lG&cTJ>Q;6#K2!3Guem9tk;`b0&TOlfK1!W2`h_g8bH`{Zz=TyRv zC@3fdoy{!xRmCO$JRSHZL}lgb>c|fUdw6)Td2q5poGroZe0+T1=Nw=T4pv|UtBaR| z>uXO|2N&u;Ci!a~adQ__XKP1SYls8I{k*SDAa1TgR8;pD`q$qd_i65F{eM?-aQXAG zfCmKM9|5zoJqQ15Zs1hG`@Q_i)}H2eI^x#$fXskv2=j5h5d1yfCkle^AN}7%@rRs$?*#-c{74Y| zuSFAnM5PgOpYoDeiz}%EpMaL#{~;^@Zw!BY0^5jhzFWc=fMcQ{8S$6uo(Q`O4}EbZ z$h(e2Xs{5`&|1&Q5Jz)(wovhLeGnv6jF_3Sq(3oD?$c`<} z*-sHsDFQ+N&07-)frKCNzZv;^MqyN}_9KL-y#IE3V0b3xe|amY6w7acyCFZcdjDVD z`u#m1kX-%OV-f#%^Z#F+_@Cte|0eK1wfUdg{NZH&=WYJKuKa&~{{J6`{--woQ=9)` zo4@R18YKp2SWel>|5^~|KVW1u6oim^8c`7R*XV!OoWNX^7{#=hy$oNPFbnzEn>8lc ze#SQKD^EV&zvJT@R#8y*QdSA(KO$!wwA7C}^u^b(1oWfsJ)ecm?DAas{2`bZ-G9Jr z3VQ@ZUhC@$+<%;?|Is(d4Aln*>vD3VPu>c&0U__5y~RGRvKs2^`ijg{bq@wn{w;Ve zLx2fy@y-4IAeimKcUhA*=Vt_8g+oDuF?WusHJZ2XS`s{;g9%sf0mX&ktFfCy;k}s8c(-LLGBD|d~+LhnX-A_OTcE_tSL@rrxOTLR204@5%>os&YN9@m9@rT<99LnRQi4Rwnq{+62ktQ3S>owv>?k z?ZEG^LA!Xo7u_U${0ErfQ99IKROoV*+&t1p#IrI#`Q6S)1h#@t<$utA~gy)L-nH)#|R(R3WE3 z*tp3?;HKnM7Ofbz*$w+MJCXC@WX7GVGdzf7h73Pxd5EK7qMsVwtmekp@VjldoIQw( zpYFqmr+>@34*>-r39zYR`^V)#e7W3*r!#t@$=7J@mh6M0o0Fq|w8^29}n}R^*US*{}R(tG_-`-&=BGZNZ46iJ|w`J<~7AN;f+1xoq?5Rdxib4#AAY zeu1R8$xG%!>A0!$H7a!>(K{JgIf8!H;?j9>yx6&_h98He(hcmii}#s@)^# z!|d}Nxq}9sA<}7kZJq8ATbh6*j!+J+>{q-2B3Bh81{_lrCBGIh``xG|3HyB0_(%!p zE3?CTkK#Z08pOByL3>O_z0M@BTSVwcL@I`JBM@=1v42HPT)B}Zf{pOchGA5Jrm@TP zh^VXT2xSX=X9F(tfQkgFv>(C0Xjhszk16oT9R2zp5ntuyaJD^BW&9QK+VF+-sJLdC zzIBFW2N7UaB~D~~kN!d4K_pDkzLYBXHTG=bcVtda8OBQUUwA`OW2`jStQTUv<>N^*7q!uD9(_$P!ewOTn=h zzG$XUcvay)TVov>@wA=Y@%dX2BAT?qft$ZFS&j zL_;8ma1XEAsP5Vk$rNkqC^n=0jHjXb<;bVcV^Pa_FIs_naCAi-<{LVN5Bk3~`uWhhuR8J_PaQx@y6op# zP&#sVuJ#-fy>zYWFn5{N3n+Zf_a`u8L6P~EDOacz#&`(bw)KP^Jn_t02?ovXTQ~a6 zrK9M4Pmr-tkrBGjkvM}PSy@>$kj0iNf4DcG-9LgjUXufAgUD1Y{!eN{QH-KkVnEGI zzRB2|$kt@nbY!_CQ|P{D(5LY=X3ilYHbrx%|B(bw++^E;v)*uQ$2YMsvsmuq!Jmzs zg4PK?o4j5f_eZ37STy+C;0;~`wLV%NNEgx*p>g6~pEb`!?1=`ZR!cUgyh=ID{jJ4v72qbc;l285< z(%k!;Pt~*aJBdqf#rp3=_B%#4JJD40TnG}6HI#%cF#FU4ZoCT5UIirbr{n4iI=$kK zAfbC0kg_eq8MXaj1MQQ89?WyRtFcN)q(a2=kOF~ZBequ%Q0!;-0@mr^i6G{|2UI-o z!z`wHghQoyKR$p5Cvh6!u(=Q{MIgN13p)f7_YA-(J3Km-=7_vHnFHLvogt#;atrM1 zTCV~z4NX=wG%68$NG6EGoHk3dG;qPvoy8GlQz^*D0nu$ZrWW#wG+jjLSX^9oU(k!@ z@>SOAqen5=ta>QhY}H18`d=&xL@lsUf|`>a4Go9tqc~>BbTN8&WG@G6u*-hCgIHs7 z;qi}H)#f`;Z!Ua4(@-W~v3DN->`cYwQ5+L^Zyo$;el~h@5gId;`e~5bFc#i+ySc~2 zG0x`USTT=VFCyl)puutS5H|nK%|nt=3>1_~vFy3Wt#%=qMhwUxGc1pU`ezC*I?-lPzY;HC_C1Y}89Srj zm_7E{C1Q%f-(KhkWXD}x9sZwy0J;t%I;a9; za}DVFc_cyf{k=03_W}r1SRS3JcJ{vJ-b4E3i%k-v#(K);zK&!kDue7YdR{7Yx zF(#)>jNoj z{BIwj6)Us1+JvrYUfhd0RILy2sjHyhZmW}L8`o)X2!T{XK)m}r7KA9 zhG97MMyswwmnpH<2m9r$Wmxa5blkQCh<-<@W#u|Zr;|rE0;D*3o>nqXg^*e@ZlU+v zHXZ~8KriI$T8@%42gZ^B7Zv|%#7)rNqP*=o?7(d0$1Ti@OJ!?OSk+@%8b~vOz@h<< zZd`D!d_0-lt68A6*-FiLXTPutVbeH<;TiqPJWOI}A*a8wY;{32E1AK4o3iwzQ z?f%|VvO3u|?_gNz(dH*pbGHm1TE?FxnL+soB*nhQ!wULhJjTE>u&~|Roh@K@RAmeJ z2L-b~pF%6w`M852HBt?s1k9{QVX*Coav*x!;YL6zNqxh-67`AI1_v*AaT=_{lcoZq{liZ#xi6<1YG}hduO;>A(yaJrF zM;7T4<^UN~#Rl22s_ek5I{}D_Vf=Hyqv8(~n0z|T+!7&kW^TXCB9#QKl3C6w8kj+9 zV>ltW^ZKzY3iD(%6{~Llnu{gv)~ZaS=dS{NUSH|tyNl{ztx}tUo!)_(bdO!8iOEI4=W zucNV2tnGV>Ha|#6Kvmg=--x6Z@0pYFkv_sOvsUGuk|KG;37Q zt@(fI?H#pevh|NLzw_B(ojJPnna$>p9V^}*ImRyKm)+9}ll6>eg1L8Vl|+|9B0j|u zYi*euXgVZBQ%UUhtEE)T-p31tJ$bcA5TYiwV~cx=kZ<-7IuPE^6jv&-pzPk-=0gS- zbmg$iW!k-`<$%;-ECNt+ZA#zlQ$Y0gQ=stdd4BcjXNn{J2uZ;b+8j28pp z3|q)CI&*-WGwe?P3r4qp+iMN3bZ;3O;kjYuu8&@TGh7$)n5o^k&by;x2j31?T)wlZ z&D}dFi?V;Ner!UgbDiy{xe%8kYlA1T%@v=Zrr(yf|9#u~&7a%{{?m)=k+8L%j+v_w zSN#Ub<3vVN5e~df17A4;xZLAGXcFD`6k>9Sb$J0@nPEJJ*n{45nH7xhHgr{!ZlgEX zjI)VU9R>-xniY_BSDkYBqN@h_`Nc_mn-!z=W&gpIw8+qof}pc_0<1x0D1(=U&6NHUIC^~UbdjQlRFg|b{N4mY-{tA*sbPXR;l;0qV>&2MgwFe z@^@K@4zwdwLHfkST8sSB6K27fFXApu*LynJRu7~OxJrs9Pu}KS;V2RHeP%BQ!FyXa z*qUKC?FX|x+QURrUGGa&v}OmcIuDxTe2?A?ye~7;F28!<{ee6mIN?v@MzDRPFPuT~ z^%6bD$I&HaGVxnL)aIFN-4>MsH1&&;5xy5ie;GuWJ+3gRqALDWMRJ0=Y}AKTuTEZ5$hn-xNKv-DNUHw?A9aeXyK&n7qN^?| zXY6QJI<#IcTd6Ik;t`(xcQ%pIs~{mBCj&*UdrPOhw{(pTp6ye>(v|7q2g;~R+6Spc z)UwRJ*$Fu9DvxwdoP9+qR4*jA0IfB-mnHqEj;d56KzgP5U6ifnC>6H{QOj7 zQMjD$J(oT8U>lbq5(XXzZ#LNs0l<+sqo9~qNH9&*?92d3F*ZrU5u`J}ithcNJV^UX zila>x9Y--7YfhJ-pX_o^G(arZbE)$^~v%83SxFb)2sUov$*qtuMYNs@B=^ zTswE8P1JplTcXL5#OOAe5%kX4O+EaSDL)t-EFoK+k=GpTPQq+qaglea#AyJVaGI;L zKD!S0Mj=40#v}CCy+rbH_(i111<-MS$U7d8HxRMwl%*z~gd9fH4(0DzjiN6Vcq2R7 z=_Xx|9l_fHeWjHG(YstLxtFJb6x}lr>Z0yVY?-R!^`WS}^r`LAW(})6I55_8GurOX zGc{GWUUz73h7!m&WC3~ttz2KM!*)D|$uGn4nzHO_*;C>my>4(*B>TbRSevL*uDHUK zEt|Gij|e^$>pr8aaV1QQ9ttt-Hk)fWrxCU&OOHp=g#f)jtJKCFCH*AJ*g5SzxSY&u6~`oF@}j1~xbBwU zMm(jzQrm9rgvTJc_$SsXowKvt-#L($)&*RJ-!$8Wr_R*%`oCpq@zp>p))ebI-DEW9 z_h2tk8`M`&Od#ayC+hpa1EC*;UM>R6~e#%Q`Q4M98;%5OfhYgQv72Os9jz$_joA-u45rFFNW@~egky^$1NRp3=Q?;-1 z{RO>hHuR;&%jicsCG)++6iX8c?m;IY?;LQ&$qrhT*SM%k+eUr*QCM&SlQ|^EU&`_E zNZFN<5uYF=&#y6Axy>?lp6VM7o4dL zwvIW{&YaY}$Oy2053;Pdyx2yB|b*h@Hr zK)oo4Uf^to`!{^nLx@7e(JJeCvWK)>3VA$*1g^si#b>l8&sxyb-1}siW6?%H-;eMtc-6vWo3vb7ohud7ASnwj`6_hRR*k{ zJgweaabEVa6Sn-f#9}irCE=I`56Rj7?FfG(rg^7)zuRxKT-YZAE6%smFMX0uxTFo5 zw?BIJJHFi?Ptex!m3!zz%%zfL{*ZCJpwi9{QjXDqaO^)NS$7@T_`RyMp43~<<@foMRIU-}HHGOyo^R5Iq(C=d*32}VD( zAjDWI=mbdaM*4eiQ3QAk>3eUX@^^2sEMshPQt-6uWG4w%l_%9wG6OG#gxX9!(M}3gb;F#j5>88NB??ufTTU#$Ca#`f3;m(TPQVWO#T_bT5@< zm8DqicznVEN>3a6gv@2bE5@07-!VIu&7BDar%~-dk}k%ZwF=J zhTY!V;*X1JOBaZPY8m7QB=%9rj>mu$Zp8Q3Fzof9Qi&mL|Gq+Dd4d$C zw?WbAb}8N3^1O)IVC+<$#zo#%y;`nSr{opKSwJGrQ186O*<;F#1nc0#_Y!jJB@s`njEi&3`M-Ai9~(l9{Y*%7j9-;<17QvpSOTTt_;%#VcU z_dy}{I{lM(Ve=i^g3z1o<4feErL0e{bBMd|ZYS`^SB}=}tgWWCYrC(ksSR4qz%FRZ zHG517&}Zdfk+y)go0-OVKiAUP^2nH?R`R-f4V?bkr%jRN`etA?o&$a>N^(73i(Y%4 z{$7RRz5Wl}4z#S$jFMscw8+Gn2%DKifa&1M+y8t{QzOnelkYbMZ!fVuv+ti6uH(Fo zd#77wPrCCw;!jw+j{;M;lQ1!Cf$;>nUbE`cli*Ki$4~X8Km|vzS}>wcO?L+Ft)>RNtVF59sjcf9T)y-MnA+Q`}{g zp~^lwqlIc5%}#NCh6=&)r8IkYx@C!t=*#1TH%;pP74@l$P=kc|*KF!<98==mt^7|U_r0_*uYbwNlhgyoI0mfTQ{ehr&$#1_-qxNpM$|N=zm$e93 z9YMzGl<_)nwSw!18Md#lf7a>v=TV6UU}uWtj`FE84q1ULJD0W0hjVOS63!LP3ngz2 z!%A0op`>+8SHo=mJhIZ2CReUD2&t>zPO1*Op1^kW)$cM@OAl5;&q(y3`kJRr3(A_8 zLESYf&W6>A-&^5%c6XkT5#{hA!ECz9W3@9g__%RT}mz(kdLbPR1CKciV|T3YSYE#n%r z{xkY_{*M00_t78okLdpci2f*lM1M{Q;3%R|moM(V@k7a1gMUZ=l{Cg%n|vr`YcRX?vl=D_~!$WtT^RR43= z;*9j4SU8Mb#axs-eRkDT?p~lSPzUA9*Qc1hP9)wHYvD#@LgSJsTb zUdg&!LnHZ0E}>?yuZbW%7S8EkH7pQmxN>7fs8Q%y?LKPv>l}7vV=^NowDyh2^sr=a zpp7QWLP1Q(LLW#vPwA%&Ke@|DBJu8*vGPD>HjXbIZrBFSddGqT#>u!QG?$)wAf$F> z_-6|7Z@=WL`!&lmWh;0VGwwTi=H#X)awA&Tde;Oco4cFvS)nfcvBEu9vJ3Z0E+Id> zSJ;|c^D^A`Wz_d{FJWyTVM3v;dVPezW1gkDfa6c!T1{`beQl!hpO<_j{ImQJU7X0) zc;jzuIwNA6SF$rT#cg|6`0AQ9;8NijpT!DL&zqCAjVkk9LtNgq+M7!9&@QIUn!wA%nHli~AI8;S9MCs7T2JQD8q6 z3#zga3Xm?|R(()xs7z(WXk7hIVsoGYq)q7S5u74F7!n82>36VfQ9WY7wgsqnF%eN4 z@OYhm1&@~*=tYtWth+ZhgND+Dd~$%=i#HsDm|J?G$!(!7_xU06JPKWr;7y!(+i{Vf zCFb2(e#y2^1|XTZE&s3=-sebSNy$3XxoQ2>sk%xT;E*hv{v$kQv&*-PJVhGtj;4Dxub|E z1=?<>mC3k_KdbwQH_zk=?Z5Uu8x1w5t(8(XbhKM|R=wH}#DZbHpx4g>PqAx(?xLa20w*ALM35=))) znOcbTPTRHhRaBa@-KvFd#AIOyPySuFTlM&L){j@;bFR?KrN1}tANkYX)eaQ?Va{d0 z&6)T&JC3?EUZ^IO%p37;4}*Nl0Ww}ykMT2Q_iVVN^cowgaxD((4zTP3mYyD{hukmy zS+=M?4zTos%)2Zf&J!Rm4RzK{AglzZN=o4c~W$1;4$qJ`1$E=?)-Mxp*)^HVFk zJv)(!hts5qCGh|)WhZepyow&qQLJb#rXy)NJ7`GtQ=_==NaG$mI&i%xh95f?&TgoP zB{fSe)FeSgsj@#tO>w+1ktFycGLj((SNhq0a8Kcpv%mOIps6=|E4*ar?kx6^Wy>oY zP(fZ{!y%`y>r+y_Lr3KN_~DOw$H}kr=AK$T#=A?g=6_wq{YZ;BQDPg&`sZ=0g=~~c ze|RCM{~D}SiG{L9cC4|*t?uitRlUXiqZJ3}y%~SUv-1#R9I;|)CJJiSOq|#h`6o7c{nx~ah8hgCsJLyoVL~6~sk6?y^-IOu`(T|8!{4S36#aq< zV0IUPFu4SRb)4bnN;rjYEIWPm#4(p|c4Q(bGGM6bo_p`$8BFGi)o*mZLUTpw9?!406q4gVOmOr$SB!^UrP`*~#hwzfcO#Za%O{t?xf@>vS@b znPKC3f2Fwr#9nvn6@BFW^z&t?mg2D7F5hS10f`$W`%^BuS|eNS20cR<2(vK3-yYiO35*&lWXA0xVWoV3!yX zbsD8?4Env^X+<(gBmhbVtz?~U@v1I(ExLf>$Yum(@j6}|DTZy0NkMOp<@7kC{EO`4 zSoJiisHuf)q|6UcCR?YKfF2_=?VyuQZYM|^&>e@Ejm{b{N0ihWIOaKU?QovdhSbU&L$Js z-8QO_0p3DKA0;szT~0QHRBnTu-b9?o3iBZ`<0~+x1yf(#FPTsO>|R?H4XTBw$0JqK z?L-9?U0*e;mdz=|F!O2;9V~$AiyC>FaYS9V+*PJqhXcBZ~wZ-8Gt{28`B96O;TXl0f4hWnv^T3$ql zsV}nJ?Jx73&JMiL5qo@hYx;bTF2dP-Siv)~+&ha%Yq93?O}FOPDtlUz(i343QEg5H zR7W(MrqiNNQZny-`QEWlzI?(NQU=!xbY?x7*}HgW>TRGhd+hVpmbzz}smNBm+uYW! z8kX_9Ge(E^{^pVc&Wmx!(kaWKw0C+y4bz;-3MVf@5$B`>2WVFs^H0ZbDb^k_gnEsm z&Ro_yxt9IOz1K|1xcutFOET=dka7r5AkEoAHZ|@sVCWtDqLh67_0=CxjfGva4b9lJQ9M$7Wh_G*dS(0(9uWUGO9 zMsS;p@95klOm&HVg4(b6_5h#)#yN${<^7BURw4i=*`XjV9_+d^sqh}3b^F8{-uUM8 zvptpES?QMTc%9!NJ;U;&8)cxV#eFvhx^;GAp{>Wyju1|tYO>O$quEmE?$+=ph@C)3 z?Ht|H1`)I+R>5fXYOqaQIRI1&Y zt1s{NDIxR8B@37+P@(p_j%U(1_9T6AsBe5Wb{8w=;?MqqCEyxKH9%hW9g_;W>7f1C z4`urM>Wf7eiI`5utsh650gjjs(4o2->VJwGM)NGgM{Pc?-v3qE@3k}`LM?qGQV*=@ZIQv5r6hU=B9CTGgqhRl-dJOk`F@VGK} zzCUZDC)=X(q}v2OoE@9s4z9KSf@?9gI>NPjbDixzB>yOre!D(;oNo=QY8}h#yGqQc z8!kq3b1Cbe)&4Z!h_SYBQDzfxIP{JQqOIPdBVf%v@=Vl~K(^>^vRm~wfh@Fc;7{xj zi;}P~rlwe;Lud1%`2nPD14qIps!!u}LV;GOOyQHXnk59oIMe>SxUzt5SwnJ&S^EFA zN?q414Mn&-M3I~5PLI`ve{9p^o9gem3CE#79Y&0)k@5sqHtDy{JQfP{15hZfahQt~0P~^F#+4gv$b2q7nXWJVVyTbIc zqvf}lS9|QiL(LB8%P&TtUmBg)WH-JKr04@sqF0HcIZ9OV=`${yxW_~HY0S|Gd0}ntJWo(O=6OuE+&Yn_YM!2w_30w-J?4{hTWT14UUHq@E7BXPmBCqK zd%PBS=$r6pZKmbaOZ$v**2Pfk~;8 z-ns;pc<=g)k#0ms>23~va}s&XY}`e$JQR7mdbRWn&X_y5d*R*Uj541D2|3L$YJ|So*is(5`;Xcmu7PQ|>43nD>?uu^X5!@$B+-XVgYb8tM zf9p$JdNvPj#TGF6-2cvRXztikSc|PNFJgdzYZ)&prOEb-!>^*(+k=OFr6`%?-kX{7 z*Y}9hViRST8WEKN=n7p&&emsnr@&8p`twtIpL0in%Ck;Pv$^YX;)KGxyk^LZDTCV2_%{9}3be5EnSN@Zd400& z)*|3>@CmBCjcamb|J3Z;HoV zzlvGoDx6&DWEA&U`Qa^g6v?N~lUty;9~u2-*6MYgimUqNyyh8(J$2DULS5T1PuyRW zlb8;WK+EL%>~qGk1I?2FrzEO~$J=b12r!!={ulcli|zz_M^W^qJpCgmCu^%q{cEFz zu`&75DvYBgxwlXv)tq;&MajHXR+%^O9-&ZYag63Wv$Zc`P`0zAMZR#F)1N zDF_6C)1XYFGVBbfSgIk9BmYbRS~~sbk_H|v6_5hq3vOM7;&{B)PY;G( zWSukjeM@jz9~dFW)PVYWZ2>86o_#n-F>mC-xA$nv$lt7u>49<)+BTSw$1FNfmFURWexj)_CN%nTj&N{@kg3UVx47`jX(OUyO51| z?)v0~j>s~jnAhdpeqxXJ*=qZEue0+C({)vcTiH|xmyyi7&U(7L%U_%`$6dBCew(bX z%^7ly`#f9bg$vUTu)!CMWf2`YhD@8)t92=>ry{e|MjVIEB-UmdJVyQNpSmEyMeuSF zm_ldrUu-CYt&kto4;Q@?(csoPN=f%lY&wpJqCGDv2JH8UL`#2n zxMUpr*S!A0T(yy3jT8#*+2O#8S?C=2>*pV8d*_@3R0*{t<)8O z(f_4CKvVBa3yFNes)ogB%-jz9`W+Ij*jQSB+f!OuvH(l3 zCbo^M_G-j2$%vF=VWY=)k11 z1!PB-@gojThF}N>s(F=75+PIt7x=aR0T!~O>MrVXj<&Ybdr&0aFjIGMpajbJO5V6> zUIL3w%uj0d*MyK)0!#karE`#CF1u-EI;Hdh23|s8q(zNWn&+8yjt;|QdnzjB`B$Y1 zT+R}uiJ^u*BpFehC)6ZGNgg{&3OW0{&@K@tSTYy->}pzeme} z48^nW z|9*TOS2>@#lH2M(G1E+cU8Ijuo!>H%=pKHx!JE#Gy|c*jD?RQue$k=b84IvWsxr@6 zkkid2ezZ$mQ)0;(yG<~g14#sC>Ow;Uo)@SnIG|^8az>FvJxGij~{ z`ubG|HUA?Ud}zl^eEZYiOL^#O$rVL&4{-glE_N>p#WJ z?@nb1?LHmZ;2rGJj=T+%Rfhif$kQjPz`5|v969xIs&WzFt|GCXkJYAt6eBldU~g%B zP4g?p#Vx`hxcCSp2hEQWQgH`(#fj0;m2$2G4PDo`bR$3fm}d3q^PJ7}GaOn#?b=+8Kr~QTLV6 z(8}yD8;kkXifEP5%#ojGLBAH=&dl=e#})ZloICK<`y{3=HA`Lp;L8Y3Up|MJ$9(c#TH;N==B3Y- zd9}(yQZ2t+&n}113}JI*LugLPlgrzD%QjHnB#xBV`ediynmSe@f;xS2(6cIyThL5P z@Vi79sZiBv=7$~s(6ruAiP69W*ZPg(ozCXOJ1)OxowqRYJq$lEaVIZt8!L7@xjY4y z{P8U%W~PpGZfOqOzTXuK@ryYwhZw-*O+LlLE$I&YdkL=s^y2sy>7E!|y{4q?dyfaI zQ&F@jYe1+%42%A#Q1#rI9FNB!5vFD}2`oZccuoWuhYJ=kt21!e7e(BnknS+E1f$oF zkx^2IT8eAUM`)&6yc(@$YGiS7akKT?{c*|3896M+<29=-Lfs>?xk~q2u9*7QZ#dum z7NSJT3mf6WZJr{q{y$>nziD03lP|BE!fm!v7sW?%okj<;9CB4A;!Nn38_l~cVGUQH zlFw{_P47ABl0OA?0Mq=IyoA4xkY|<%6ZNb7dxUC2lBn>5h@nn;M<&o<1BusdnG6pf zc#ulmHpz0Jw>C8RP6yAe%2!AR3ahS+b_%2_D+9dy@x*MV+4Ye_S>nA6rA@J>`G&3ixT*`6}#wkSek1BQfbn#a8CY^_c9My|tqV?E{62*N=Udz0`mxzz`^hzITKv zfvFHzRUR5d>;p|9{+g}Zt9|)eubWGtV7Du{_Af3?PlGptUJn$D!kj!9o}zx zYQ@}+5H!#^9u+HAIFTlb%k2KsLrySi*Opg(=A8RIKao7il4a7Zw(O}BA$=9gHT!%h zAV>=CWMe_bGa2?UsWLk#MI>;DGSvFHmRxXTN=}SXE~;LCoWa}(MQxU!8=`}Glr^(< zi)L7!QT&-{`%48@)1+ zrp06_Vy@Thu5ykM1QmO60C?8LyQLwfYH!V`nr??OjjyF}L2ZXqm@>zs@wSDNad@F__yK+PrP)bsCS$rvf5xkcE_X$9S*VY#ouRVJF7ZA zn`80C(`d?e)_Y=m8If;*=EwHuPHOl95fzo;d0?-}EnzMy)OCRoAmJnqxSVB6kKo7{ z(p4f+;n2}!KC?^i)vr^OMp*%D1%8!g>cN4SLo!8^#f%R>-Rx0I@u24&>DK?A){Xw$ z))P$eTYTW#?fH@7cHr$dm7{#m?Yc9Q?(Thw!_{X|(>ZGO>LZ+*=W86H`5J7^1>PDq zxhZvscGnI)8mM4;2ehdsY~Z;GHtfvF{EZ-asz=U>kH5Ypsn#&2@tY%6{nZ+LD*f(_ zLFfw|mJydUkh6CE2S7(c8qH_7cu!)hS6*I@i;tgR>L@SPT3#HYU}uH4&M-Uuyh8$Vk}u%>Kz zf}>&~nX<4Z$+T8D{cr&}#@pk-0NXXD4WZJ2l8(s0 zC~49^N;-a#iWv-v#0v>DMTI7<8v|V6QTv|&2Z5`%TlAl`>%^!4wU*7<`byY97D%;M zV;;hhMb+hh{GZV@8qTkaO59kuF*nw8^J}K_u9~>y*gO_#4`138uTz+nkH@`8Xe8Hs zoLRj*Xw=iBEZ$;5px-^Y{7^ou=ccgNC^`ILFmWm8 zj;vZ|Zv>m(bstkt4?tR)cavsH<4-9O0w4sFNoeznmc5^R!B zk?;?oA73Gz%B9e6>v?M~;G9f;+ZMc&gQ)>VB6m}GbZVl=sZqtxuBs^3e=M3XNJk_h zOC}HKq!F5IHYM9E0U6V9N&63w0s12Kz260DrZ)0lSdC(kZmbZv1~hnXICsO@9Rl!7 zkN#);_x05VvAw}*J2%QRi~GK6emo@3AN$0287Fa-zSQehgXg8ALqqr2K>#xqyr2h&x0c{BkPwO48 zn!a)j@-yNLIc0aGxk&5YyD?_pg-%TbIo&$u&Z!9plQlXR0OQalxtD8HyeLG!=N)pY zXP7Y2y&wI(lcWmmir!8!0~oM>*j0_)hT2uR0a$oEtw5SOMRt_@RYQp6UAb z?`t>r^R>S8UGKSw|E5&9bZVY2>ASy*t{$Jv!Go#d{beL$?iqhvQJ_TpMeO3h`OV_~ zqw}9Hg)?V^aZz2$sV~9-#$6#e6xAS1!OVr%Rz6GDUxNSwhV}8M$(R3a9k`rVU&1J_ZxxVz!|e;Ins`uROl@2ALOSCpRu8Gr_jm9*AR?0<;P@ z$k|$h8Th07sP;xd(w?&qd`eVbcTnYA9+gV0UQr%zyL;&*-#fye6RQ!}z{1nN5w-C6 z)mgVNq`NsBUkVn2Ui^m;)aDOAk|&?2W!pSfNX4L4Q`GhSyQI2$lK3v*3|%JmJs`Pu zk*eJF1vi1TnVJ(sX574(fWJ54o3H!M=#the37E*|*Lf%|8410I_oc$p56n2}P}HC- zG-f@O>1zRb|JR4aJ#3b1U7yErx!ga1aqH>Ql%HCUwF~%pg#d3HN2^M_e*)C1`OaIA zbU33XZBENVXdB%n$E^~KnHN=J@_Q8-4No;O1<>gU>(0@a|%nAih(7qmj|+{HN1fyf(?1?mlUl6?Opf{%;@vRsaRA7?2f6 z16<1y@`L|+`xp(3mu6=_la!Ge_0etd)EH$R223F?44*+tSvh{z>ufHTIm2Z^=$Wrk zd*n*{6P&g`knjR?G!P2nf&(|fhCxZ>knevH&p1|SDN}^CR#wDoSB1h|@hdVWtJUUt z7=Fcd`^>W{2}yGfugDLdo*SsAYq0&%s*%{)FmPDf|L#5a1}Oi(UAC_0tSJqiJ2l^G z|GR4I$!0nLNlgDCNqt^U>pr60Fc+&O20Zr~kK=y=k~U^ARes&^ZaM+Gjb-;6dL22f zFP>dqmohJ?=qTrfr-{OhQWo6?l+nf~cvxHF*&THMBqPUeC+`YO_!}k5I1OdClaHRY zavm1+Zuj7WZj4Tt7aez_QE*oz35|H-z!@x@{(oH)T{{f|38Z`5&_=ssUV*uyDZ0Pm zbZ3Vyxz!q;JJ~i>M+>AndKW7z#yn12@jhyo3)7|psdQL^*JZazSF{7gBc6! zPTZwJ7!SU5u&nkbCd#F~;$c3W;e#VT$xmY zmF$k-S^v4p(nLu@L#NneuV)%}txHr_BpH)9!2pnV2c3dWO)RXznGaV=)YF{Cw8hH!G!coE&!`OQUGcz7HLQm7z3EHK?~z@*@N zPAi`tU#M1Ux*u6~VnrAd89DBdaEk$CO2Rj_2-=OMu>2iSDylE_20Ru|iC>v2z#?As zt(z}k`n^K+O6$kNQa=Rb%bRANLU?ZJPcLEs4UJ8!4Z0F z2HQ%Zu|9M04i(BB{&K$<>=ChDeU}GL?l;!o^Z7~P7e{JnEICMuLCQRHBgfMK<*NV6 ze_JPY?7-Ko=IMyAjAwqk#MKl@*IPj%-+{)D?omP#+K^T^b_IdYUlb?@ZEC^7r9 z>hBZ@DZ2<)S9^`}^!2E3-QNF}OR$DZ1q^a?uCaDR@vh%yu3?Pgy<*hr>FLnS?F^M= ziDaOyYN;+`B9l(V8k~bNF~Qrr2&dg?l~JD=RS)}Jg2id;YTeyifL(Pi<*&gQ{9URj zSO<}x#c2r<4{W?UU&fLIlogg;Mn#%5=3`qwYh?oknrJvG?6u8E*_c}ua0i??1A zNgD|2vWc=l=g_{8>puKK#ED_51mG7;YkSbWF=Cfe-LmDHrRCoU4>r4S& z2`Qw-%g*cuA8G`bVZg15aE(0)!G#Kw65RfhLCTT%j=5S%YBDW8l+lfY) ziAD!qZxtOiCdH;@$^nk7WNyM;P8HFv&e`mTPfmI>T>onP0{&$Tg+XK7Q1uToP0&0*2)`%?SiGo|CzVgO_2qj4aT6gMa z2$o&2onUiXPd~HBSC`iXq<5%7R|lSZoHuXE=?xg;lb$D;0qIf1(NBf@j3-H{jWagl zXr9n=S`6rP>sJ`nf7eNPyy@=|XkOijtyjD~Mb5rW;`-RjpDO*zQH&FdlKv`B{;On)Q^%lD?^3^W3Fie-~Z#Zs_TkfmD^!xh$#TFlnc`Uo=Ys zL?=~g3s~?cE*DQkf;JXY4i4;Y(9gH>`w80Y&l)}BXk?97dlFjG-e@AHg4IsGywp3` z@I3ND5voeRF9M_m+42$10se?vQvW~i++!gmIiOMTXw7&|t5zC+jn5z*ikX(vQOrMj zKz~U=t0xg3s58@BkI<+S`S{rj#R9(DkIHq+Ofb03cd{lrXad6qs)rv4qECHF;-kNc z>P(wdJ?8n-WJSgzb1IvhG(?Gt@ zd;%cQKGWbX!h;!G??l^?+z42W=u$X^&Ug9R`)!St#uOMdV7DBX`NXWZcO#i?A_Nc{ z_2)>3+>_`^#8FcDn5UwwCtpCaMqf&;CI{(`&EwF*1SN%Ed9Yy#h93lP zlGmi7i1NIsR~Ns;v03|WGck6*RY7xbcb*ZwaSnQ_pv)9;$MEizL0J5|Dc0)mo1gT? z#Mr0U9g=o#7Yo74E6q%qGv4fhFPXSY!L99JDacLp**pWK*Ky3ir(`bs8-Dmma4l5| zlw-(woj1DMWwqt+7$lkn7E?y89eQxVYJdyHz!isKVxH@L6NOCFLPWb%u%!WIA%FX% z&VKpWCMkKs#s?Ypn@-!~2|zy#-lUp$yObVy+&o`ljRd5d*L?kc8_Hhmoi{90{#owc zMz;P0i9EXUBe9o@_)v4dA7$QY!Pge78Gy>;@P_!FAUW?&Q*U)G+*+Fzila`{kIw`MYW^a zR1t`H-FjFQeCmSPeNCa;gW$shZ?25MrIz}+GgW!A45cY)q}XyJUL+mtFB z)Rm*9>21eLe1X?y-{PF|#Pg^P0ZT%``b~XNo%0o&@3QBv%{L^+&W;Wc4wnN1Aaa~b zW{0q19_9|vk$*an1!_%`^?|fpG$?l~W&VLIP=A_$A0W8xH{_ZF>d&4RMlRYm4X;&e zGZt)*fq{X4!mQWgc}ZEDE`ZL(!=pj@L+R#qT2fN}ozh6UfVY%6$VHqpr1v*KQb}t( zzbZNXa@gYFKzkZ{slA@fhsYj~yIlsqvUMP6TYOQ5bx$u<@zgKun0XqEZ9WI%$J4&i zl)34r=-?^z`rUZC*$vvDGak$0kHHDidA_?ueATm&wt zbSiz(zWAstUm2M!Sk?+^BA;fvPShaXVB8hI#r*ddzx*;3xK#GWZ{p~v3m`rD)w9>Z zB|N>3l!wdI3kP<7z%C!^LO#@3Rj2U=A9k#T2eJ_)9N++t#$X4S;VUx>*xH~Sh=F~N zS`@@Ba_=u1Bhb+XKq3{(_QD~NPJ@i%K@fNW;Fy1Key{Wc+J23gTX7YBmJyv{i1qV( zZ{i7wY!5-gX+oIfY6$$ds)J@wx!Monal=5gb2yw@pS+(AW)*>g;`gC=`1VerYJ2>- zQz5ME=#gywI?zs2?ndWn)>kW0hx1aw)vgL^T*^v0T&%q~c$EUl&`6zQ1zZ24t5aT+ z*%{lONap!OhG|0S>kIm!f~?VTu@=-b{gtWF8rxH>oyskm5rW65~A2jrBUt1@)fq3_>_P1>G(KLE?58;rqtfM6lYSWn<_Q1k>x^cB4DAXB0e7 z9ks?1VOu;_<2Pe#?F^jEE9dZ6DXyeO|I>~x}N9Sf5x`pm0rgZ z_YxX&5u$H1KrXB4s=r^5SQiP;-GO`>bbyf|?jE|mVXgk1_JY>N3HOddVFj~A3ia5ZimBWBU9(aQW zS{*qe)DFKY1*L6hZ#LE>8$#Fi$aTB8)()t;^mnJL>kc~5t%pBA$Wm5@wN2pdsyK31 zBN&rvy#=SIdhx%#_Z~#-+sY_FSD;oI{KN`xXQdFng@*qaBA$1HI)2gmu?)es8S(QKK>k5sm;p;@J^A8J0) z@HA|1QJJ2rKh!tKBf|*)&O6$J;Gx#s<%HOVBTz=z0h);$)J$saRfsC9TgBbPu&E!*PE<| z9})?>E%0Rgv$DEcJor`Kg~9Ih#TD^BW~&q=@*3}H6J{yZDy4KclqSD+>?W$OEoFD5xP1E*-dg&?I=Li;MFM`Sq;k>Z$Ckwx8VE zbq463{{FH(ayPfU-mUhz?;6|XTR!$#nkHA3(=KzPdpNBuFn_7v`^ewlUjx>K`w!5wgVE(K*4Lpn!;Ky6@XM>pX0|UK{oE2T9tpWyn&nuc! zUKbY>Rd~CVG(6z3y9XF*;@|E)7HPqb7o}~H{v8*NZ`NErb*}`RES=q2A8~e0&J_5= zC-ZLW8AQEg}w5bMXslse;jb!%$YbOUvDo}om3ou>wAi}G`{96JeI6AEe zNTl7qDla(kb`_7>V%V!s{vdc&xj5om$vd=hT^AriCrg^yw1_&m=3BhebnS?qi9#Yh z3()tGHGOUCUP&R^eKo^R^soB2gf~~rd9Fr(eHS8=H_GEwShFtTG_zBKnY37 z@^8&~2;AZYTV7$fl`ZPz-}vC|vPUynrO`kXmV81_3-fE3dw1dI zPgmo$4%8_({eGM%!fiz0^Dv|Balq_Arvt&T>rrZ9!y%6++ul*>o94CmDiur6F2Y_S z&!ZP4^isw7)?Nt*eJvYTzl|gs^eavx`bI~$?gL~s5-dR0A}$=zWhK^`5|q5*Z0EvV za+QcFKEOy6wT2zvIQ+lEWQ4t{K?L{e-ToT=AiRlzUVxy3(#qUz4=5?KXy?o}d+`L#-mFc!Gl7u5uH{!p$`MT(6K81Y0vx!AUjW z1-W=q;^VbZgM%}c$g}IQ7{luxzNJx4m*4_ctM{UF-UAP~ulmAp6!Yc_N?4T#@NgTBXWEEn#?TE0=C3phlWb4-g912=1a%%Pyj6lW zKvPP~w_9eg(_?8VPAPB&-gX#i#!?J&-;8uEeNT z^H!wyZ%ojh++qYBYx6Mastd#AQp7?tN*_ zchtw`x)LM)e%0FA8j3vt6#C(%t+ymV=!gcIHUc`yjCV)uki0K7sD;F?mAl4)*)q$l zOZFHDIPi!E{>D`J1h~Fg9g=KpD}=RV-($kIN`~{Hkf!(TUrHQ11C$~d)vMMKBS}WN zzrGx=4zCz)GDi{(=#bxqrkIt}n}EG#r8U`2=MQZ_m^HmRkeskGS8XBF=2j*)zZ zp30o$?+s5R&3~p}5h*e^&Kl}S<5%6@hmvAASSTq5s6{p`tu4(^-yp`Kfyz zw4Fl$BLkMG|EK{8?3ES>-1qliJ#i)I@BNnp_n#Gc;lL8tmn!P81C zMgZeq5KJ}UM&K5^1B@DCXz!%_ber85&;KmHN;%z~2?iC+tw;uXdTc^M#M7oW`pSsN3*lq2Le`->G06_Q7*P9F6v3`=NR)u7KFr)d>O82jAR_D3~F*C z0r(BP7q~oviyz}~CLU#bMHZDhk+-eA1FaMhRqys?H;_Wb`o4^JiB?HHh}sqtAB@KM zTnG}0iH_t=F-(5lAApPn@b=AWMsW)CzyF!xEu1i`wJQ*CE5GQwx~!`r29ZQsLw z!No%aTA67wopV7l&p-BY-u}yR#2=10{Nv(ed&v5q>(;6wFO05G+E+1Towk=tZXC5` z=|smUWJb`YAKV{2BOHv{*0gbXYHm`OIEAM`Nw?n*J1~laqYEdw_W_Q7J|KM`c96h@ z{ypEXQkI$uw{TF1>uaO|jy)QLAScu|du=ZOe&GQ8BvE1Drw?e^?qf)B;g`8LkVxnC zPcNvD*mK%|T(`_>iuE8`k%NOntmcoPGpEgLNHC?h`ud5OUQ$LzR9~OW+~(5vaQjXS zu8r`b%h6Z9juj=S+lRe>7_Q80Nye!j`0Qr*ZwLu`G`_Xsg|~ae%fX4YLuu)p73zhq znGsa!^kyd{M$GMc^ACY71BI@&ojN5K@$C*Ie3Fb70@mjNmI>V z7WMIC*U5xlRM(rC*If-;)FqF6sXX;Nq?6S=FKc%~yb#Ptx zAVMX!_lp!Qp`_l{@OC>HaQBvqpla=POqfN5q4jCUe?n{6kYEzKdF(*0N}=ke5NWd? zughN7!D8o0-q#EO+TYQcn;vVLGAUU?27Y{%Dq_wT@>VJ4iF3Mma_e0e;>VT9BGLYm z@fTf3RJV-C;l{Rcx2Pe_QBWKKLH?lP2`wCVL3&F``<<(JEav;MQrr$-wbZQz?|#f?nP z79NM@CV<+Hgyd9=YVW-^ODFqyOP z^sB92mZz3HeT}u~fTMht#R8{Riq!ZS7OKd&Amy8VQrk~OX0n-ie{&+1dn^Z7G04!| z#nIY;+QL#Akr)3H@ayLIzw91RA4`oW3jQ6)xGl=$8ixHczQB zKHV2dB&PZmT+h3kGa^naB2L@+hqvN5@_c+U`}56>O>-f{ck>?mi@7N_xD2c*c}S4F z`euY}BJQ#$t?&sLvZmInNPc~Vzl|TvYY()M>e(_6H3S!KmBqVt^4L%Fbvg1J1v!fD zKN~u==mE?^wvt+4d|$)0+T;pd25p}xInV$Vhvs69)fH0U29C#ECqMz8!haW&;k5>i zuhBEow8?ysrE;Q)js1&r>{&uO?WikF$M8Mg+BxV9_}C<&3Y4B<8&5>~rzh1_gBU0J z-^kt?#J%FTt-}adV|@8*o!BkI^Fwpg;8?=NIg|)u3*9#nBAlQz`&HCpfO3rZTDq>iNay)7j4E)g+1u9gOpZt zqJ9z1#oXok-2Q;HiBYm2A}8s^=51(@%UR*WxVsx`ip+vVvCOvg9x98CPHQ5onXKiX z5G?n(_%i`<0q`Pna*LYCVRV!>h0BMMQOsxW`O_DYj1)JYJ_znNj!r73%c~$Lwc_-O zaqMqnm#M+_j)0J9jpbej!KhdM1M+_*7}qfP{)B|{)nRm}dE1J8Ply7Q*c0#Lcdo=A zp4t=_f4|Mk=!(uu_dBE18-QL`af})rIZcGPr%9#=po?U9;2fNC#vJ~(ybJCuZT0=5 zR}}lfQ-&nWIF-j08#&zz9>3KVo32_gyi-`iWj<<$cfX=FPEgbRZ!!WZ$$*TJ12Xmq zkg*X;IDcCijz3jo^^2q>8N>IS;K6y2$15myB-Jkv-JbYT%{GF+UUyUFl2QV%)_xz| zlD77X$g~zo1wb*zDg^^@FeMlrD+CepMhNr&repbvezCE*n(kpD{UcC_&-4sgo z^@UK8>UsVVJf9xjxCWp5Dx$IaU$Dv17r)hg;3Y~Xjrtv5aLgrGiKUvM2)cd)cYvoH_&3t}V z(Ig5V_p9FLgP-D7#l!#1EgELg%$`S5^bl{EdYb!G~H7uC>8n`lV8%fTg3OJv5p2?di;`#_1HxmEGm= z`P%sa@3VQ^lCZIh^y_=_b^=2|=Fuzl)E)TaVsZS|a#JI1PysE`sdj0T$1y>S^+Xdq_%NAD{$zu*RrIng+yu(@}?fnI+k`Y0DhKrrQW zYjjKZ!ff8|^W=4C4u!#!B$mg-2u8ap$mIe$G2)O&24&{~4uZX3-TQ&~VrfU%mPa(l zBCpF>>dcgXg~bupkbNHtv&j0~Y}oPVAW1;XEeNEhLaxw*bCIeZ*1%qtgsV8cfO)Zem+}e{$d0&?>FkcK8zFb-;_2b9i?HL)n zT2Fg^VPK+`e*4(DOFi{!-thcE@J6NaMG|R<$b2VI>^b?dhL*feChxS#D|;IHfK?gcCI;1*R7aJ;2?Rhd}V%D5*QU(ZFi2W zt$wGX_v5KeJ@juWG;mG-m1m4Y_r(I~JV4Y-N>Z|&|7GdNb=;etyzSdNtM*HH0@E}z?I_thh)UsdG|92|F8(gR>Cn$m}QWY5{nT}FP(q;`8hAd{s{UeBZDB75T@9;~3I zbamX8u#=$%}+Z$VRS*y<7nV@{1`z&1$KWpAN-Gb<+ zep1c+AD8%|n;$QwT~ZyU9zOJ0UHGw>Gr4cYyVpu6y1>Nojq-DBC<`UCh+W0*qNMCA zBVr6%dBZz4`H)E2q83IsezS#0;i&%FoX~eV?)v);iFMb#Z)Pn^fnX*ToVvDq=uCYV zY75Sd!dboyplaF@)DQqYTA>FKi@mB8Hd0K3T$kT>=wUF`i@IQ^^=^MJRlx;Rv;e1j z52D^34A@uz?7Eqr-#~|@na8}~(k8s2e#kHFm)`VZ=%^b_l<2rFh0>-zSg=#lMuMKd z#46m~u~n|;U)ab4)vjjT>1%-UDMwPOG4KV-U&_mI+S}W|8fCDVVcInAa;AFh)qhzH4GDaf{AdL?OuMQKQacz&t>BEW{G@}&}L`>mmhasQ0Ab|5oRh|=8XQ?TRE z!>Qj_`C*t+3m2Iggge5T9OdwYU@VB0T;wvYbno9OE5b9&g^_(ag>9 zz9L01Y-~*{E(I>6i+Wil4(zp~5HWpUv=u_jm-DMME8oqy6Z*4N`d(z6!aAt+&_~Q5 z=a_R0KecVmvgD1(g`}72gjv+L5vO#!hn)(3C(Vv~H_x@pvkTL2+nApt65du|+`i~5 zrvjT3=yp8TBvY^V(8U{YtW$Wl2_Al~6;ehYdSJ>5nu2>zPB(_K8c5j82D+l3i1dv* z%R4inFPtm}Q@%R!YcAAX+QMJK+F1>E9|Vf5?$egeg`g8(m66A9My` zbbP zL8cUHSEF=^5HwmNd+2sqU*fnZ%;1Q0dnL>D#o>&=04J74FD&NHi&Qsg@gwnv%I(a0 zu?Z*!vLNWZlqQ=D2Qv~gj+vF+eWQJQeqvU`URhxCUcoSEHg5Rw z>P9A^3BR^p3%6E zpnG%k^YcW!&Mzt|D=%_PWYb$*8bR$2@7Dwl9CrnixsDkqMK@7_YVUgP*RSxN87k6C z`vn@$4)W2G`!)+8fl>`rW7tK?VPLneBoA`NyMnWJ=!vo*+;; z1v}t8*=(Brh&`m>n=F&4G0K5(TORfPK}WEa+9r81J1qdGAO8$B4us;tNj-!>F@iy z{k%HXiL=j>ZN&uiu$?XH-zT!5m~9K% zi2TB0aB@SS^uTO39o%H9UCu8qhr1&3R4UsM;nkGpl1y`EJn}r^zMfoYamW@9cwlgM zd*kqa^;n?Jg~IG6&GsC3B01;)ETZqk_Ho<$xblnH9<{~(N0_2oMhPGj^m`BNMyp)z zPD*`{C`;L58P06>4E#Nm?ZggOnrG&K0YQ4TqBjOZN@I{O4@N!l?OX_@rl#AU>i|-! zgE2L|_JsvXbb=SroIm{(MIgbgwDG(gTwL25c8j_fJ381PGhjS`Xsu61YV4bVQ$rlz4I=aDztfI}1y-7tbfCD}t~<2l!wm z*8HEDC(n-KxLYQVZTXtnzdp%14!n-LDX!Z#*qd6z>(rjJKmHO!bo2)oaFzE7_V3I_ zb}Vt&EFNCo9?h3{dSDK)%F|w@d;7PG>`#qoSIG95u)RDezd#8IjVUsd&b+1GtDeve z|E82TJv>V7WSOi+b?d?}f6c}-#Y3Tlp|^BsnS>r-T{<+2Nx}M~yIcG$@QKG&`RIU> z-V&~-k-5pc*4YG57F42xVD8S5gHm_8jUTV${+jO4T3>QjVppwf191DWa8ts!HoSX956;2#dnBOx6aBl z@|nZ({k-|`@T5l}ozlwAbUrh`FPmu}5!gxbEB~Y1XeqG!R)$E0@1uj~NL$<6PLFm| zY+LB00uPa$CiHxonJ8%Pek4=LuqAB6}o2V7a?LnCSSF4oS2ZF#37 zB(Eq4_5A#zn1rJH7A(dPxGPQjJ8}|rEgW=Q%#6lFM~OeK z>nkc_Y4_%&{A|xtL8*SB2L`fKR1k4@Z z&K7(q!Bz)EA9b@NZn!=XW&5+d)8V!fM7u*vl5+amN4((-82#A%10k55NSo!{%o;7W zB4N4`YkfazFg?5U1B*rRzw(PCAwz?NH;En*GHLE@$!Ni)+D0W9BB9rtSRS67wquA4 zD|2PkOm7xl%3r&qfDA=!4of1WqnXNsc$H`Sg9o4cPGZ3GQcL!RF7CB4bIhZ?uDD^i z)P_%-J4~fNZk0HG8r*d?+5E|n$6P!{VL@5eH)cuWmIj0=HRr{N^uIp095C3?qe!oV zTpN^3y5ywu{tsU)-y=z)hQb9{G3luDlaG3&xereZ{k0#zWW~%9ynx5? zx=f0nO0kDtn8jSpZ=Z5<%`pA(7i1aaLdTAszVOJN3Uhvh?K?vEITM-8tfgzU^6@30b}`l3nJh;De3DIzNfjysSvS_fQ)RJ(p1tmc z_Nx;ZS~!^U4R`o=1%2yjQX~l5%JK^2_LL$MTYU2Emh&08aLXQgu?eHElG}pgWc;hQ z?q9Zf?xjJ`sB!py}@8RtLSy7dAVZHKR;`V*4)QKi?^((y-&Us z7a*$cGfVW~U+0VdK^u>zN^sgkf@w9)h~b6@jh{qbzk9hyniiNO)ZNKB$pOK#dUo=3 z_-*8eKT1hvzTbm1-pl;;93iyla&Q#4<`Yy{U+uo*&Q1RCx@9yB!r&q?`yRPF>2Ra+ z&Xxm1k2IN|$Vl)Cz9rK@%=)2xWYfumtD9}}&KDodjE#1NR}Z4XSbJ(uR(@~a3Gbzp zer+!PKAszUviw7)!&iKb3KXAzxko<2^&R;JZbM|z(}`LjvN`$8up71qBv=H1jFh4P z(s+XN$sNr%3nboyNT8F3Z$9HTmn=oLP#$^{IS+5ECx}RG+D7}bt48jb1)eX}6HJDu zz;!6$?Ha1TP_4oW5)SJ@Vq)OYOdsVJ7LK?zE$Ujg+}(PxRe!8>*_#c83C7Jdxg8() zcDCbDSXd~v)BP$8KEE>X6eDAji4r&VEj8BRAoO<1CMuj1EPq5v@?k1qB!--vUUlb~ z4->jlqU(1VEio$I{iJM-{k3HQ_N>JYqw!o(@NaIzq9NC&<|cbubU*fI0v*rwd=Al% z;E#vqJ#W4Z(IS)C7#=8;KEJs2WohsglcQL$LlNcpk(oDOR5mSZ)nCWZe|7O#3Q@l| z;YKN@e2Hqu`%HE;P(1SqC)|ns9~3^F!00d~6donN-)pa2%Z1N;^x-OQy;F)h7rI|d z?Hc~>pC4x9?rfTyjJ@{qe8aB-(-Yi0>4tEB; zzxr5HOuY@17(%jWJIQCyUwfEkPVDe}?G*6R7v$9SN`C&q2t&s4V3pAR*ynEiq+dik zLa!X{7ANNGLm^TSOFmQ zIygwuA}-XuF%{M80xXm;7(%v54ScRjphHm}Vi%A0U+!2e=)(E`az_ND>FMc%UglQl za+Kf?WJ*u{w}uxlLB0UgxuSZct+LN)eU+w0!)(<!19UY-##iG#BDAufbHqMuJx+Zqc;@zvl{j9E4KUV? zu2)k%&rk9|YZVWuW=(eLG)_C0T!I>Y8UtL* z;%gjVs%CA#JVER&aDs^c0$B(;yxj+e;RZ)FP$GQ>%R`Vs*u8|sUnFumHGu5#yj<+8 zifzmI(8pah)-wke>lxc^DTfZ`uAMJ23P8xm1TFw9BqmzBppdlGk|BUU#a8)iyC}RdrS>qD4Y_8k zbnp9@)V}<;#@|2a>sxVOvTQ`+-XpJ+(ibK{%2wHwu(ekszpMRX?1>t!s9&?Ob_Mr8 z&Ja80GJb3L)wMpMzFY7bB7S@0zd=;A^SVlN)Yo9+>^EOm1O=lelM4-S>M-EcXFaj4 zg8sHE6Ux^7^gzVW0JF3EKRcU1#5ezsoe%2^K^lS!D+vSuD(VH}r2didg&=w8Nh2j8 zrh~?Sr13+o?Ls6zgQ{y3Dmpq^UrEcrL>w-)Q^o1r-;c{p zg`=aSaUkH@(_Vr3!Thnz`@;3e61e&c{i#JmPakEzXDX#hcGtV954(`2FqJfn2+qo? zz*t&ILCeDib2f-g0~#W7zb;%pi4$sHJG%eY*F0(B*#m?CvMxm_*XL`gagh%R1U}$C zt`U1c{bn)a#Y!TsqP-W}TIoV?*>WSc`xX{6|3i{P>wIyo{8c*(@MX(&C*xWsEP*22 zq-YHGOI62Q)d-$mFNoTv zLco{q!6d^?)EUs941<~98Wbb<8ZJXN*sx)u%@6j=jfbh=J4xj7IuN1U9yvVYps*9U znHM-N1BzXjOUQZbqeTda0nzrLVf+H@Lpe?fPS_a0hpNI%B)dM2L&)f9bBob=FZ%lrA2T8gg~(nQ8E; zzne6<+dt|I|BK2q$oIvO`ui2|j*lwK;qz1?Fm<1YtU%U4u!fl3Nen&&sn z&(DkT)+{g|iV7*E$%>?~o8vOoLE%%THy9E**#iQ&Ql?s8p)cmS#y9?I#3j&golG5GXDJ?M9_IZBq%<;}U z^L;bN!5@llxbJJNYprwDxt@k-uGB^x+1O~wG8^@o;tt*A5{0bE0V^c?h3NafO{I-@) zy9awcLUMlrlaCp(9Jrj16aMEL=!AY8ue!+kG^*B$*JZ-@_MpxL(J?SSQtInOs7T*XF z#B>Qi4rn)C-FV)ePyL{jsJ%hysQB_@HedSu{{FI+_SrL7uaT*R)-yk|;Xx4|qj}6Z z=U+OYg6!xd4Nn7ai{XCW`-4WgK3)=f8M7;On~^gdw1)jQuEf^5%L@6u`m@?)Obk3e zRxb3D$4y?qYT>?Dj3I!wHyyBFI@T655zA z5nQ;~-5r@5-zic2HL1=_!=3Ff@7_*q6ml@(9ylN4b5Nhn?!D-@9c0yPfS1wtd3MZOf#|9ureO^!+*^`7*tb6R5rwfu7%7^pAKV>0t zYE(i(x|gf7Stno+wjS&uZ~{BZ14YGL&8rF9t}is1-c%0bY(BzKc6DnteHx0GRw8i? zkM#IJI8Xtp0I}gi!Pb|q6_9-SZ1&BRB<$nq<)w_gd=%SY<1RKaH=>4~oBC7(Eea(C zV`o?s_XxWRt)?vVCKBTUf~3mA*S9#kL^YpYi(pQB`<+s~sCv>b_Y#ar|LBe(b?ewM zT>5ij&wsvdI;iP=v0rqyOQ(LxJGMI2j&5sels_QuA9et%I8%d)Gk1Ld)ZD$pwNK~d z76;8953L}kd(3tys{h<4iVm(w@;dG~3I$MWNo+8vvJrScH9Z-t@;IopDF>}Ulkt=4 z{?#iN(qd8_<%Rhm?Tgo}F)w4fq%av@Vc_HNfP!b5b<)&O(}Az~k2wk)JpSOj#gXU5 zq}UsKyhpDPPOW#H@~SC%i0j9ut^KkiG11!$Q1Xml7(b0rghfmNGz6CAg>4mM9M3RT zUfnxkNQ{x)lIBfs*v0a`C>Aq>ap9jPQH}}_E!Z|f*Xx>HR6^@ zr>x4xS(pf0R$$84Z2ey@lR=P+c*Q9~B9YK-sFg_FcQe}lRUoy|epK7<4NVvPaZSBI zo-U+g<6nFo+$b3(^fmxrk2-^p>VJq@g;WAVLJ&uA)#m50aCqD{k~L_c)6a6uOOYI} z`dJUl%rssmZ)csPYK&ET8`{c6TMC%Tu~cS+PF$USy5fI*U3c^FRuOrX)gwOsdwUP1 ze{@GUP6y}}x%}0Wga;3Q(G>S6ey&fhtX6G$9m;_ z+zN>-NHV3)mmOCPZs>Imm=4`9Zu`T6n8`#YuBlW?Rp}1vjMwsnKyCXN6G^*xy5&5z zh#q$+t;>MszUhqYk@%Bc>)CA0X{NEt%vjg`u8U3TU(I2^cQgb?Va&@qNhDI^v&m|0iAU~DT7(Nwb`;iO|4px^kP)xGY=i|@s{eG(&!6uc= zSn-vNesHM=C0E6SGr}{{Ii)Tyj+p3@2Vp&gsdEXZ4zs_rO>@qVz9BW!4)gm=R}Sf8 zxu|eDf_$+H7r}IKXzEu^zr$G#oUiest(A@jI#J9a9f=!R!J%6`ucb`9T;WwgFhWy8 zFStUHlCqiAxv1i_oJ#76jnGhjm>Lvf=$~n~sG=LX5gs+@HNI+dmQPLm_T28wun_Xs zvOgxUWM%27(9jL)?i)&F%w4=je3{6OYv;CF!hx3*|L&^FM5_NheZFxhtiQnWQOgP+ zxQGH{h|Aj=O}C<;DDyy8?~Mprr|LyuC<}&uL2d&`O|7$b3)q4ResFoUYx(#-(LBVL zKYD2Q5DPe?r2sLIFleuEwGo%;QwL?IjUlXcNQ&&lcj z2&c;wNe8!8@JIE^^#N^!+KF*pa5Kjg8fuFRn9c`4W4edCyGX1$i6qfYi#g`2j-+Uh zyCU^$vZfWdSlylPd*zZ~YEO5;?fk2UKg4g4<4BNS=x1!yuqVX%DJDJ+7$I&+E*Veq z{!a1BVStN7KYJQ=fV`{}Y|9gLL$7GQ$QXf=3#4aRE`4)xKU!WydF{!&z2MCjc&WXKV`f8nw%Z5f~Lf_<%fh4RiMKXQL& z9%Bso@gYlg=)RLwBo>+}b;l}a>2D&xY`g2ZQ?#`L!{48~%85wyIM3VPF%Cj-`qiLCps4zatPhsKOJx~WQtJ#zkK$Y|dXm75 zH@O44jGc~Wu8DpRl$Z+-*Gx>U)RmNrxgCnn91!t7c>Zqk`?h~KI}3BukpPPA^*Jf} z0w|VSlHsKeVDdRAID4u8w61`Up0&9D?>BpjKO?>GAe^n1ma*0oHqP{f0d z*ctqb_>0~49gu`ybB)-6wPhGa!3zioY)@5Wvngb~(LiszUN^*>qz zu2cVe|SuO|HmPT0<7PC8NI z{0@0H=hBBBBqSuwddD1FNy}c6*uHIok{i-=vZ#}RH3k3YlL6{a;tOm3SaP+P=<{@{ zJX|sIy-v_`QP-Rb`Mirvz|A2duu;ocT8?jH?nZ&*dA_y(G&+T=Ddl)o2y@c;@nJz{ zEUqeE;Qc#POtGhplrNC4sU!UX-*D&B6BK6a%3x2jB9olbJe3!RkXIfZ&K{r%Jx@)| zffz@i?vD~$r1ii<>9P0Ht4+IKucbBaP}0I%>25KUwWkbe^y4aVg#?s|TT9Y0W4U1i zgKMCRsxaKa@m=0Rxc&nUcI$-@yaesY-jH{~d0i{%M8)(sLV;hxF~z=f(Wm6XC$J`1 zVVs=HtW2^4xs(fV0sCa(Vp;opa}-fqoMc55c;8_7baa8#vRCi_i_}ru@TR(S55e$5 zmG`AR2wagf`RuqgVoudzZEnmTpd_%N9H;?=3vO$9M7LA`i_GvNN#`h?uh%m3McjKA zLd~xBMW3$rrFUQMF$2CQ{~)IJ6EW_R_B=ly_}X{&i*!T4ncHHB?Dy_Oe**i{xyR#t z)k?ZZj8NLczz&i)+I9?~y6bmCB}(zx71-^)kn(uRE26H7XExJZh&_B5f8v_jO7pT5{>^8ZO}Us9TbWI!Pp@u4d@B@FejET7?a#%d25 z<%Ag$iGywU@Mq;q>NTP>!_7Zwg#4~E@@&*F@FgsG9fhFY z?#K2)6l|?QMMtkz8(cYcPg~g3@6#X9f2TjFAFZ7jGK`3`*C82YDvhW!Hc#iq$Ad$C zbRcB!TBgsn;^Fa%GFRwJR?|s0DI*)<~BgZ}w6Al!jLRF67KgB>HhN&Zt+I`ToYdw2zJJB;=_re{5(@Bb6|Pl~G_jP06p! z+2_aEc0KX^?F%0^LZZ_N1|?3SO;%dMs<`q)X8nbIFG;lutFkee6Ew`o%mLPEmiTyf zJy@mU)88bQeyg=AHb>~|z5IRvu^{sFDooN`_~^>(_LIL4^pIjjXnVY@9gUtjo<@5IApDV~EFS5rcP$&_W% zp5J2-Yh= zF`iFZU^W5`{T&3#v#1wQiMZzAQxFoq>d?V$>IvCH1))NKuar%(9v43%uD#F`j$57H``A5rr!bK=U3WR0PCQ1-E?*W303C zT9FE}K|4G1OtUU&LwE#-?%$lDT!VboIm=3BY<_~uBO9JFSa3sf$TDBTQFxkZZ7Y+C z(Fw28LrHYqn{;{i6I<9(j$v4e=t)R}kgj@oDj)f%f%fmSqL;z0@mZGCX76EM?h`H& zddoFQ;~~%a3;c|%!0(CI)p6W*H>{YxD`qpdZZ(piXh#U9Y)6t!4ZMRK_Qw?D%f?Zc z9Pfb3)DH#VX^)l_M8$>gY`}C^mA(UzcP+TDx}fOO>Bf}`su}`jH3?wsnQt?p6gDr; zz-WjSz*8!NX>aoJ4QnW|Q~PmYzbL`-J=3B&?oe#vs*y3f#fm`rwjHJdab%rI4|b_$ zRXb;Y`I=Ejm=T~qep_2xH-f$CWIA#vgpA=DZZUe<1<4cT!9hzsmm9Yr_VpW*$SgJE z80=DcigDr!Ya}4ErdYA1l-Uyd>T&?kd^7)Du;pGq|5yiG(9_|nl2EkD}_$C~F{SX>0*cOmVSX!}~;q_Re z*t?8a-IT%SKw&R)o%?4>>ZG_~Veg1)Zm+4YULm!USTE0w zT%R44)QN^nR8^$s8lL_{6;7O0V&G{tmVLhCH`TiV4CO1 zuOMo-gur(K~xNkj`;?cLBi+HvRm`~ zEo44w#i0eZwA6q1M?ag!!??KDPZgZ*U-b5y?r3*UzdXgmfAsE_C?pYg|7iR~-tFGT zi0<)GFHiBQ1+v*FzyU5Fn&8QSf zwP$~EzoWxtGWsElg(IOGzh+}Yj^Nu;1$RRf%aSH8Y9u(^BVTuKlc|FlB^Bpc_@V!6 zqGJ(pnnF!Nbh?e`1H8_ZZ(RNhr?jEgV)PU5x5l#BB1FxWRnZ#X=GDzqSw7xBLopUK z?~&rhF;y0IUIC)L!Sj2 z5tKa%BU>KeEp2M$OGxeOAzE5mZ)=lt@#?n9K3qdJ{bp_5$y#=vP$C&@!mW3vBdhU0 z%PcG5kTs-ua!CFmRP#xQ;E2K4@!8T`?21@=m4Y>z`zh$!$*I>QL*=Pa_85@NS#X=u zdlwT!_;{p&7>Q&~@OZH55y)g^?jli74DeP7dSfDB-oO8_|K3s5I9R*c>lvU;GgVvf z>M(KA9Pa616s^jEOmS!i96RoH*b}=M_Vk|V#L`Sj)N>u~SQ4DA@+OD}$f4O;gcrTx z7nqn1`Xg$X8N?HV`K?GsA<=ADejlDT(IkE93&p!s$Q%5o?I_vQjjNLD1j zu_-18W5KY7h+PomfK)RR1S%n=>#YbEd+r5F?q!5PRG?NzTOQS*D;$vc;X{mMc%Eci z=3ek=^8Z=W5ks%ng2CLyFQTh0MO)N#yu*XJx&4`{%OD z3Ivj~;ypJ*6KVv9&L+sr(?=x(Zr|%Igpj`;+a~?Xd_bnLynb0ybw|lBu$Yie!EHYD zLkxN83X$>F;RSGs48!Vhu^eYF1OeRVDd|43?EroC?mcZ{W@Vu4MwV?-d-(|ov`K&g zfl(G^8@O0Xj7uT!3tOvPa>i%#jXK)eZ50IYOa;o(7DHlrJ?lPXkTDdnBckxI~;+;$B^N`K6}q@}~oI21J;Wdp4r zA8z_TKXdF1vOr#uYRVwN)2_tHDUc75qTlj+_Uxx-EAo@3V`i0neQTA&@@VHx-<7DW zM3CXLI>+s{=r*|s;Dtr-eUei22P(7@pck(h@9;#xi;D$nX`e z;=)gf27cE_pi%KF^z(8%{3}u(5?_br1!KKpLoG;)pC40U+ext?Zxo!nv2X}zx2$xK~k$F#;v6>1mx8^%OIRJQIbU&v|N~dFS(_VXSr*4+Rs=GBd>06mSD?JjUg75qI z?OpR4)a@LaocLlXMPsAbGlE7;x-}=dRp=^8MN*12^~!5g>px;HmL;(k|M+_h(eS4Ea(v*VmUpBSZ+p(E^{`r1}TAEOsVdH_!z0+ZAM*%Ht^7 zPA)Hd;5Wa_X)*EhKRIfBXeqx9r|^=kbMN;o1FJs*I=KE|#H!}MO89D%+wvO@`_g3mQzN6~nzwdG3aqFgKHrt>K;{nH#aUIL-$_@y1@kfao< z>OwfK3A62oHh9y!JH9G*#$OO5=hstfO6qLI>2>dS^Z6DSj@XkzrO{6=#f>fDZmMwI z((zJ+2cVpoC7FkFbvW{=>=P3>W;S2S%ZGNq-9!Se#&)D9x}QXo&(B2X;*1Q6oGhV! zfg_lO>B5{?LIlg3i3P-e)J#sk3-K;`APeaYP_-cu#PZq zR1*_jP5U5rcFK-d>;9e_U{P)ugRbXoyy+`c_TRudCUK5s4R)H4pMQJ7zwqb!%+2JZ zkSBNdPej@sso~a6w=YkS=seq~ucTWa30?&yP=1J@a~1aSAIgKRVNS{KiTuwn*d2imb6De8PZ!*hMt@q$d@l$8QLM?^gna7DypZ z)C)sjED3Fr(7{h?a5AF9L9_I>Y(?!OeS+&eM_4z$&|v%nw7RSLR0Gr3mkG%na?N_1zTzCgRXcKOAH9<=D1HAsnCtQ9U%Ri5Q zgI+Qr*yuK(^bl-ro=II;e^q`Q&`~=JW^L@J(a_Ks+1QfD5O?Jvu(soXm!GI%XpS4! zSDAih{HyRAC!ASti^K~gWGebjO0FOG-*I_BqEUhj;rXMPhPr@@MW-cEH@Mg@drahQ zTx1VgZ&h@sIwd;AEc`!JTpK8gK6ibz=d2((uuVnwIF^~FZK@JXqhCiI7x0sD?z+IA zy>~(g4joSm0pTGjnBypj-daCPeeBSB_l*_Vz^RLnh|4&H)%QekAhb{(8{>zh$*ruH z<8^u{!fkROlp#%qSl&uaj+MP%P9hF>%d4}u#9mC%tPERmy)EWheEj${f>vRr>1Hpz zFgH>9{8t6jcVl+(Bsj_c4&1r2C{>v}=es{YJ;X$bd&F^tAMEg$>glt=oR8z6gu6BY z*rbFjTX%~~;?vW2hK0~c_nH}@V+gT;iOlaqSQzq*-Vw$@wX5QB3|(lALAez0^ci$8 zX{74CCDzu~R^#fOcZvQ>sxv756ni-f>^rXBEn8~*fVNC@xG+C=0Cp2Bw7BmXK(TBk=Sd7v^`_FWnVb)Rx-aWYrS0pDI@lE#o*Eno`?{Q?JiG3W&Zh*R~wm{!-;l6kmnpSC{S zKfi*Wzf^!t2yarr_x1I0f;ABnU}V&r-+!i07^T7cXtDxLMikJzsEM0>13{0MehAzU zsYBDq#`R`91_um(GT2x$?2Kq?^a-D_>UOHJAf&9ZKd68H*B!o;H#3>k@-!9RGadv{%+)4XZ-C-YU6@znxFR8RKCb$mdM5`52)eyF(;H=Z zxDV`DRYQT@pPii@LDH+ddY7XVmk$6-6=d}7M1f>P11F+mWMt$q*z&teQV7}`DLVb` zuPqilCICm}5z74BB_N=x0;!%4Sk~~4m`5nSH@_j5rZu1(0PpC^Q`GzbNb8yf=%T?1c6^_X^6qwM@clC~bv=2~!)qh=%dVM`fDp#{=hdmoA2Wb= zRUWf#a4-D>Ve(ICZ~ZYpIk`D(=m8tps%(q{9EwrTIU-&*g^;$j{`|r_K;C9 z_=(`%9Nq>h`#YP;K>3dYeZkh+O0RS459Ehl5%R||ihgnT*^?kC&|nM~JG-0-_BG^w z&+tST>WZINBARjfI#qPq9(H$;0J7|MiZdoDs4Q!@`;y2t7=+iw0EEC(z zC6JbM0T=q4%cG_9CZ!!1M^f7g>EXfcbd^al0^qv~M#HDyZV7=6Vf@O-02yNCv;C22 zSX5I4E5)gK5-tIc*R5)b-TpETy<>hv3-$Pf&)#rr#z89i%Fz9z@}3QHz7aQuOztG0 zT++4}I$ztwDgS0W1Mf>_A|nmRt-`@ts=0FZNlwPiD1^|@cA$xc$Y+ccZGa_Ox2PH6 z>d*sil7dCjq{Q=>G5COA)vMb?O(p4YG(62Bll!rDWcW8hHRa%p{KuK$o#ZxV(&4%8 zuTZPC9%i_5P?M}gzj|_x|Az>Z34NTW-fdysh5YdOX4c40zh&yqnCc1+KzfrMKox>X zjK(4AAKqj08ikDkV%K)_~u1ZxDxPKs%ltF8}l*gyE+JfvBE z`^*3Wj8kBGZqE0dX3SD^zI;Iv+D{r4UUCGq6z0nm@Z*0OScO4jim+0@cv6O zvVmAEDbdXZkewy+nIKsjqF5`!`Ww|zfR?_OXntv&uO9d3BFBnd+~Lp|%|kP9z9P4v zy&4jm+&gOH;2zCy*(lb%ACx1wyS2*vuF4D}IH~}R08ZfO2LQbeLxALQjDjeAM(I8i z0P8}Ma179=1RAvK zuope=mcGkbpZIjFkbZ=T=m-UH>eh*aPc+;@{yWPf6%rY2kQD_<%@b5eIvIw^LU^ED z={HA_2y0318BXgjt=qf$drUm z=KaZ#Zfa$rWUx`_P}rG!eVF{t=H|=x>kl_tBjb@3#K(0Fl@cj?jupbbM3!T5;{3rx zoJ9LuWC5}%KU5h04Uwx^hIO?fp5>zSO*)uf7@9upQ3G0n-eM7$OI=I;OK3w12yO>} z9nGVdZo~i)PFMxaFU605)G>V$0V*I6e*6c6qY(67yk#VZ(XvVa5|mGX+AhMIf9jVO z&`%4dy+uE?Hm-_?>bS)ood-WSqZeKlMyIw41%948koIFuu@?1g`N+2Rqyf~C|&)9HBfVPn8mq70DQW0pOE2tM(+atJ5gXf zJT@$+5DZ`31Z?jpe!b-pnk_TbOvOsqOK1~Qj;FVde(g+>p^9$`+BwnMZJNt*rkk?~ z%x{LpuXB@M{rw%ErJ~5bAMcF&S?-RYKw4Ue-V;TH48y7M)lj|j^b=5DYQKM$o8;M8 z6>^EG7~MT__kIDp(w0pi<|r<8t#e2F>-VQ&$hihSPy~Cy2d2G78S`)jq<=M&UFlPE z5#AE^F4Jvt`>0ngpqZoIc%2$~QRa3PMp_24qE~JDm@O+NZx8}Z1_22P0u-p^#M(?R zK5%MlqPEka4QC(6e((!>{cZ#EDFH3Mx6IaDth)8MuZ7Q(>|f=|#C3z^2bQZb;zclY z$cF+nJ_&o7(dp=ImjuXx6EZj6lYpXzwLR)mbT%g*rT_1oUVWR{zFGklK!iZ63~Wjh zWm+(xj{#J6r45w-H%45QHgQ<=tt6Jr4;oWW5nF0`aGpo9C@{~G7MtI52r%-Y2I8+C zg+II^HXd!A^@s{b&siizunRmz8= zqP%CQ+IqYiSG|nf0+ZcQL2BzTT)Tmy@jB`D|DGHQap%1=)y!Q zuy|+IAgI~_`Va8h*4#6e)bHPcDVYK zjJ>RR+qRet^H!hxmvXt?IXUW)y3{T0_Qb4Jp0@jvuB?^$uKS){2-n};Teu!8z*vp$ zuT0c|@u*_PgBb=Dm{sik$Bw4gMzkV+v~B|ld^+ru zxC2ZM{#Tklsj%EyN8S-wJw~5gv7H*!?@gDnp4rc6XW4Bcdcec{mNze1*}`6k8m=d1 zwd88_-&(U_B2pQIx^UNW!0wPt97aEk+Xkc6`C>P)a_$9yzumQR-B#>C7{r+2+c`R`y^ErSjeeH@}JzYj8 z;grU0aA(wh3ssDzCqB89seiet>;O&ZTShP*u)0{5?QSCi0!<6R{;i{$yj!Rixc*~{ zMo45Pe*`~Zj4c&lK>K9ar|#Mw!A^xaz@-0weJWHB7e6sT>7%ZCHt&ZXhz_4Fes^f~ z$<_!nLy2zH@`f?qq?WSckkLzPCxGS+LKT0wL3(oNk1NWz%+^$DZ}b94nAMdbFxFUDQ50yBF=v&g#x*>PXH=G89()9;s==AA@Y5zUF#Z@ zQP$M67-tk3rabFDmsIaM*5 ze5R3de>tsT2PO;-Y~R!H$QCYqnY2Y)=sBLxSlA2fC070D`@4y~Yw6ZV*tNg3w*e&e z;XsK1^1r$MwmF8|vh(bi?5UZ#*4RLvqLybm`zswoMW=DS970_LtrH_%>Z%sqG9+WjCsGf&$yKXP$*;xL{7 z4-3uOo)&tbZe;Qqo$a%@J$Ci*%;Dq2B;U_8%fWhfyl1&r&1&=~i5;$hOZl7a=z6DTbMSI?R-5{xV~-f$?Q!k^qw<1aFY91CAznbtYmtQ}OD^ zc6s$bTma@=!45Z8a4jn(T4?`amE~gu!OrU9;InGJUZkbtJNQ{@YW`n&lnb z)wRp{R5HBwFTQQ6_Giw&;JvsoQWKYg;UCLt0;rlKoQ$=H3S6w(b7ojy=D%06hd>Fz zNA>$37J}CMCMn4|_H^tei~^zwRg%9a06OomRKcvoPjCVdZ~{bZ{&7O!f_fig8THGIuWSm;$})gkf(34@GP1gN~yMczFkvlw!S{Tg~cOzIv@anukmz3h2Ena2cO?s9gKX9L|-*F-k#xeV|qrXoZu(G9~U;5 zI7!bgq+V-^9%HR1lkjT@1=n$(taDZ%`YMIEXW6=_Va*Aa@p3p4bf@W|XRzVSISXV>QEStqq8 zg^!&?O-uZh=+jXq-Zs)B^k|)w{t+{z=ltxGa<24vtG~am_|0?oLL@SfR`+1Ub^L?g zYKJZkINuA0m2u$$4e9vL#65&M|gnh~j+A zci^K`TgNEaDDW`EbtG8n3RHy0b##T7e2WVQfqkLELv()fi{6X%EPhx{l(tW8A(+a^ z?eTeo3wt?!tI?3drZdGj-;1|2kw*(&Vi|Nxj+9i(+YupEp3S}d^N$e84w??=mwxYzg(G8;nQptUeWCRDxuX|k$?b`t?kg3 zBV0!bN`&8Vh+==g))8r5wyZdXYqvQy8&SUV=~zPpzjqzWI~S4cC%=#SiworIZi-U{ zz>BgChI^seo`FD~+d#BHo|7(kX-rFwqOg|?bMo~4=Oyi6FIi(V6$_AR zzMUg;LlE0?y&nZw*cRk@I%&!z?+ zI|5{i3uKDuOcyGn^^^Ys==My0l}XPH8weUmUICqKejaZoz5XyNK@C=&H|q>_PPNRO zV%6b5dNc^4Mg1?1MFhY3HfuWh$e~5DCCU+yA57vRlJP&aM@yhz;tVhZzcL%8OuP0o z*y+;PCGH@>h)9+zisLbW>-bxGQU98Hd74Fkn+-KU3>QtT4UNVYgAWPPllDpIZ0oV0 z%XMUKby5g4W4tQCL&)UPDWmzUaE7kNPMxJd_UkPK=!gtw&0Tl^zV^K(`M)B5 z3U5TWvP_jf}W(cuV*kqSIndD||8TAL=wG*<$3m0ahbn%C@Xr zAx2xOSsf{9)KC<({UFVkjuavxHZANtn7ax_>E~I<9)r6>1q*)^;D3x49R54C>#!aQbja3-4CNQm`>PH|@OOMx2m>Eq%9VJ87XLm19#DtlWZW6j zbyDx2{B`rr7+91dLWaPiT^ORmZh$n*qJclY@jEg{)~+)IYEOv@)y{q7AtDSE0~yl8 zp6k0W#pcMgh`X92ERXej}zwbtrA?w+(8q!iYiNLgTM+Hk%?=8JaFf<}LD%V!-N zU_t=K@em+A8BXGWco30Q3=TdPDG0ZnU961@`Tnz{#de7T3PCcKgH|}Vv-8fF+bzKk z{~LD62TNUrgvZ#xUbj<6=8z&FW(`-#^n=?3z9y-Uf6~S&ooxK&zJ0 z?R6#~#3xA*I#NN_Yjpj=kfBS?vm~1g^x>s~!WYSK>rGNCp&tZ}yAvfAvsm8# zNWe6VCgV0##5>Tu23STI*r-3vbC%!$aasS`JR!d_9nKBXLwrQCvII2NZ2jvno#24n zA))shz`kQb7_>DX#k9Jdnb-JqxFO58F}*1zGBY)GOf-dkL!!+HeWg*n4Q*-K*c3cE zc*cZqYo4vYASlr>qVL(1Ks@!|$hs@H%{)}3L3 z>oAs745-j8Nvk_)1Dk$R8lcYJFC2{qRP_x{m*+j!Vrq=L&}F=*(QtsTYNw4QLIO?~ z4UuX&4Q@hO9b8y?O&NB*oF`B0mDMJh%4qJs-KNo$Y4;L%wYZT>Y1fm1tCA`kW=;k) zzk|Fi=&$B$2E#q9Rsza8*Q;ZrDoIfGpnmKeRAoml8hhb$qsW=T-HhcAB$vhy*&6(+ zVX2zL#ovU1j=l{V8n7QLWb%ChSrWn6nArpjD4Wi=JZ`f-BK2C$UtqY!3M}D@6&(C- zRG|S5Yz_5g=b>0jgzj}1hu6!tmvVA6_a@_;H;W6EMv^3ef?9ckWj6satEPsxShZ*R zR_2ZG(Hl6xW{rLw)`$q{kuii9I;imJ7?fyJZcpv!R}a}p@VeYD8ZZpZy*}F-1H&6# zABh_FlYA_lAu=EBfBS(Y*o7Ju`qCOKlMGKBUs;L0DbiZnXh3_}wxSgTBu;Nb*ti0& z63`Aj6X5eXL*Wp~R4ZrmRZyYbA-ns@x+DVrxu1cN_2_HL$dzs6XeL?6u-+eZkV2pq z0@@^TWi-r-n8k@o1J>oiZq+hBq~%1&^VC%88b{^2m7{ruSe5CXK+5RGqZ$0E3)uY_x;A5?@ z{^(VyFE*Y>^QfI-UE;yVew5wmCj}0jO}x$Nw8im6=-kRZk>|&%w>hw{whaNQU*rfS zUz%E2;QtE3$H$j6>5k^AvG+9l@yM|+h0P}8Mdw-|SSMnAbs*V>)|zJg0=zIX9x$f3 zvYBsyZAxo1+tkfnX|+4n)*1j~7s_C|#RO(-gK>icEE^tS_q)pdoobUnf3*c3kL&%b(m zsqZH^9O8s8h`>@#rcZv}%&bowuf%<9ZA%ME{k|A9zK!u<73$~=fFS%SmXxP1gZVEu z-j3(5^ZNM7CYb7pEIugS%;q6+P$#xH-g^(6tud7xUhjCg-91kles z4I&wXdqaSW@51-ahdNYC7Aj^&#-w2_J}%?6bgIk!8A+!gPC>g_UfN={GD-GjpYsWg z&#bu_BXONzhe1TP*`J460CTUEgTK)@LwW}23O#n#z>;mNy(G#8s^u%lptKYf=mpZ; zW(J_Z5$5~Y9ZG6}UrBqX`v@`1{|47l@Qa?z-CmkY@Isn0;u{Qrmae3{tWco|et@YS zrlh#(h=7iofnB&uUgG$X_#b(>>q*r#Za=_3c>1*C@_>DLoq-@{`=JGo^N9oe&_+uz zW3lpDz}zzW)yhE!jwtISAuD9-qxWGBu>Yi^{zZ@U`2td3M#aSy05kHkH>}m#^Bu-@ zx8we|5>8;>u~VKdSI&<%d%MebAI&+m(%lcNX|;M?9@=SB(m}%KwwGF4a}J`(1XQxR z7&PIr>Rg#ma)@CwqHj!qT@iB0kp4R+!1vEIHgRY&8Zq# zO+apl`;fgNWE0ce;IcKE_*#T%Xq?Zik6=uY&>nus<(II`$VfM91dI5VW+fQ{M203v z!yi?w?IfI}55z7n5CMe7!!wTy4gp(zW6JSUUCu10o6afvpLTVP+K`VjaZOHh^ihyv z{y;;8QU_2-D@e4VtF- z{XRHTLJoPZ+-_t{1o&8ykWtBb5ctG9{O)2SbCLP()4>Il5Ug~?`}NVds|*k#0hG*+ z3MC1m9SlH#6yT;1u9F_3A(CM|sfc9-fN1_H&@>NJsN!Q>$1GN%1M#+#7sxwa;EhHk zF+9cL5NRUe5VPK)*UcFMuS0#pvhtp4`OjEXz}VSM-}u)zNUgiy2W@c8z*Da4?H&Y$DJ6@FQB{KZN0bX$iC0r%Fd;#8$X8F`J z^{eHSuX`atCo+T>y{Vtjr-*?OE9?<@uR^^fhoE9Wi~#{_rYlxJxD4E~Q<4DTP-y?e0P3m?JlqSl`UPYRNDo$o z0a~haC|%*Eof4al5Le)0eOb?Ec0l9Cbc3$&ngEj*2z;@>HN zgZ@1%p$`D+I~owTd~QGB(?o^Z%l?t8&q#e8_wZe@*7gCpXuL>UV8Uf32^GSS^_loj z6}ZnLE;XoseF?50ybx_~5|b(;J$)FML*aEZUG0qE^|^9X@H{sS3Q(2BkXPDiuzr^p zUZ0~Ggnk;+q8Vyp|C7J35L}8=*lFf`V`z5Q@kJ&p>E#~)hIp3n3&$Ylb(lAZi-=MF z_qFHwN`k=Nj&{o_M6TiUOWtxj-`2evRdJv`ktydl=#U;SF7dd3;>Q7M80XU%=-1$Q z^D!+=R-;^ZWFD78O1-tEYKe_{nP4?MAorS^fJY9;DVS~fcwf0hqauHQ-T=Y zp)8%sdqzQKxh1&xxo?P6OZDN{;BbNFGhoyT?=;W#fe>PY)Eo^Wa}YWD(LBYcLm0ei zGy?2Dz+UL%1=X?#O|YvlP@3(W&?ay>@uYx@e-S!oSBdL5AAj}XxbIZ2=F&Fo^B>=x ziS5a8?#LQP@I&y+6R?Krf&PT^XhZ(dA2!IxhFlmlT4_g8fGN;7lb+b$z=So>qqt&% zYe|Vn=9`-E8<#%~e&|OqiWS(v4DNI&bE&gri!u%ac&I0^hqCq_^{!J#A}i_pj~Lhn zU;Y0PgOWL4j8@Hra!X9*{y47Db&>20xEpeLgT&x>xzvAt^H27|1`pU&QGm^2R##UU z`T3_Rh7{5`1Er&hRy4F~C2$?li^STL8wG_5UIHo5E%VyVCP~MTAYFI6$hO~Ou9N-D|I-Z=VB9%&x<<0P<@5>{F1=w&aLIwG3SYYSar4#1mQ|j0*kulS&T< zm{BiFY7XF>UI1u-ue|b>lob~7Lg)r&+~4~x_+}wbR!Eewq+%DcHxh;gnAE+~Drv=a zEG5MGjr*Z?D+ZfXGUS+4{}M2;$P$l zayPM`l0t_3nh)L}>8o-URx;%nI*O-!&o!0#*#&Kuue?2cD#Nz(XwJTUjUsY0M zHKp3nH!<+R{j=?536W4hvq@|&0|^PDcDALfCHb@ zC!>DU6;aK0r-~-A8`bBHs$>NsA*DJqhRMnqpdvdp^C^;x)kcmoG z<0XaauFYR@Yw4!}&8Tf6(1FBvl70qxWs2LwHg^B}GUM47e=rK}%(}0&R-8T9n<}g{ z=D5R{F3;6Yr|*fuj2HX9Hc_h@MaRHEB!n{KUWWVXBBxN99jOe)I(_!&b;S?xe@g@$>`_9f7{K`0n7`rdDWL4W`slJC!fe_%h{|+}702c+6V`3rm(q?4;YoOL)Qj#^62ML9dm!E^}%HT>ep7c$(CbRZm0TOKnuNcLe~KW%^edW zW1*1s=?3p8S7QkDB=P405M@FOp`C<6%9B%^$5-Gp%n&f2=z-@j#5f9vPf{E}Oj9e4 zuG6BBt$n#Bdi77X)GtQ`F$^5|%0$Jp=(M!W`|;*&<4wLz4{J*T7)^xU0m(SQAeKGzH$!J@Uo){F^5rBr}JRG}towyHzXhXHU9B0GH1==xzKKbD@@ z9vdL@MaB2QOOL^QL8Zw_fx=ouV z3I1hOdY^Eurgxey2T)`C)Qbruz>*H>XX3X%E~;vZPq;S1>(J( zD)5qW&2tG4u`86uL5T>9#CW`jzadVqeHa;IPhGH2PGwNEX4SG=zmj1GPv@4 z&%rOFahn{M0dW$7D(ti(0Tq=&CK_!IJzR4Qai#dxK2|`#xlkXJ4S5 zKYxhlt4h-exI#EyN!{ccnduFGhX4}$a;--Dy({E1jo}%O7Z|hkz1LB%e#JlnS1{Ve zV1SZ5<9nHcMIi!P^la897Cb@^a?l3CdLj_kQ(E~L3L1sC2t5yAPed2YVvMAkOBL_* zWB<+0%fJH+sDW8hcC#|huEf~64JVK!IPo49pkIN{ZNe(NkGvBmhzq`C5wI1c;2e6$ zy^xn!LPqwOm})jprezBJ&crc9#oo@mWRbN_AUqU+AmjnYBeTHyL-5Q?BeywJ&hrl? zjTsP-szfg63-v2Pj}mToz0oAS7+oqd0Fv#@cLwf2XlvUIfgc$*GtZ%{ODeoah9c4Y z6n0kmn)UWCsBDQy@cp7dfrnJO{0#&Bo_v1)UJ2ovt{~?i!UZJ@WLEJHl$(L#uJJnN zGBy52ghok7sG@S4KL@IV=Xcdx@Bqlg6JG;kul(zY{HbTZQdZK_(P=aR~sW#)Z3 zuZcM{mxNZe(`6I&UD;xS=<><~uPUh@|AYepqf(HUe~(BNuxir;b5v6lllbk3lqMZ8 zn2(o{$`FZm>H842dbj`>C2o&-;OnkIpngK7OnM(mWcGJ)iY=iJ=@7e6*(>ba{)|4<9tnjoU$53F!sL z!291|VC(UmSHoTI%PvKmHJeZ`fB>DlK)=evZ8QnGeqOJp`CilrJPdnCFOHu@V&6?* zzc{m`1gHQ(c*@AhosK`*e@ylo`ajjJteBmD4J(L7rRDGRA^KuFySoYE+6*hL6ViAy z;&s5rO0AyubATs!iztcj-~^Ok1>QeYyzn-Z1Mkn>IC%tEmt64nKO2Dyf#T$|6x7_6 zeOepk-_Z=$x!M&NHPkjLdM(D9X}o&30bY6Phj)sk=Q5qwM)!^uB1kcP;T0J~Y2ja#YJY7FSB+Qe4rU+0qrIyd2u@Xn zgva7-`jfZf)@%>LegVuw@DD{<`?)6lw`ypDIuo!9Q83xs~)@xp?t zp&BbE9^As0usxi&@_Guut(5sasIJ4YXC)&eb-IZhe$zjI9Z?yPxP=$b`6Ni7=x|6) z96`R<%6`@Ie|`)#4t0I~+tbj7+=hLY$Y)b8 zq>?nVD9kf=zA)g4f3J>r*Fb@^^3?fJO!8Yhe|%sPrCDd*kPFAcgUl>qPuBsnBdUV^ zSK^swzb=tl=3I&Ony9pSwsNZ*&)$HtGAB28$RG838*u5IJOPQ!;CwNn;=#xKF({Pe zwl?YcOEr>)Z%av^OuIByRk09*ToHRQvjk1pN@tBdNrot7V|_1y|9!o4)3>+6Y9#dT z)$jpbua&ize)uQ1-lM_IA)e+a7Vx7MgQ@1<) z!00B5dh(HrxV>f8&ZFuSh@{eL^6}oDYto+sXFLEM&V??a(3>C!9Z3}(mc7|0I@diF z7L8lYO-?mY5b5#cHU->^@SID|9;0Rm2{3zXJr9XZ6{k^MFFCT#&#Mv?5FJ$bs zw})m|hgfpRFRid2_N55RHC>#1_=>Qtxb&P(;O$%Pm_dOqB}PLKi0DhZ-Sw)O+d4&h z5s6;Ux94T%m-2qY?wr+$T;^puEPUaC!j6Nr3y%G;7`8xfeK!C+DGp~Pu+k3AISF%s z(1p?vwqi1H&l(X--mbk3F0yL1ET6yv8|PMP0Ts~Ap9(M{_qORW9enp0={498 zewA^X_r7Q@KPNYL6ot=`N$Gb$v$8SFI)e`bt$fBv4_v1l&`KG!#5pus~wi@es3fa2iQblDERx zWUm2(O9j5=AE6N+_WQtEKq!)*Kbq)5DdVoi3Kt@&3P5@x=6&+2OWvKd6W+921!U;> zbdI#9zC5rb>@tnl`up7~z)-;7Dc^nATyrq?IP}~yw8KZw5I8B5w6rvM{INs+IOr-e zQpbX+)ELVJTHQXf4gQR}4y>Q-y7bkvb+phI17eOACGG zCbH_$7b057fYIMV?7xCEQ7-`T1+8Cl8fw$&kG_9o!Lhf##pCp+>fGWd0dF8%LZL-W z?h|yDK{r%vydAK*d&634f}L4Vh-N9Nm$bCBY&!-TMhXyLMrRBQzBrjv$_5#7_|=r3 zdSPe?Xz?-{1LPXa{PcW++s^J^t& zaRt}VSla#-3>+D7J%fZF9|smv$4{hk^+O1%jJNoH1Fb=N?WW;1KmsrBQbCU@8iMNT zdv~^Ge3`-j!%YeZrA7I~yC(jb-GkXmtMK}>BUzfTYj`5Ro$BeqI&EY6M7|b7hu{y8 zg*2zHHnSqhQO`(s;4CfYA9NJJNs%6WCbEYLyTC0RduUXWb15)9;al7^gBKa|qKnT*{ zNdtO^I}IND889kY3!W@oh1Jbl^NFAD;hUP7X~NLe5IdsXFI>HdSmm9%^b_7EpKm-X z0go6{>$1)qDg-afzD)x!^geyP`3904`wT(b7Y(1)HO8Nd)FW6AG@7@aTgBp$vHH+; z>RfC>BO-`XPnI-1dIqDDailaf3Iy8Qy5cyr4q~hw#5u*@h2}sN6@Cuk>m@wunE<{! z@9xaHMcN4dWoNbB(b-6LW81uKYEB#~G*Y00|7-v8 zzFQ$GL-!r~l_Pf{=YvR`4_*ZZ>Hk3HS5XPwhHK#jNF7ODt;*mqEZ*6-xIM8 z^lN>0V;WKtVNXcDACSZh0RtHa8jp%kU`BN!5ud?MQ~Rz`p#4Yw4+&%mXoRVipamNO zbQ+R<`v*MZCJTWZ|M2v1Q*FlkFr}K~@^#>g#l@$;1~Spk&vyI%YoC}9mza}Wc&LKO zcpPwnN2}N^WGrzB5`J5<7ZMH%JMfR=V29e!B^#&0xfpaJa-dy(srhtA^ z*Y2%C05azyvknsf7p2bb75%(ZNVEuUkh%b@zWFkU{SPT~3#a=0U^2wce}_whRxX@C z2H8@NbpYPBPH-b4{Q(b&%A#RYWC4?=@IV_Cnok{<6s^WT(M`jwguNdA8G)T$teJ9U zB_*vaOF?->#f-v2R<;MuOXEU5Wb4P;f=UtE_l`T{)Dt#Dvs>Rb+@?cZ2e(IX9rmU^ zVh8!Pp3j|Pc-efBjv9Ml7tg758x{4qo+XrLU_g?Zl2lxJv2-goK7NIkUllD$B9&@p z(Woo;sQOlcj#$uRKwv~p$a8de;7qR29JHUW&io=Z19i z0Epd;i(s#g5#A@!Z=vr$zF~e|f=m>u;I{Lv$3I0UBq+ed(jCDT$ED7JceHYh?Cibo z;!IxvS3C$@g-pKr+0l0R^LnV#zK|Mv0nv{CI7ryU8BX`+DQN2~2^SdYev}117ZiS7 z{L~nCA>}QOn#^m05rWfaEt)#S9ENziIsDeINbGqut{deT2KNqav@SCWa>f?Kgr!?_ zs}qPEeTr>)fLP&OEEY@w4-m5j$Dok;{x_~>wZtzI^iYlZD$N6@2v-9IjhX-W-n>Zj zISJXQUcgGDwfs>pSY*_o&ua{RcQwI0H9g3m%zmYx`Zm0K+7r(y)qM(2;|_v`p^y>n z&raNXj~vc{*a=glj)19M^si zs^7XS7y=hwam$=~GR+u^|8XqxqZ}Ripc?@Sf+c4j2DQ{I7#8%(tT#FTYe$!IkzT3f zJ9=>e?-QOFCN0@i0MrQIib8|%Zq>x#-Od_J>SGn;=XqYO4lf|xDXarExvX`I3WCvq#lyKs!{P(pwIyT!wzK_2&k5G7fn5j>$J z+w86F|MB9fe<>aSTS`E>rn?3ext1VFNG%ZL1@8Bn=L})Dc|(ta?9I&P9QoHLtBB*G zY9Vu~uWUi?1A)^D3`7g}x;$GJUj@ZRF3>!3iREy?Y0}R}D3RpA_(V$+{qR?Ao`Tc_ z02CS2qLn|_0=4+8jXwF$XNLzMJ{zv893ub(ivKe!$k+L^`oE~rxb6%YSD-&`R`G9KGh{vAGXWbBm*`4L zVOe4>E(`y=QW9mMF;0g7mTaFg{;i=rLPqj=?Ho{E^IZ2yTFgy6 zJcK}{>Bb8DGwtmNhP^-j#rC@*ayTykZz-nPTfi0@fHW9&%@&w9+@!ynI|00OBKtQW z+a^P(%Duj0A_dcu)B?tLIY5LmF6LY!BnI{4pwrtR%zw4H1I-8+0rPv!*yyT;6t`wav@xcDCj z=9jgfj@vNw%YDU*guUVqFnlpFcX&sVH4ASwc$5-@^tj{njo5M$LwPLG~8S^{S*U_xo>9xx;GSw7PUm-gGI|R zcdfwj#Mo66LdjJ2$4BfyKYYWtHvhkC2+FBj)HC*XB84$Z2I(cL=fmGxolhSe1THzWk4aEz0+p%_{5k z{13WA<7MV&#Q*~b_l%l+v^5q=QmJQ;Kq~MoRNc8IYnu2@raNU5{1WgY(0RRFRVZH_3p0rxLGUbLtnZ;@_EMDW_U#KO=< zv7-_}A-ZyLx_Nlr8qp2_m(vaE%CVscxoD_YE2x-T2_*mbykhST0*@mw2&9gu)7A*A z4{o^mCDSYj=wA}C8!+y$YvtT<-k3^=jErnskhlbQ$9V5q96;3dqxY`hZ>SNtE?|od zMN;|9E30*grr^v(@)IH1+tC#UNUKuAr~nY33g1 zvHt!RTiB2OWriQ+bA=?BDVI;~H{P65FOI;7gD<{c)83TuktQJrS--?BpsG?O9}i^smS_$Fw;7j?%H!8y{Erh ztdDzk#SI-QUG5}^GBYO@+%J^gXEBru3mnUV?g_P)t6xiq*qm6Bn3FH{^ipXRjsjDv zz}N5#37{c7I@Keh7odqAD(e$lbKM7DFPr<}JwFnIcqzJ!aSiKe$Bs(z-CdRX@C3W8 z@Bqc;ahh(CYAE=XlK!KyRy4$1;RQk_goaaFd*OGmJ{qJjEcyM5;2Caj6cA5+FOWVW&dQKQNy8#>YLM=b^0xh5Eq2!2GAgDPwMg%jcX|+-d@c zJ~56+Rw14j|6vd|b6L@^)uO^qj}*i(fiF1&CGee5=)$m{j`V9SLt-P)cl{#UWt_g40x%DH9Rl}+Xu`H#81ltEs0*sxqbP6O@v;xIrm4UQhT%MGbY` zyZ>5Ok{|8JmmQVQHlmCtm8zPN#bZDg)_aWu>Dcab8`Qahj!3ztU9t05?;A>ZJr(mg z6Ih?B0cJ7rj;fk*gA+vz2c3wQ%Vp?FCjDkEH58ulf0Y4oK>niTV4Z%J$95|IOE@{p z#YC#iTOjL`py{jE&jcD2=K9XzTtd!y!ITuilt3~8YB^_OYsL`{~XaF;$~|K=RW_VB*J?Gj+ggLnuLsGs}xxnU|bGzLI5kEBJ$=o`%E zV`N~EQ|4OR^i-^;;cuY~=8OQ%Z#m2Q-39{EjnHs*6?`A> z^NlHELb}HR51ys2|A-PAEy$NYblEzIq}%IKJY1C~9WIdB+;41s0_9bTfmxKlfhh#V zYP2w4&!@nk#?k5W{1AFlM)KUY=i9J%iw*1OJ8#tc0#zvFx{-X;|2B8k?AVX8aTUa8 zE9pA%V{w0CQ&E5z?-KbocoZx64o4b{8vw%tdtS@1A-79e!3hw$-~CAvs* z@i81tyW~E7UbOpPlKgh194&>^3$vnm-;YgA8R*wIW@loR*?#XrC2P!i;?0WoYvt`1 za-aSlY*i!Ab>3|=?*_$f9DANm*K>jYEW}k2hBAl`)ST(W(0QQ|hY1rb9OOXS8PXW5 z(bOdfIVJoT>YM;M(b8ued%gEhNjeJ=bl8oW#j|1*@RUw-th4o(7pK}lD6QZ1kB*8n zBIh=HlgSG$n8gO{vjVrdO*#rUccyfpa9#9}e`NgYRT4aoz%C`p`vuw|wN9&e@;XLc zkFSxHxLNx`)plLVA`R&&q<0;cM=8C9da}#9Y`HANs#^JbL{7U-m$?;{eJcZ6!ibVw zM;^(TIW$<5zS&Cz0{9T~$YGMt<5{nD`xPtQBGt>as3#S-oSBR0rbq!1q)oETyfNM~9!{}U&7tj3J_b^p3yb2QU+jk#b+25R* zNh=VEg+3SxZW8+p1ak}nH}REN&8#CK`M}dYBM)d_fY-fhHycm8R~q#|vpLjnRREP> zdgaGC_C!#3MmJO?5gh_paBFRr}us+q{JGFUdsxnOE(45kHgh5n-8^XYm;MuwYTF zh{EB;E64>#DvNBFY;A_)zc~HQlLs!S`NcmS9aOmA>E-i4rb+ye6euUr)8Az|Ro0-F zcDi+q=dEr%Yx|qqr1mO5P{_*6n%#ewcC;BMUz>7|!Gv-Hm@oU z(F}AUXH;0ey-ZY3e`9m7CTwkGnJ({Nvj8l|4PAlkoKnvZ>RJ6s>C0EIqK%F$ivxEC zMdoxA38|y8v`oJbyciqJ#L4db+01I+O;Un{XZQ0JqtI^cK5H`(zf>l5S=S!!LnBY( z%Ulj5jT;2MlIDf(U&Z4i{3GB$@{F5&9+yE~Df35zCuyTWgqN}lo_$8!sdURZ&2?+k zW5ox0zclZnBzJkEX+%@ukd^|I9m>sMZwTBVeh=Y>f>HNZ0&dv(wypd_@53vC^`H-0 z2vgnatytxH#s1U)FFSO$qM(T`)(-k=WZ%IKfRNYG$7*G? zE>1I`6}xFj^%@|1+wS_SU{lj@*p80YS9_R#<+ZwNG!PzT!~&aRML>`iz# z*Uz59xs`40g~rc~`Er_Ab5}2_k`grz#_*{7@NDiZjl_Th~R5 z90zLwI{!`Fqf5k|RrBnAo%5NF$;nu(j^^~>xr*D4#JDv=^ynMBu6@ z{_U!uyY^LF>dDU}yI1Y#KQuKp^NO}!?_v@%t3!}#GalZR5>3^(6Kv}Dns^nu>JV!4 zZQVr#Tis=O-ldAHy3Ov*m@T7JB*o2Ud@=ID$-4feM2UJf?+G+k{4#iJ#R~PcFFSix zmBJgOvUP{#MCP$`XvOy@k9PM%7*cWS_D|MIw2Jg!^pyXy^g?tfIOIIJ23o2HXjdr5 zg%Vzp)|W;}le|A#!Fn+hi_0%MP6yvj6q$`e6}1b0j>a1_!)swdb2J$bU;5nnxQBRr zC{!ul2LhkZ@cSaTUNgzio@5q4)`%fp?^ovjTd91r3)?$t@NMR5Rz$wyA;oP+S=HFg z-GGXn)M{h0yL~QN^(M5PVh(S5*^Q-Z#^W%MRTmAeyO1$K>L}Y&Ee192aMP?YX#6wM zZ9dS-UD>wFMdvb#9gmsd$Y?ed#Z4b@m(bd2cqX())u_ z^BTtA-0>dOKMe`Q7sfx*euB!Q@bpV%%73+goV@(f&viWhpu9oNd_)K~^)YTBr={YV z=SEF%fo@50>Oh~i&nsaNhd7*^!??}@U8Ypc$bf{3%(KFNDb8-c1*A7Jpy1P^#fkLW z?dI-76mcJgsebeLJZJ?Sh;0Pu0$g_~TtN4Mc9&W;$S;%a3fShq)o7q`v7`(1O231% zjoh0!C$+j#X!-cY<9R&BMm>d4B_>tQmc*FlszRMGm2cO27&iy$I(zEn1xc34l~{Pm z_Ay6p@km!FXVJ5-4n_6a7^x^^v#94Ttp$)`1-g=92AI}k^F_Wa z6fdvQzAkRuYvv@eN6`VGCHA?I#!I|rbIopLI6*5^HIC(Bc+O2e^VnAF^q%0RG+DF= za*gtDXs**<*Y|PFi1fs&OC|-!0(SUaGh(Bf>{Y&S{>dV*pdZQj`I1cJs!=v|I;Q`H zf+sm+5GW`?+bJH8!OaI4qwgl&9(at*h`0we&=C@exTYm{VJDN`VtbT?rvGL$$n53tOZb{wUG7t1}~OXNifK?>=r?g5?-f_^}^d%ElxX^_DF1YN-^o($r(l(d4(dG^-DdxZvuB+ND+xh>wA*#rsx9KTHb6G zKq9h?eCuGhuiRuzwF*n^mcU!vLW6d;>AZmJy2bspEy@BNYPB5W?r9&{oyQ$6x5o)k z$kJZD1!Z$H4T_`c@AMi-cbk1@cSIiq5Xo_;bxuyP0TN3hzjze7CJM?08SFp z1AHLt?s0QxqJS#604%{6;a0hKqM2&d}OHln2P73!uLao+1ZF8%hsYu?>J9;JnP zy$2_TSp?9rQ7&#(po5~=_Eyz<=Dr%+W1He#xVz5t-bAX(DHC56y^KZdqLoJoUJ>~8 z3mRFD>Q|j=wPiY)4P!rb>bz%J>eO;l#iC0UQjk$idB0een{Tv`6OSaPfF%dljEK(u zsKGN|{=8DVVErZ0I(2P3irC2tt;ga!xwD{Bmvw!siSqp79rz2x?3~;PO8_m@dB3_O zKX|U%cL|zMZ>0t@rxDsaz-7C4La@UpF%?1~qrgAUWFqSFruM(ZiNzT@9Jt%kIHQRnpM@JVJirMAV zfmwD zM4mI7SZWPsda_B;NoZS;J)Ec7K4_(7?T8!Eb1`1ZW=dwyzVKGP9L3qFA|zve9+Ka* z*;3=F(wCpY$+H)kb@HnFjl8}^?y&l7E?>v~#C7l+_c#{c_J-9o*Wm^si2=S(w$UBl z7)5@oLLmw>CzCFs(#?=17WBfwHoDI8%GTp}_b-j!(KViN)grfd*_q2%Yqb+og#=5Q zo{UYZ3M_(>4NGIs_XaqPvPp*%9z)~G!sQzRnN$GKUbH%*;a{G-HY?WK7%ic9{?(r( z>QS4Wl=5-;H_2^2Zy`fGibt_sjgn*6XC7pQnKyh}-qg_0(2Sht)j0AQ&sHLy=Eh=V z{)~h;^mt_nJo{=Ac>(&?$_K#S?4jL2=r=(ffZ*DJF|QlVrYvIO@?ms193-`l!q13^NIu)l7e!2 zSnpfbMe{yC@6$TiUMRQR^Id6cF>WX7s<2WkYCMx2IB8#>w46MOTRl68u~jm5__F92 zlXo!Gr(xA+L_l{o-|hU6f8N;1rw3E+bc~B#Q!;QZZ=Zi=NMUYnFz4N6R-u-h;cJcc zj?|pBG_o9Kmyalpv#0sxyA_v%BTB?mow3&aZ+?jhhjwB%;ViFzhb(h8E=^0>5s&=x zN#(-}%~dwWVm;2zt{TOqiRqtww5mofL^hr_$mA*8DOR2$An7CG*E)&6)Wo~4z&!b4 zvng}hu0eJ?yGz~4T4c#cgoCTb{Y1I5&Lhx8IZ@tI%v+9?1V2tZiv_j86`2^)E{pR^~T~LW%H|qO}ie>UbK%%CRF;3a57a$YED6q&{`xpUuY=a=-z_NlOo`}ucQL>tFb z+z`lsqBYE!9&Hp)m+Kup-`P{J8hMWtw)#C}UPmkZoWlCIL z;Qkv;ixU(iIdNBX0iU}N(I{^#u0a2S96y&9rbIJS8)$tGm%vH$)2ay~niw;cA#N_F zyPzP1#}m%!v5?A#VGb6`0?8KlYK71~_Qz0KZ=rrhUa90H`|#5i(mnIshpU}|L*dW! z&#!4jIh2HU2rl;yjOum_q*KO7hSQdHsamCZq9QHu#%X6{yG|>ZkFx4ym6Z?KPpy^j ze6Ax{Ek;|i#S3`PVK6~#tH?^}NSUJF*vwlu>5yX5H@L5MBip7#?fo>RilcBztop@I z)nUgS;&3enq6-C5xf@#c^HDOzO4(f<*n&ITSg*OqB5ujRsJu-+mi}VwncQ`|H#&>N zaafZdyKLaGbDP(?q3-u{gjDsOy;L0jz(6i!RASgDozzjk;zDkJUNatuJ)6}naG4S|KFoQpC2$^3yS|>9<6gUx+BT(8 zXlNC(NvxqyUWcz^-~$&94DNO#f>^CZ(>y@E@-m@rshql2au=9Dgi1|{f$lMRvF0O6 zO!BpZ9$>3GSU;TrKc)pO(&3wH*FbzPo9YPtB+{}8KsSDqT1Q7Tc2ulMvH=Nwn=tD^ z7;FRw?f}bdp~r7(p^H~qM8F~&he(!Vqn1)h&deYuXn-;f;^QI~?x?f>#FElq- zSbC$&HrF^TmnRp&FGh&KU ze%->`wBMxMeSH!4E?mFE*%z7uNg(lT^A6_afb8ou^)&hD1-d@A^Akb**WKlP%D z#^y4*#B%65ErDhIna(~MWhS{@xK`F~A&<>65vJ^AX7mlbgD47Ul0(iOb87m#|#eeSCOa9(J{GXhnh8`(Tbd^OQo?&mGyXJt+SSo z?%oF)0%Sxl%}b0t41p=>($TAV+I7CSrfwJPO3#ACKi&7N^;_NF9^_uiC@(@COv+s^O+26} zW90=JMZc~9dQD%NxEk9B)@wr!d-V;)Oy1-B9ymODlgoNHmU$HU2 zf+NNJUY6sGj}serluP4&L4msF-00-$7qyF2B-tan$-_wlp>~!-22`{>im-Xzp5|URdDpu~!Nsw5q7T4AHWwCIq)i!~Az95%t_ro)> zV@`xE*+3Pd+#wQ3dD`3;-eo|fbG|M-@F@BDbBO$9&``P*0=gVE+9K$HMJABKsXdK` z)~INa;c%*1MAtd{@E~9tjeChB@OQWIa2t?&V=u$A8`7FKvt^g_Z@;8S56Z+`ih0TH zll6uz>AHDaNT{RPiKpGj0`}1MjL-e7-8bx2B{RkHlQ3_ieDgInp{194hAnNa=?Mn` zUAJQEq>M@8YM|)k>(iYkJub^jxj8)jgchfv>q1p7$*Qaxu|jOd%Wv-;Nx!(;vuDSa zq%OJ21-F9?HGsV6zaaQd#+|eTS)a!yW0Q!qW9JU@UwWwZT@HPjfNJe;f)DqDC(awy zm8UOzbjw#|maK)m{AJ=RcQ3NsOoB*%sFoNgbZxA&ZPZ=FT+E{s`1E-Perr+bA-v?5 z*J-KQjd*Y!>9`F5rCDfpwx4ziPHQ_cBq6jLu7STZ*)zNL~?B)cGO9FZHsZ ziPcvspyWyEKRo`;E#!Id=3y{%G>e+u!K&04M%S|dk0fDNb~eLWZG*~%9n&SeXphq` zO*@73_&)oway|&o5b_j$7}4@F;K?;-)08u+;-}vtqnYHt?}WuA*Y1x#Y|r|uzRI-! zqVG;ogs_cBOja0+aDE20A@d--6NKQQulp+=>kOG-l9bxn?hJH;;C91+(2c|ONnPnP zAl(I@KFo}dfB`VGUhz;|khGa7=R~x{Af`bJxoy4wE(;XzbT3*YY=Ex^{2QeR&I;N> z04$b7wg6{P9x2(Vj!5YO8;y|6|E2hOR>-$?nfGP(6g4DMAVsfUUXL#?^l=Tth@>wA zMFMxyD3)hG+h5T9YWLnitnP)9CqvU(teVYeLesUq?6S33rkx#4B}8sIG;F3hN8&Nq z(WFX8%A*~vC5l7Q+goVJ82GiX?to4%-fDM@Xn*lRn|DQa_EA8tX+~|~G!yHjjxwv~ zP6=K4{Kdt5JCWdcZ|J2A&-_;Bt<`f-2_ z`3F3?ImCLKuNVOx?E( z1zbz{mb_J`RjHlE(d>lYT0lT62s zTDAmdZ#$W--_{rU7@Uc9jMbN?wg2NZzu=?tOP&wmXCj-szXimNjmLQt5*yAT2^;Kr z=i_ngsLz)dv7k3$xjiuEWO#}-n7-gVqifv%le14CJUfMNrYB=iB`G90_1DuEE2C+? zbaUYu+RED=_7jKYb2TQRJYp8Yp16d>6hd89bl#o=H7Xw#71|v8dWOuI2OZgs-W%KH zL2K*Fi3l+n=ga-_cpv){?DDw;hUuO1^CdNAcIE5rGj2J_kmP@h$^$aJ<&*Bqb{^l3 z;yfHQEJ<7-<|Cl2MYcF82*Y-z2phIIy9}CaIv}FN~30zl^nwyhxQ%>2y6Cq`SR) zYFBQvX~d+kt*?YbF6aDPe&lJIR_F~}ClD2sf9|dKh`A8lHJ^CC;`dOlK&L=?6O(%; ztJ+J=vFlbFiq9<%ot3hx@tks(T%Yq39{X8|qVabeEf~poW(NA~$^%XM@q{*ITh~Xg z`}?(~UEMsmpLWdI;$U)wgwszmYrp^29@(!jow4r|Vp3G1n70rw)cYwsR;V9i$W6qu zK9EFABFU2u!JALZXkm3IEiEO$$ER&nOw$?*$WF}`Cu!LkBxX0D@=3XCf^6uTa{6gl z^V|xwJi~czYT%+$A|@VyPywh*SwuHAkA}_uwe?Ds_jyKi?3DN9tHc1&GN& z69H+Pn{=iC5<-`{4`V7&$VRS9(ScGIli<#SaD?$uL-KB&ws&paJ@vUr{OE4e~o@X|l&kq-sk^sweRU zPOhP%o?@rbmEoR7Mn%=WyN6}@+EF>St5)2*_BpbbDbgb+#A1(jc-G!9|`bO6zxU;1i_|PtwRQy=^-4`?~C5I9B`5CA4k1gXaB0UD$B1K~D z=MBGOv{w^&m9h;xo`rpGaWrcw6srf%CTIFx13X)1Gp+;L9M$Y^LC;t*z0%}S^fV^@ zsuSL4n!+ZPN$mb^TG}{V-Zq<#}91p6gD*}yMYC>YC#6sJr zteriLg^4PuE6fMhzRzjaJvMpWi4@s&Lxk83GvR7ar+KlmE^9N|d{sM`@Sbw0_SzD4 zvKmM3D9ugz*`i_e)tp1-1GYE zXqwaglxQD|pEvX`_nv?ws`z;+dhcfHd4!vnS&x;zhpt+Opk?k*Mn$ytfcFE|)wA?8 z-;8}VrntoU=Z^H6KXf8Qr8|5tWrPTfS<2TX`7i7~(S%_Sqa@c}dKkr{E<13RBz7;{ z4~Yw~x*DXO8E1_9{7Be^V?=I`38qt!`+O?%d;TCk{A}H{%c6M8C(rbQVTDjdi5BB@ zw7l}Lrt~}WZ=bL3oowy~8jGaqW+|bO2aGLHh1}yq?x`#4m{+>M#ZDJTJDr4EEK;fl)!QO?VPhDo!x9A&<9F|TJnbeqdAe_< z-(<&O*wcF;*m7%5|LpAIGE>`x$Lm#zM*qcn zqiRd2H0JB%vh%_;X~er!NNC)%NA-=6IZH2cUPU2`upnSSz|K4vG6ro?9wvErU;@(% z|2tiXdMn+XvR^ux^-~{0$vjY#X~wb#flp!nWiKkwWW!=}HWuaNP~sSboNAKuMM_Qm zTMmE!C(r3zpUp;h%Jw_-f(4V?qjx5bH&9?Iw42q;&+9;xc(BSl{fW_gJw}jUFnCjlngAMj$r;}$_>0&rGzcQ@5C1%UAm%Bx( z*A`AGZf7eh=+rb&oS4!VU5?S(t~$~Wev?2=_MkP+C`Y5j`*8Y9!dR%zHbJ{$p`y3n zoUsPx--788m{|Hn?*Dq7drn@LTT3en<>gYUP^Cn3#!$6c5*7eEq&^d{mk8IldN+QT!w4uU@smHkL z{$bwjKawdI#l2b<2_&4ixcw}%_8Rg6Tz)3?Fhs-G9z=+rfe-#S6@11{6=w&vx7P9I(4me(_QDz(>C?sll&8HCF@rzj}ELh0B4eRzU$eQ>vp_4kkW&bAl1<~oMIx4cF~h;40rdx5&d zx1U!%%-+wP)tizFN?sSLaKQI2UiTaT_u=dHLHO$c5}8CS8YGqn-f zU@Mp?X`=P+*-CeE8s+IIEgzbTAk@~@yWQeEdD^~QzO-a+7?uA|vKqRYt6P+1dRTp3 zsfuG#8pE`!HYNrStM}*~-`T0dYX5ct(Pj*`xC8@Hx5MHbxu}vluiFJ-fuP$fJ)ecV z%l;Sn8{Es~sa#Q=Ja*JS2TtOk1fcJmwFK%%OI+RXF_`jL+O6zi`Wbnm+%wLR>JzOI zUV-7upy4_nQ7iRE|KD#M>e5OK<5=d8 zzq|Y*2utKn>P0V`IjTF)Y_)MJ*1<%a&_UP)#@HBx5PIwb$dy=H7d}1j6jqOG*Vn{QFhh9Lj=ZyMrMvO0ft$A zfBQ_n0JLJ#l9y1?uz`U~M?X=J7`#xD1?FmaXQFtXMO_!D@6Ou0)XAK<9_v^3^c&s; zyywV?ta|Uo*5%DJ-{!n$&96KlsY%bPbiy&$#pe?6o?OGXIFyTW8!M%YDV9jNU+79! zw~@!T+h*!Eo|hMYi}N(lX3|2V1glske>t2sT*S+9@>$8?M#PNv;_mQ8xa*IM6uSuB zMIC(mtQ)LI5ZG*l_*{dcv)qtdU*O&UW$fmdg1)#c?tQSMGrGC*jEZb_{OI;bMb8`h%5wA->`g8a)>3 z^Ct@(t1&Y^xly@l1*2}KH+xpcD{XZ80-r#_GApx>YH|=CNXnnbcjUV++&`P6qSN<) zZ5!0Ynck-X30Q%f{$6FnX>4Uc2k}_vZ55(j9`6Jj3&b3I_fg#D_{u*PfaaW9nbC6f z=%i&?`uW_LC|jU-)8>SXF?!cRXVpr)-ih^BoPztGvP4Kusop2~H33hAf+5FmJA#~x z!cblMwc|E+4npg^>;ySVnn=$D6ePWkrvIxt6~wm5na^;o_6u$ucO-w z7Ja#!0-f983`lY|m8sQPG{eqOhf6udm`#b(2NP~Wdzr5-Xv#-Sdt5>}j3lkaPZt$V zid3FB7+>hNYLuvl-IF3yNHw#zJm}5UK0YW8_ZkdOJZf3?SQk-jQQL2`W(edcW!czd zAatmAF{loTWU1-8s~L24##fH?a#syJ;l#5sPX6ci?dOLB-23s;YoCCo>Q)3dL7RxfFM=wpjg@&`gO|5~swV%*1goIg1VnbCn|H>GcX zXwgHFYag`ANLNCV^fk5vq$AwB1vIGi#x9R-DA))o8uM(NKa6FKc{=50v~ZNPdIM+V z6To5AAbFX}o8|-tVS9?C9efeR{Td(5FZS9-{yj(V)j@#(RCxaNU1= zSqajr;-T43>l$EwkNMzKd45U?gw}T@QO4$rWGLfCmLUD|>)fp^x<{#gy_Rff@4z^x zyZ1_7vG#NW`x}R{y)w}Cp(<$888zp) zOZEu4`vz&nNLAmQu(Zc8uc~S@8a!yZl3g&Lc5s=iDhY1$9f$lf?X8J1-8b$Dq{onu z9@^cmmR2V$u5Fbq=9Qg$il)5D>l5E}m_=7C$!TzID@i>+eY8+oaejPGWSWffo2~dJ z=1k5@HDXd3p+45g6=gLZKz?KVi}vZ$ox2tNzh_%mVGfhFI(!a4?ly)-z+@)({KQ1c z{o=#sk0LN(E2qfj1+>Ed*5460RK;ekAHfhYw>!U>_b5@V;hT!k%OP9V-PtNVdZOH) z%v5!ad-rD)f4Q$rt51?=aD%14bj!0ob-+#1DDsG1s(Vbb-W=^1X9TlLajGBoUdS-J zee_M)?K6UbpG`yhJ<)ivSZPVGE||Myl2hIRA1F`+Vgeh3yQ%t^d98y-hUm>fA7;!j zdoM!qjN)=BK5t*>25us~b5rY@6u=28a@~iIbtNA<`UoS1d{V z&J%@SJ_F}3EbaPXY#kJ>YEk0%i<$fv!V7m6(!s>34b8?ME!3N#jej$Pg~xw~^kX!z z^kMQ^nl2TyXa{~=t&=+W(9ECvjReDP5G*7vuBRxzdDE13@xy6%^UkQB&=d}V3Ze*L z!hK(=R}G3exUCty1Cqw8h;yLpQ|ehsu+yxvNCnFY+gsrE)UNr{_s}L9*+V6n7JihB zX~sVr%iMVM`7aKAl3{mXGHr_1+V3Jg3fjry`&BE4;vP4M`s0fl?$^MZpv z*eG*SNpQyUmOY4V>n>#`G(9;TSy5Q=*I`wG;+K*P#Nec=%E~%&Eq9wM@vX4?I+R*s z{Ob~~D3(9*yN%T6P^9Ny0A@5YK0{}G7WDg@6bEKA6$^9DH=mE0!Acl{C&@!JP*JQ# zG<2GKUJ56!dajx4y~aUg_v_i~x#^_tS?2-M8A|8D9-3sQQj7zdp9)ks;S{0%U(3hd zk7qY6Kc&2+Q7^rew$^5%R60KY$~gP`i;A{(KHFD{D$#y2GW%v}ukF{><{9Gw1cnQD zc)+>Pe3hj|q~J|(>}{8L6Vmvb^Vr0}A%*hYM-^T&PbP~x?!Yc(KX*##-L!whYOnc7 zT?AM2eL&41!-i3M{};uscun`lYRBDgnv!QGAQQ?{*H*HlfmY)n_5& z4}TPaz%}e#v|FQ~iT8lN#5NF=*4-HYO*5bKK}@%_?HE_9DMWsSvr9rLOmv@{As!$L~K?;B*{&sE_J!&6CY8_@s4n4XIZTW$B z8BANX(FFEMT%^2)^8R(qnj@};4RvGg%{We}Ub$q?DbAq4nVnAlsFa(H0`KwtWVnc9NVIlS!}mAbYz>j zKN=5wM0rO|xZ~=MS5%m$>5n8z$jMvc zg~XcohPIIm|D1NbWL-mb@4y1MEYGH9Ans>PSS?oW;^h3>OwMKQQ+Vr-;VLVt%B$s@ zkw&y9Ij_E_zwgt#(-r zAd%T?TuoHp&Igm$MVK!ynw)P)+53_*UoolVcwvpj^JN=S@CDmKmWO*L|{eWS9DVs*@S+ySVZ&@UKKu-g%!JR!ep2l za)vpKNMSIE}|oFs?97LI>F zKwiPR&7AxB-j~8nO1KT==EWvhJ3>GPfa%PK#=08`Lj80iNEqkWl~p7}g!yMi$t#2q zi8jgfl?d>q!RFzt@6&;V`B?YqU}nF@gM{s_!bqBy@X;X*o>Uo-0pLC4>vWP9#MTBj z%WZ)HR>h0n{L`)Ra>L2Iri=sZh4O>Czjk83a6fZEB%RC0Nx?QMJ_ILUFXb78a@6q@ z1tN*Pa8M9D#C7~4lp+_!#t{p?(_{*SFL|YZmxY;pxXdS5#~1vo_`({Y4=+|5Y_dqZ z4cM&BA|ZwwsnxI+4&nvVjazmKCBD-rynzR+GLjRNj=KeWJ!SzvLhwoep5hbQ|7*e5 zw9JX$j-?^DcqRH8#%E#)Se<=wqC$u6bLMh|mIETkxll^boh$tfDJDqRqw(wm%*6Toy zf@x{FSYE&0aoaU4bW3D}8KCquUni@0y;A=+b=+ZIV}JBbr72ase_<`vCcPt`IeI{Q z^vgFBCh)1S@iwq8nL!4AS%`*lm@fh6wDI>bw>R-?r5^_cfcH)4`OZN} z$Mk1(NM{wxLE`Ume3ZBizgoV@BEL_L+kek~%k8jz7fDa@tpE4vwXQ(la`+=uEE?Vt zyjOzmXw57!5!(~kD{d|n^yaV;ky$(!A47<1{LBJZiO}_NT9XneuR|*@^ zL=EtozU=%NR+01#3snYcqec&1f}d+WSm~NIl;m_xh;Aj=q;ylf-I8tWJUK!a7I@77 z{x6i3BioqZ41IqF?haX#>%{>LI3>4A{1E0cy2h%xOyDADkw5+amn8-uVT4WHvfg5) zL|6eHc8PeMMr9vS}eBFp1z5IVEYV<;4w zH;oBlXhV(S2M4g-U7Z{$Nn-AfQu!h9x=CbB1Z=CA-CcV6`Ya&`4My6Udwq@>7f9l$ zd1$KpfMJpgk4Oge^+z>=GG!+_5%NpeWS$VYZNW~2Pe>D@q<8r6=`)_y?*&pzZwo)% zW^cNP+jOkG4mEHjy)wC3a5CUf5Rs^(-wlaA9d=u=HRw%{XYtmI!3k2*s-JSPGmk=+ z-(;&&9QA(Nn$p}Imb(YUEYJL#U{C1zd!cCwkIwYnoq1)S&RV}@4y7vI6TObSu}RS_ zrDSN1EkKuXU87=*xy)ftBk7y}Tc|Udjod=b z7X_+G!}#ytzrDw-!SpFV|47^PeLkdjvWPKkCdKPMFmgQMie8#2y8iRp4V@&X=dDJ2 zYGsZFwmyZi&)1-+Syn{|yh^i#3ugVfb&IDaadYc?|STdFx)S8jtrA7HSDj86RR* zZLA(ht#NayIYZUUW2@xuX2{iE;w?DthJ3C)Cbh86IVkoEJe=t`)ljy>SE{f;h?Jc~ zO0X;>5roTiF0Ngr%(-G(ah{FUpU}1)D_yE_8KTwy{)q-%dN*!k;W3i&J{E3Eo7N?| z%_FZv_Muy(7@e3J zH^YE*Iww?7soJ)fd#w{N@lN#nE9ra2OZVE56IEzgn9q z5EaUEYWr$0iPz7aLH^&;G*{Oz9u_;aDDk3?nF=rS^7^hq9Nd_1pGP~p+yFx)86lw& zvoaU*M(y5C0~Yb{C;y;%DfFuBD@>}?uHAtRADSI8?T4v?cYgnB>6A^citBz{&3tfm z=(c_kr97F0RX^+|x9dqbe=sUol{Z-6@c7h~emki{bbX}p!bRYla7+=@l36JIShR94 zDj(7Ov8L>dctHCTI&Cna4Gh8%A%iGR-QUWJ%(mIwG9<)g^goa12HKVtf))={EhysB zsuPEGhAiFrKz8F?&to*Jt3V$^#u}M~c`E*gkG#r#aA!Dm_giHS0i=|QF|@~qQL~I< z-~~`GxF1MtCoxxDW@`LUOmVb+-ih+cnMwk8Re((mX|V+Dy~DywlVQ|%xu{81RS6JeZvoEzhdf} zO%|bdxB}h1LIte6<*DP}qlqt6T4o|0? z_h!kKJF}Zf*R~!YJEXWce*#n{mMR_O7Xe_mB=N-Y;bc#b;PdR+cGM_#kI`yt-KhND zA6X4{-E>E|y^WoVfjn(aO9B zezX<0W-iUI8#7JsX8?xpHF~JJbvQ;Rch(~Nq`M22V0qA~$Ah|7B7mnUVkJXz`nOnP zI}0{BW(3a@GL?rKB%hv;3LVuSDLKyvV1D%m&G{BVcFExwMq<6o8(XHo<2m1PDYz9_ z3F3M%57t`N4)yWn^;X(^L<9z-sdyucTKCr+?N03;O)Fy5c;M&Vy+m%;tX5{QJnB}l zZknrz6Ja*Yhj|&a>oKY~ni7$lMK1H^M_y=FA1w7m)p&``WIhdN$n$XZm?>&34=@^C z2C2`D*P9MT>TNk)F!e!g^VLOxCB=#=#E6KZMm;MNJe%XbehShu6a1eT9T5SPDEc=e zY$&6I*Tl)Tw?cTdHxT`v`cF{z2>H!d�EV#2qkrtj}2w> z>xhU5xZU$PK|4LYXF}IITn@CVPIs6^JETwa)QoqgO7rBYcR_Lc(s4_v9E}}9S-$d7 z8DQC`{$JEn!r3G-v*5V(LFiJYuTN3p6|`cj8x>lYqpQT$B(ao*sM(Yfm!j=pzyteDMWHp zCz)iN3PK4Q#l|Iy({3-fj$-&(yEw?9o2m`mZ{YVi4VxyfB>ogVAZgK2(7;zDQK+*D z0yO@HonfEax(Qx1dlr`kjK&r$#U8BX@fXK2>3hG$)v8Wu_L*BTD`ALZc})9PlN>DM z`fqHQm`1ZEbDW_|weN}%U!@}^{--j;Rp%Qe+4>pf&xx{dkz44vnZNPk64r$@08C9- ztW1uLP6kf`^6DRf&$-F>F|o{Z81c0{rRq)wZ!Igu`X}~Y2L>~2pEl23y5IY4&G#zm zTajnl1vdCMjs}JXhutA%sK_OO)Z)f8 z`GE{YS`w|9!EZIPN!DNJW!b8sRX#BjY5A?l@AT8C)=~=sm($@xhTw$Dh`__NQ{-YWh%| zcI^dTrn<^8-CU*+l%^$DOh}+|iTn>F z_!+P7ozA|l?4M9B$!o2R ztiHw#D0RS$+s79X(_t#Wt~z)i>V)ZuVqwwqQT5U z&J4&pMqBkqTsO*AUroLc7_`gm(Q}(*x5CDF2TlCdr+)Cv*y`eiun5j~dirGZuec1f zC!sLjExRvsWTBenZ+VJvDR@K~Yg;Rvr$nuKvhY0Y_xGsU#jq{@A~oiVGe^6A%&LUo zm>q@Qa}eJyGjuF3 zlv|)f;9g$0-vB!t3K}i60ppMCMIRv{Y<)LI#K@sGHF-WZ8NSo7Ca~N%p0E>5 zy-Ip3^!4l4xN#7lM%|ftJD{sRjl?*pExdvCv=w>&_>NH2L5(aMovYhwuM!~>1D zv*CXo%g2j=bFejPe_&Rll=Qd=bCI+zX8lY3tN((E z+ru7ooU{DIf#wvj#Wm<<`6A^dl7e%$@BtQcF5ja+-e-y+uFghPPFM-?Fl%a&ijWoy z_-voB=!gF^5N+rVx-#gOx|8FYeg2-p&5tJ$l;yMmdI^mu`zTPDyy@tuLRTa`1v9~7 z2F`R>UEgT-=H2IU*DIj}f0T62+JzEs0fv%wE+p%T$a)sfRHODF($N}>qt&j|;vmVD z=5jk!oYA!kD|8IzucjzV2IZ;p8gu$nT#Z-d^7xX(bU(3(-bmfu#ETiG_Ioa5n0HB7 zX$R@Tm&zamRmT_?9=m)3HQw@EXY<$;pY%?*;wuX2g#Y}}d*6rCZe_nZ5L#NOk#6;V z|3a*V7=nYvYku!_Q~KU&E|}&I?$)I0*xv*$GK4LuJLmG?Cf?q;<(`Tw@oQsoxpDV~dv zi9hY16z1GCmP|N00eCRZGsJuploGnIAviu;1Rhj0TO8XG1@)I|BzRpy zp>^}^Yv3=Or$MNSY7+w3PZ#hfAVLejSi2-6AwCfaaLm^J@?q)3ea2P$`-nxog@&NP zIc&E3C;i1@jz*VmPON%oLqx2PfBJPq9P1fMz~2eWq^2)g{I0PA3WBP&Wh@`k{F}_s zj!$cej#VI%=WY*+EsMb3m>qkO6o3~2LK!6A?Jsmo36BmB;oMuu5*u&Nr6b2-B%pl= zZE$k2l|NUTPXq}cR@@X@uOPyxrvNoZf_EF>8=%D@Y1yx!TNaom*iXVX%IKxjnQHS* zq)FtQoDZ2A=gLmIK6#EWy`QkT2)*fdh%60eHKL?nT$`V(cUv!1QrK&uBa{M61+hP+ zdfDRK`NE^?^w+Qgeot~?>uFzpXDgQ1r*uP$g#n?%VH4w;t>1X^OA}r@If}(Sd2$^Veh|q9_$$a*fx0*VE20qr8wVK0}*sNb- zYf*vVY@Z6-J*{}t>4~@AJYGiR<{xN3wk<}^gs>W{A}w)iTkJPC;4PHp-Dc~1DPI2a zHF5rioA>Hp<@77utjevs&xK7{)fy^4%~?$u)hpm@4I_$xw>M(cBSmy)7-9^DSV<@= z5h0(K$F1lG;$D|U`y$IuoZdegON^K$ z8R|mklU^|$FXe4t^U6mb)1%G!7t4PU`B1#cKa}IiB(ubb)EEz}ukbb3;qk~oZit+M z!Vg(_Bx@9#Uqz2t^H`AKS+l*zlpxFjEeLyv{;;~>yEk`IVV7Rpl=Cb*mN46TOY>&DA2d z(An4?)jsO{(d$QLKqLzLMYFhE9aEPJ;hKA;D&2`M{s;E=yi1wvk&|(>QLCTWd_|tv zp4QY>-;SWWZM=}9m>`mEo#fkRX(gVwm0{}DIQ(Hf)SQz5rLnLtNy*F_Wi;j6ASTrmdC+OOA=+>bol~U zg<0TxwB2GtBvb0Hj(1TP-z_C5HG3Sm+DO{s6`?G~ULod*9srCnS;r~~u`k3Xq&OF1Gw~VRd^k8gZ3m;(P%NY00ZrRb zn5{CTbIjc}*$>n}fRK}Hg%x!E@1P|t?O)D&^i5#}BGvnt5)&GnaH=dhGa<6pTuyyz zBvTGil$nPHZ^oS2?ICCc#G#T%@WHNzf5j(y?$b?;Z(9;rQ4F{X)G)M}mBlkfzlP=| z$rR;;sJFR(pMCc@wfa(V5b$QNTAI1J-b-LcmtQBv2OAp6;-j;@DE@l za+jUIINc`t^tkHe4_+9{qbd(B&@#<7r+8Ui4%J4Pb<{d?aTD6E#P_J_nZKOtqLnkJ zNC<8aRjGb^TaJl=f*eau{#K=lRt8TXHD_GaGfUY%gDBJYmfyB!w(*8>l?0Y1Pk% zCv3REocD#UsCAUcae{_UbtgZ|(fQg5SsC4(D;z>};=zMG*K`3?u2Vntk6wPSsqWu> zz{~bSjsguKn+Bl;t} zKB_Gs*6jCIU2#C@0cML5dqE&GMq^Tmt+Omg^x|SrAxplQBsU~{o8Or>OFky#@%w@v z*eL#3Q~GmBam!R6h>b;R+J+e8Gs1&+sFbLSH*blpiTCIH07pYM#+hTnSwRzN!$IJ( zEXJPIhuu-IbYOHBYb1-eql=g=+EuyVi|kaBn}9g|j7lKDID9AVZgo~FMaUG8^Ycv( zkrI-luasHkf_RZyS`6D{PdRsLl~!8uZ7pd0`zH$FZfg}y%qGOjMCs(O9lFqp=ik&Q zv`89!|2&%NSBC#J3a8_ws0S8O)+5)Y_Llf94kcXgFv8mK?2W~q){AP~XU=dA)xw~d zw!-u7hWinEkBTc@iG20xP3#ba$6bxf>d${uK}769EvMUQI^7?GR!928ua@;*)n4*C zua>>pc$uf=>LIQtKTpY<(cj2yWey2!=a(b?6Tli9Zj7@0PR!*Uqu0*Z`}kF&LlY!^ z1~yHpNm5>a^#TR_5VQHQJ>u*WjDG!VhjHc%0UoPd%RLG|g+w17d{)(my2X6GFB+-U zHtVWNuwcNsUh~#&7 zYE+yq)qgbcvp!u0g*!9iE0wt~4NPg&dB5YvQuEYF7hZxlPjirE_1;qCoi#ECbL_hx z9cyiY23%q2Y{9uy+TnddQtLZu62VH#r*zdeH(53GG|{Zub4NV5eBCj^!gWgD%ccYe zgbnbww!KxEM9~eq?8Y))7b?)o>#+Xjy(0(YVsIk!$`fn6+D(j6SAx5h)9s6-0*|?d zdpu+I=cK>BYTusZe89TR``bAl-r`rUmMRFLO#W9lYJ9L6YEdxG{?l13dm^#Qi|cOTRfhMcve3l%oE2Q`mTeU_V8IG#}+ zPlkPpDNrxZlSy2EHWYPlSUz-Wim5*9adT0+^;8qdL(0ea-M7mLO7N23@%?>*_yAx* z9OMnPBgDM&|3F4ly&`}NQe8IpHb5O&Lu_QGEgX3uolhPhgXn)C1N_VX0U1<2`aKVj z0Wd}SKgfVQKt>{Tp@g`4`EzMyWEIbjhBvDyjh${W;lK64_6Urpj6|uefdu$h9SK2( zw4)vm5z=Io_Vpn`=rO0T5bAC_q-#%H?3X*R{iG(a!V%`{_I|#l-4z{Q;s3Zw|Hw+9XolA_t;Zw}&W7N$9{rPn^T1%z^v$dCLX$$;5 z)x%#Tr4MECz)#IwR73) z*TZyW%#~e4GbDwYy+=uLsY2N69g`{NfvS&p?f>eJ*n zs_c|%q^QRiOMR=o%sG-NGd!l9kD*R^9|)`?^HW%f)vkV?tuooVL*WI3W3i;HVbe5` zW?I<;CRQySxdn72gEe9a?Tzbw9iC-f859AProjV5%o|4hY@Vk}$RS$YMN2E}xvwG; z>KAm~`!iXmcx4$`a9JUgET|54_Mp;jf~4rLRE4< zwkr^+gC5M_Cux5Pkxx2q(-O3X*++j9*? zmJ}o`6O381%m3pQ-4Xv+=cD= zb5!YaXP5S-(kwC|7dlSXz+_UAT=^BY`A^`oITY@4jZI|^rC<0)!0q7DiQx! zx}t>+z}>;TzZ~MxCknJ*#bZyCAqgMsf3dftbd4Adyti zts*bKb1->{1etzZtOh)+Atd*b7PK7M?44&W_WI(ZPw*Y(s&znN?vKC{suEZiJzWx!?GN z|93_1;JDj_wI1HeW$diK1WOG@BxUQ0iK1`7e4aKIlvmcd+0bs?N^3Y7g4266&_e{5 zQOM#hK}}OHK6~@Yw^o4n@wG9%HnMzA7Cg=KQ3buUToGxRYZj-LyW`=7nX({oA7f2Hk7B3=!}e5}V=-QV8a3~?sjVgi9Q2EIHTdffM}K*AO&)VuSBcACMPWsV5}69C{BR zKAY6MAfG1G8fS=5{g!lFmnxz}H7kIJynys|SZ|eYWvJAscpNO?7J_=DFIt8h55z}< z1XL3WXDDJ=GDfm?fWaLd3#e6~x8_QcY9ha_BD6=nsRh0*q^FQXt@kRPMabZ8k2gt$QBneT^1TnXF*W&OQPZ4Oz_r7Jawvm-UQ{?u!sO|}@Y!lRXCS%75>VJxCwbi|j>HU0%L;@U`wv2cJc zK!o4~>KBkb%$F#1t3!u&rdKze|JBFI7s zwQ3sd^Wg7!%5hAK@vO7iX2WP3Y6kjG+H>#5F3ox6ypHMfy!eTlB!bNW_KpdTt z2T}Wj!2qr@LIV;AjkK<^?qs%u88Z3@`u{s6=fPY36Fh5b7kIka5ej!c^!=w$|05y8 z*>dGYH|4<#26bJNH^g5+Lz$LCO>hx}{F*ZohDOY)ruW&hZ9F-O@r(UR*|ymTPa{!& zG;Z4?Y>K~z>~6SQpHQvY)q|D~jSb7)k_r}2luL-|@=ZEJE-qa95_w0BBu!-ZD!0aR z^(&eMzkiRFwxY&K`l)%e*b&tm-F8mJmvi-L>hoTzn3@E!!`?!D{uE3zmR!EGNT;CY zb8SF9)~X>2`Em)&w356M9+Ec4VowCOq#^z9Gb4yn2!1%D9g3Y)t*XJe|;CnqDa&R z5&q`64l5nk<_24h zBjEaLt|89*#W&)jEbywWu>3Q5U}C>R!srtU0j66(L2Jr~{NFeL=FxUc2xL%;u3!M! zF{uQ80Vq6L3)h7x5o2-cpHA}n;^PN?Y!Q45ZP~dgZ%8#Rm5*+m9?FQ9cGbHOGr0q%ma|BVP?YjUs??WHL0Gc-Ur|Ah_PTT&z0@*3qSTKQD3R0%J}gQ#Rg0<_`881r+%MKg(rXM*Zd9p@-jL=l8H&r zoZsT`#pRNi-`p=&4N59Hx}nO?5`L!zYz>~*ubVE{D9r0WR4ycqlE{}CDethz&wIF( zzd??1G);q>ko3#Emu-h2p*~^n)~*fR8p0^-4dAm}sS-$Wc_Qe3#@*{Ewo{o;TI<29 zu3N`3`m99nSr0K&NUXlCiyZkDRwc7a>mQ^3ABuyu1;t5xDRaead~Sq+9J(F3y)jA? zjvgK!i~BJYL>R9^m{lGtZ*p<8n9;^&`2bB0bvH--x!!ygTiF}ghnY5c$)D%ui%4Yk z=r5>hZD{@*ylz&j!U||&G*cqC*-X3k5(u^zyfgtFrjrAnp@8|YGTuPhf(VI_A3?8T zHUA9-F1K3eC?M8~6ur2aw(BaLvf}+1j<7 zo=2old7PksG_{{s$a#;Dtv)~>W3)zf`0suev$`V7aY;ku#`l3H<$i0XX$P3pkiAV`aUm2ih$tDE+bFjVx>mR;_$DBFo z6zl{py$KS)eMhkcE_`=EH(v!YBZPz%m353p13Y+m(4efexJ1kkL*!~{g8^V~V)tHpuCwjjsM zxJ+F#pKsv|(&gf_{|hW`=FZNWvj6;rjh7F{S-L3jzYjr?m&B}}1V1CRF-Gk}wVA3M zp$Lvy?E8w+ZfbmfD#7szd))%Y8{{|IZ7@k?&8orZXTyy4XnB1=+rf;5VKPa`&rlL4 zvi`Sy57F~l3&&;0x;Q3D>rp(q#>?R9a;Q_JiRBhw$PRNlTJa?=tS>K9)5Omo;{sBC)BCdv2~)@ce# zjU(bmUipczQdaD?JN55=3{l!2H_ynPC_T}S=aDG!hR)GOI6+YDqLgM{t4H>9HoCSuB#$Ac>@gQ)xb?_iO!mnMd$!AOP*OTu^Mxrf13KV-HKHY z4;!UA_j?jcLi;78w*-t?6oAI^RbOdhq9_a$6m8wrR1;T8x(gNzVlW7mB*%O%{I)$? zK2x2zT{@ceI}{mBZA@j(allq`Gp$=7%y<}}IGcjCM)pMNxQe)p(F3PZ8E*hm;? zUrx^qHbmZB$RN8CSB_Y%{}}MokYe+qCyF@~wmsJ3Za^bR9xtKX4tk*sb=tkm2MpmN z)SoN3E_9j5YAnTH3Ft|_Uj0fArr8cwms@zKZd zXp?jT$sqjE8Ti?DKW4`Nxh5lE=FFlS`+o#n?Y4DgKK%OtzWpPc*B)&QzZifZY|6rs z+eaVwA$@?|hQCzVZsp^{2iSu^Em`2Zj{3lVD1t8_;A{mKm2FUb+So&dfjuu#Ukz~g z8viFLA(09cD;@GE1ZHqd#9?Y9YEuB;-y>{ko8X4`7TY6F8YbsWEGyndu?$n#+Dtvm zcrHA)LR6qa;<(l)`C>$y%8E(=;-u|pI=-;QT2h(#jl)~yP{oqlmG-mn0}&!@shzdn zdvA#-m&A<-Er1#fL{kkaCewbMe7!2JS362l>OCi*o(%KH6!IxJ1z zkJf!2eol2ry)s3!F&Qi<$;M;7>ueVNba45$6qly08tGUyr z-~Kr`oWkcAy{Z{m8n;-MX)wO|((@eqtJL|^)_YgxI0Ov^oVX^vM`o`l0Gq<-OmkUE z|LVKeXSRiE5_w%Um!5dRM;dS6rWvpHRFM6U%>CYF&xuNjy?AiaJl#aa;F_w; zQ=wFWM!ku}KqmBi%Rkc9YLSfPnR`VS~Ivt`^x!KMN3{4wwz*tOAJ&3j*fxqL$xBKfhlEj7Pk@y!1@I ziVdep3|Dj1a%BlFI2epH6T6mg4JSblIyuX2bugROc9V8?s$4cQJ51c;hDd6(qXHeMuareF z5M&3}`*8RDB8y|W1xn+_`KOt;x2Ht)5_j8JBuhK($134b+BQ76;Rxx7CB`UN^Z4y_ zI&xF3M!69-Fx-3Wv@iDiLw6y?k~a)P**o^jzrwjTp5T`EwYEzkjqZo*(fws)+(88) z;R&#q)r82FAJZOoob6UwKZ_X1EaPFiUffxMGSyB!OQ`9gx=JP!1;De|!o-Vl$RGx(f@+|ut|yUTcdOoWXfP@k zF-kMdz?V-6pxrA_D@D@vJdI-RzXUg0{{UOTfe(>>fKQEP=MvIU<*c*ys0WR3(chws5*DJ4@6CGK4MB zMZh2)(1=^qPJ?_EIHy3JYRo`sfxTdpVg?D+b~+Z;M7!IS^ZK+D>)kf}Q#axDKq(#w zdd;GO?GwPxESrP=9SCEh|2G5P*fA~G+n0d+cg}=r1Gg+jOd`*-m|3mf`O+_IYSKTJ zr=I=5V_C^UJdH&-mQE|#M9G@8@$5gYLqpAwcC1?4{B*#e-^35vuNr7d2AeQvquTx#;c}&6r9kFPRSN=$Q zX+BSU6g^K&F0Lp7C4IXxrNi@-yRkp;I>!~w+m_WQ(VU$1+`6BiOmHeGfN4oZc!-Gn zmDsE{lJJgTjSaNu1^p6dEtgb!LSaF*70qOn^g+EBHgu95!N7L=;v@L=O7l`I=R+zD zHYH#UBfn|T#$VoRI7Aolv1L4x9F`2HUF{~AvobVwvK-~5eFB=bydFT)34@cd5-Njg z0c=|GWc&e)&K#(TsEdC_t#$5&*PlgEi%W@7)KycM>Wj$yZLU2`S_!iH<;zkBR2cep z+bS0h%Wu zb{y555C*mifwCRxN4d$MA&LIt*Dv%9G)Je;b`KFcn2R~#`rGnVXNW<9DI~dNGkS%W z)^eco(J&y{AJl|Ws`^@A5ZbCjIwuke!;oyobfp3PI$KSS`0%uoI%Och+C>ftQQFzV z*9_QvQe9-|Vi!OgU4S+j5V`xi+m@1$LZs%{mcc*cE!5{nv(W&C={lM(1K(u=+TTZRKwW7{wHf~@==D($`(;WwF!Q*pr_eLMcGIK<5H${ zI)!>e?snE*^%<@=$@hEKkNxMobAJpcmZjc7;4hM%;N+eN4KG}G(MMU44mbIAznnF? z68nTv8^>pNRbd4ytH8ZfwiGX#(g{L;AO#Bq!V2sPbQ;OeW&9^;?bbV_>E3o-;gii5 z`ji7L+3o%m{N|l^#by9TQvGjJn-Z(4wo!~~>*an_tghQ7K;szw|zbF4* zn%_fjN=?&Ms7%u&8?RjQRoG0Uzq#ikfsbeKE6G8q=S1j&p0PPBIzaqYuy%nOXL&r> zbzrSkiUM*1Q+4}iiaq+ug3?PARulOs~^HxfMPboZsFU*_ta&CRBPc$N@B zCgcHcZEfZ5tWfrcL8t0)0^ce>tWBu2)_oA3M_;TV_h`!w<_DV0DT^p1_)Z?3Zj;CB z+t<7F`G4ef8fpwUE&?7EpxOMbvJ3{^%+n4yTLTxFjK*qw3Qtpnfgn`5&Hmp*za5Q) zc>l=8Zl&uB>PbN_^#iCdfoZZbYw@RIcUS5NLc~%tjfLg#$dUR?mZ8}ZT|v;0*B-gh z9oGu0I%fT&6Y;&@cw?Gp9A&HBbo`5+c34z%W$YU5lyA-;gMZV1$xgI$q4+HS!!pQU zqPo9gNsKSD*vuM8%tU|Y?a|S?shhPl_3M4S8C%s(AV=-=;tx@yY>vW9lJH_}F`d65 ztRpqwvy#7|qs}Tr6(NbD(62*2J_*FBG}MpgHi~Ad0MDB7C~cixXNV2S5BszTh& zy9o~E9?MjU%|98CFm7EKP+MzDBqr?fdqbbFYmbqO8~MsKZ@*zD2qGNrQDykp{d}#V zEwFS%9Ht0GnX05SClfSLWDdlSJPm&;+|f|nB;ML4`7V9``^T;~&&)StLv!x-(EWi8 z!AGKqb&!n+5TB+y3p9hN3^1g~?M9!v9ABM@f!XS9GCx*!=Rsjf3R_KC|+k%kWkaBBo0| zAy3`r7b07WmtX%hJ`qg>ZFyml`^mZ`M2^oR(igDBbfM8XuNpI+Xt4KfQheS+Tm19q zj}Kdyt;t9R#>0F~dG_x;_!KKW$;|fm_rt;QwJ(J}({wq|MBC+#Pe&`=XK;V%6Ciwu zQA10>1@r0-dLr=6LD_vq%3aY3#zSu~7Z3KU*pL^lkID}qNWy5iuNRK8a`g|nA%W+U z&#F5(O4#EHN942o(&9KA(y6vycy4J#$tiLI;BhisjqWu zw<4Whx7PO*JB={>=~yO7o(HEysZ2cCT!qk{Ey*Ljbj`S(DVqCg zi|6A+nEcu+HsQHn0~?o^m`yGOQ4}SoA*d*GHj%v=`&QMnO8I&j23CDHE^K~Vk~|L9Ms(l`-}1; z=o#Tll*JWBiZ23D+gK4h1tMW-S-SclYS!CbhHt@MH>bta%h~Ke-z=1QyyZ|%X&@%* zQ|%}9(Psmq?^h^`Q@uzy!X>at-=Dc#VChOJQ(VxT@ZbfcQyEbG&9o;^29({F48d7d zJs3q1vDGNocXAFbBbe1JDLB9W5qmiL0Na@n)n?}tG;prw|KaMb!>W9PZs84x2neW@ zl!!=5C>;`tv~;(0he)>~pdu|GozmS6f|AnRAR^t}-)w*HIoJE0f4nYKU_bXW_r#ht zYlPhPZ#)eEuxLWY1Ol0iW-gzsRE@tWLw5VKIhDis39@!o$94T6=wEw0+rXTQPhApU zG?NQxDKYM9YV<208Yz&$up1-1cVz>)%z@9@7gQea%M-d|mkKQR!*zvfed9-h3vD5l zDwQQ(PcdPf-Q>u}E34A(ZK)RcoPMqaZT3v@QHRuv#W41EqdDfw zT8Fn2Qxz#0)*Iu}x70I(X_+CA$tgp+JYHl=8LN`N`f-r(%>XiU;(J%6V2@Y*^w{pZ z$M^>kK&FqP^_ma&mWsb7$NAF9b*?U(7T1 z(y4Jk)f+ZEP+Ko9Dy>jv%w|yQ^X%jvto8l)j7c_Ph^>)7fOFA~x?oAGoo3tDGJg_) zn_@8EY{ZaRMD#UtGE>4m8uSRrw-lQtOS`|2Jlpaz9{3K{5dM-YcYp3X+WG#VoO+27 z=2-W8n=E0~A8v>19~(T+QbF;v<|l0?yq6N?*iWEnP{uSKy0S;f;m90x7uD{b(}wTM zut??&&0Go*T`OMLF<@7gejAfpxk(E_uI6uhT((0KU3N~}0HXz~gH!k7@)Z%LpdiCF z>vE6R{vnHQ-3QqIlBQelwwgV54rMx5^bjotTmlXf_?_BxfMOoj^>PSGUvL^28a_#4 z63F!xD8QJiMA!{s@n1!}joDyzZ1Vl#;sA6!%aFwH@iN_H_fP(+j0*>H*oJgooso|} zB>EiQ!Qb6bdHwfDe?9#`8MDR9Br40Ltj{FuCa>n2-f9M5-@N%_cHgQR9GK=wVmzSN zbcF>yQw9I=T~_{N(B;a-`KETqK8kv6vTm9*xBiP#Wsw&xFy$oJ(`_wQB@{Xe(Jb>l z9~WE>m#OSA0`AM%J@&9ajvWrlVj?ICK$Sw^M#Oz<{~3NGvG8B95fpuo-+xQ(>QUSa z+!CL?uUxZ1euxsq!NgxCjnD0#sXm&$1|Q=|xo9;Nazt)^$FtE8BPx9Hu6g^5xJCBU z15t^$?*^=DTN`I8a2`2tg;S&%4_n+7vDJpVUnGWX^QI-@OvK(m_U*1~YK^07;m=hb zViPi6(~4zwrbE!V@36INN=#0tM3!g{J>Ae?ymv23kGQ&Ys19YD#I`;V7jo4`j%M`8 zlUP?xY+#HSZOga-yR~r6p;Bq!jU>*Ta-RBaDk`dh2hksdJWmNMNAmhV|J04k2TWgL zo#^)byH4h)j`e5oI;)HzQT-h9OQrkPD^OL&Uz=vWq>4YrH(gh9!kLZl6ke8I&^S01l5{ zbT@#BtEaD34!T!P-sI(Kkc4b$M-M-i_;LGTX@OXJhR)9?S0e3}BqscFmmGw|#Fu_n z=%~sU8B^7Mru+Wd3FuunvM{440@?4~CiHe$r=Oat6gfys*6IL-k{4bF0$8fK1uA7} zrrb{(+(0Y+7kG8j)FH# zaK;q5mHcrZAjm~lKd>1hhlE=eJgn!RBZuoO+l{5Z{GgoH8|f@nGoaN-iL2+GW~$x4 ztI`?S=DaZp7`8V3t1w7AizT=wIobZrj&1zms?6kYV`-YhX$%d0frlj>ozXaMZH3;Q zfFOT!@J7rNWsW|VMO&U>?SZ{@u1_W!&n9Aa`%?}IOpOG$?Tmg0lz4cO97GrR3Tf;)i@kFGavtxKM0^)(q$;0l zs4zDY3}#sMN6!N9&P659$wKreadYQCOdcL@Iy(#gsS_k{oLJ)}Dxxs1ex}B6qw<>B zLMn7z{vO^A$xD^YeQ*sWA%+wGbyCo1rzy93Ob0sASw@6Eo9FEF<0{P9JYQ;|CckfQ zK$GU-Zp4=S>f$DR``$k5pq*9cLz!6WQ>NqeFukANExw$>^2hIc75)x4Xj+Rl*Al=b zbiNs1;?Lzdt8Fb_iwtxZ)S8+Uj5YR zBE4q;CGgYwb)B=OvlhG8i_ewG&oG~#))%-`?ZN)(z7LgzT|+T-TRICNuI*YCd3;^- zNrRbkZCbYV-*|0e*o^Hqr+8&FNl#$4Vw24i0bclV5o&7sHi{9dH9sSTF7DCjg*Se$ zvmKMyK6Nh6ag&eM&D#A*ke|_(;qh^>(IYpq?IZ1)(|vBw@9EFbXFb?dWBpJS9Oc~) z^|m{rDEQCnKcy%1Yc8rZ!~`cFQmD9&cEmn=nZ%;G7~g05-SkX4;q_kV6#1Jy8TYVK zm)H4THtW;A6ou)O0oeN}lA1v;n$wU(1aa2F{thtAtQR&)^W}bl?G|mW<1W~tlkra1 zX7=;QG4>8YXGsqa(=;4O^etQr6Imc8$=k$hjHftl_9f~bt4Oyrj{ zX&AfeMIDdUUK-s%mjEx$bHec$@$cnZzWJ=}#zlMNC1qQ*g341@t(GQ+gA_k$@yBVY zob61yeK*bz#2EZ$E^nbvIzHy2sf`wr^LoFaqse$rT)j!*3wkqZa0$zU(F!aVMxO;) zpl_MExbPqYtHlug{#KHH_jE+Tp0BOrJQjWkrCwiU)kqmuz^dP<;A8at zYFWlc>e|v=wi^FGx()eHWy>a93C6LBhW-dudr^>)s*b9ERUqaFoC(sV0Re)0z^w?9 zvCIxsPFgQ5fRNrE&rG%~iK(i_@~HGn3z5Ub&qOpf(~&Y6&-l+O^Am{B8u^YInf1)8 zmT@63MHPmT3bGu}=pC-4nuOzh7UY%HS|mDi3d^*2@d0K_0=O$U~Qkft(F~6Xi>3G?JqtjXp#lBuv~i&&ThyE)3HU z%ES2h_zD0ve9Lg#1LX}h(t30V(2s&ItHP&OeSFooH=W?-aJ5J)g-{}GhY2CN_zE{;b z#Xx(z?z_HOnd+HzWr5qZd$ZLADuuhmLa9d41vzys3vKuHzf&T;fTOFU;~wq$z2i@L z_e`&im_Ju_F4NJlw$jGHyR)Eju=Y#i6Jodi(K~14oWz!{H_DvL$SGwqStH@=*Df(r zFI8?b{pmych7^1EsqZknQ+;;)L^nnN8}G(Yl)qS5X*Tt^W0cC z8rbrvb}m+~%kz}A`39vc0_{>Uyg@+y zd6L`h*q;P&nqG?^`^&MT%%yvegVE{=@c~p-c);dZ24OvKXhV9(#bc`?=MLJ%Gp>pv zCT)4+WmfpZOkZaG2j1-bul=pin7O#n${CUI%9~Xmq@-ICD>3Ff{k_X@V=|R_39QDh zEt$xPI5m2hIm(|Ii|2Q;e4QgE8?&B(neaSP3avW*vA?i;xujpvZC?U?b$eE?<}EX! z*Xc@TyU{{4pJT|vGR%>a=T|)<4{0D+vrvtC#`3gmx1}|CYEpzV?aOn9Q*GshEBD*D zL9S|pViYTO=LXkL#DyL|>NN2YSmiU;rFg%MNtqpy(>sl(+cL~-S-$)H6i@W0!pi-= zgX!AagS8Q=ymXxn2ZGK1-pL(8Y_G|GFI^N!N>f`s$=sM9Y=1$?=* z=MFEMDNM+I<+6@l4PCFThka^U>ctOiX6ily!t#vLrv>lV_?;eTLIj6Vi^p;rLC*f4 zjvQ0pOE7~#T1{X`(xLEd!URz&CW7u_2w0fodiwuVuap)mC%?m|*VBa7SL5V)?+BO< z$tRHY5y6%=bZ*x?iVBt~kL5mf#@>zU-lk1sNN*It{d^AH$=*?;mB6C!pHLminj1}+ zuPGO%l!T@g7L@KKg^MOt&bUc0V7=r^gvGb1u#jSaNhO|&yyAUnaN^0Tzn789MYNvR zGp@t;3smqM@0Eo9m0kF8H2eEch+b#x;!UOu`=cM|mAI5YDr~Hk9q+1}dv0IzC|L?E z=WTSr#0?^U(6!~V8-Cp&43%Zz6Jgsq9#x_F*_;56$wQWN0dY+n(bx*npcVFky=4sP z4jh%4zE5Ulr$REdIF7mV3U`8@$z=&xK0#d@QHgBry}%b2lse*6s~Hu3;lUv(_b6;b z1_|QFscH$T0d&rJoA-anlKA-pgmx;30P&-a3>o!C@1zmM#rsK(-iI3jP1@CEyD~E5 zb@u2VI$;=rbh%4kH9N zH|Zzj`F|(Zk1PJ6@WDK(2)i#TPS>D)PK1#4zeH{7=xZLhtJTQM3k$yf>TiXJk8@*K zE*4K_*V{IJ%#9m0Ta1fsS9y5ja@dmEyL@%KP?N${j^XotD zx5uecQ&XF6$+GyFwsdrKEKig_8p#W@{B6FOb@+7z+paKodsWP5e8z2V7*MWmZJ|O=hMb z$)luUPmbv-Y_FP;nhy3~zJbJcarYx9-JKUkHt$XexNA@USeN7aqF^&dj|85_tvC98 zbmWd!hq15D(>62%LxzhD#hG;L?rJO>OHDUL*=d%UrIf_yvbY}%tEr4Qd|Az1tC|Fw z-IVoDE1sDI&l`N>F}Mj5wK#6sc+G7xO%oP`oPAPh-dt3+C%Xd{u`a(GbBnykgk>}- z!ccikFOMl+Cj~1J$6R!z>y_r$a&GKfi>X}x7XPw7K$z(r<8P=mkUusA)CCr%uYr%q zu7=B&KG?o(HY;Ac|MmHKra=uE+Vyvuo00hLaCe(6|9MuX^4~AOH%;9z_x?Xx0Q751^3 zV@*xF?R@yz;2<XY1?qkKu;-e;ICcjOqo#wN4vN zWWsO0%dK!v{+y(NOuj7Ylz) z)|aQjzQ_M$;CDv^oqDxBO`?FiKXhr*Ud_a}f9a5*R#;cSs^a%qzy!j)JhWM^G{I8p zy>yXrc+Gg#44ysz3-vsiAc%sp?GwXQCK~y1hv-*JOj4sbEhXjqn|Q;@-Ad z&Df7hNYI5>7mTL(TyAhX{hVt(%&&4Z3Mm_VRVQC>l65jk*`AIlziVaI_WaU)Y1(<# zFZ@8O!hzj+Q`@LFQHSfDR;5h}&~bPiR|#~zPK;FqQVE}5T-md*iVfqF8j|td zzasPgK^)`e+1bb3Pu0-5SWZw0d-b?V~(+c53g42v9Sc*ql}`vd*=7 zopH1gSmYzD(ZFFiGvD&Hn1M8VA0tlDOw>eGe9*rD7!4^tOZ3UaO(9;y|1(H3_rBR zgBy7>BvtqbL5|G<5)~(@ABjvJ&GjHB_V7t`VXK2$pU+p5!1*87;pGzRfmX{?OlBU) zW|(eugKuwyS6o)4w%#s|A1YN4mE*A!*)LM`_CpJPYxdKIV?x#- zI_?Ogdj?ez?>JY}dh)74?kl%nkV1zli0NW`&$m}7njHbLR#l_9BZfWGO8uNkf2!&= z=t*7&1fBMg^ATvTR-IvKKDp$WSXReZ(cS4{+TgO^9i<;$AT*CsJ#Q9zWM@}3^(T^` zNm9F(^eo_T)S~U9y@*)ydF@umu1p8d_T^)3?P~d4Ml|kjuC4DiHDNjD%|V*@w|Vg8 zI;;+3NeRnV?cZJO(hSB;Vq%-*bbrM<=gwq6_Z0yOthK3@%y}ccyB$ME7O48;_ zLB$i^lK$TAnQ{2b)bL0w5RO}r+{R%A$2%Yg&Q|@z&&lo$6uIhl7!;t8wDO!Etzn)T z8$q}5;@{mn{E%?=hAUW>^xG=mevp3F_Pj(|fWlT%w5#K-<~F&93wPRHdrlH*2VUZF zRHLH3i;*PbT+g=9anwCUt5{3N#S%7d<$>=N0xnn@ z=k~cJvR7<4Z5c1ai7bD1?R#R+FVLDTetiGGipl@?9n`U5hur(wyEbCMtXM(LTXY`u ztX=fTtt~u!oAWKVDNFolPMYMcs_9C7!#dsk99roY|7IeTn(iQng?o7MSi;K39+$ju zy1Mj?z>o)Gf)yxFYcM|!f+LPF9#IA~R}3qH8ZL_lqe4Fx`V(h&=_7Bvnn_(?wgKS9lN(V z<$IVvc$h^X#%cb!?;ZNL@dqp*4djxH`WF>6v|evY+HFj5ekSFVI*{)klej!;ywd;i z;Wp8C;OPK##=yji%=GXLdEvw}Lg_30P~kT{^*kgewoRYwk64mO>k#)>dp^EP7)m2e zq$M#wBnUMC3)pYk9h7;@Fvx?FRzK0!yRpo$S}J|)q?Sl7# zd@zs)(WCC{DH3`wY-BbC98D`{#nZEz%;(K%D`4vf0f*0vr3W~?;#u(kPZp!JSE9+A zX)nLc3oTleCUWGZD0oA(K2eSh&FbdYr?rACEV!9+u;y=fQQ?~uVWi(%TAA47=YCkK zIO|b`L@qeD|Zu14UsnO!%3`Nkc$V}Mco7V4Pl)sw?8ryY-`LiC|ml;rqn;fnT zVjvshs{Mgc){_+~6nuh$_aLkJ{tg|RAi#dE31xT>#WAIThTKWyXD`9|#l^77(^CL* z@7333$ZU@Lo*h?8X=p6YjRqtSnDMHoY3&?4&(00W>8+Tgt+eVOg|H$E3t7|{r!DVe z4Hft@RiE2k4Pk0)l;5cg-bAm>w(y*L-HKhPX6g+rfjig8wEA#dT6M|f5K-*JZKGG|Sv0epV zs;3VLC^@V?DBgKB`3g;e9(l*!qh=uQ*v^MVF3UUrEA@sM=3m4zWskK`oS_$pEV1yB zB^D%TrH#$9){uc@cG_0@x>NfsFhb-<9=fbGxG*z)srBuuehGCR>0Cy#$PdTo{MQ_p z(<2LI(?hYBz9vrFE&aLe81+|aw&5&B$V+@Gb3wjHQ)eilQC(@4%gI!#aT* zY9ob17Q;pxPW1#yWxx9+Dd(q>8YN1VcdmDhP^H_+L z?jdve`0*nn`;gT<_1Brxg#fDxHcE&cd!rDGiOgUD!Ja5S^Dot=VH9#(m=f;?Z{@WL zjo>WAyFctU5&y{8(^Y^L zB!-wXbI?Z>$lGhYkcvAyEOOLJwwJLeHb`Jjocu@!1gZpScc=atZryLW-V{Z&48c|> z854mmSq6o4?RP2i+be0wW7uMFgWTIlBZCW)DFUnXj~gc$l~l!I^XqC0Dy#_Y?r>ot znlR(OIq@k#sbTyql^DL>dCs9+%#bXO2*9{XwW}>UYuBHAnnxF8F_Nl(RGw_`8a5x2 zryvM!u%qvy+977mY(+qf)K@H+T=HDFUBhgmi~;tm#3j0|G9<{Y<%*vc4Fn5YS?fguc&y3=HWvL)>+We`4U0+ zR!6xwm(lfA7w`Hf;%D0`M7Qr>Be-9T!&ab27vVxZ9v?#$=G^*Kz4E<&E*H^jH0lS8 zovMP54rmuO^!8&O%p^(^c`ewGUj+OjS^4sM5la+{`x?5%NX7#kvK!m9ts@z^_?t;< zq=pOW52h-qn$5WHxlaH3LT2>&QX|%@JY*vogaY&`(n7CcddUmtB4l~KbJyh|Uja89{dxFV zu_S`Wi-7xsOaQh|nkb}l6bRX#zj){f)8QPIGX0k8=87aFBt~p8_O#0Z?78mrYBHtL zIoBgHl(M7p2}F-c_MJ~W9q%j%Y_96S^E|KNGpk|k=RZSWQp4t+#iUm0Ai{1}Q8fm317u6uFzk{YT4jGc;*B#_;|GJ(Qn)D3X)47OM|_PLjZ_z#zjpS9Ge`jk2@T!s&sUI2Y90H@^k9x z+<6}aXrT`|Z)rt9Tb9kErK^w*<{!{JkEWfyCd=&+rhk9M+#gQL1&mUNOtH+Y2`{^39Z zXuLQi8_w4nWtk>5?@LD6n5vGbaa=Pg<+A9;9;HUa+v&LeBEu4X`;-vj6Os9XN(atW zg4I@-4g*1#Y#*R)3NFJ&@(C6FtwSuBX=vh}n8rPK0*r1l9mQ#VOaayYZr1C=iYcHZ zm;naM0dPay$_lW=`e1reAQmhv z@hT!+vVV+A0(;YwAz4szbK@&^B&)_YcVgJ+EV-qXVi@Qgj2uTSbJ;Q2jSkdnyWGD8 zp(H@1`7SbMe?mpry?an=!UvdI%(uP^VbEss!t~{XTmLMQGC>4xHU@eg(qRgH$Tf&i zMP$0}{oU_kZ5*p-Sjr*uYC3AhX6*w<_ie#6$@6bc)}RA2bLil_jWlM77%;ZCKDJd* zB)AqzXGQm+`rvQE2|YockhvQ;O~U_uLf7o}QQ?G8eIoYAI8A%VPv-+D)2|6sC5MBF zk$Sw5Zm6dY7;Jo#DQ%M#>vdND#m#(HcjEL1^%tiLso?gK(s#paiY=_LLat=dUJ?D5 z$nD#_JBTEm29KDDa!XV9d4GMfidR~7F0Usg#ze~3#LOj@OBYvAl7CFfem%L~+CF;! zim8y+Bf@_7p(ru)^VTt*5Pui*QQ6aSaq(=~GoizeT%V+tR-#$@qcRiIrO!&3+xfUU zZE|hgm+%>9H}u<>h8ME4v%_n%K^8sJI!VA?)n4>x-{+^>&ffs&Rw_35nQj#L^EoKo zQ2Up~qdQ6dWXXR(O>Mq8RsG|@^_Mroqz5KTYOw+wqA zngtz6houDPzaP?@VThq+Io;)J2Ma^&$+9f<6u?rr2p&c&DIBibAW=0lM>c~C=wTrS zWbSEeqlNfdEl)^;axPl4Fz4EZx^gjRr=B_ob2(JWm8dJ_sE9KTmh(qiyrvX=AzJ;d zrBlq2;h+;e=U{?9hwpydVhIg2E2ckF9ew=C|6?#lED?G}I_F zyA7N@nRj+~bLOF;+ZC-g)m{sF96MwVr6%2}D}$NR))f3sFB#X$^oc(r?6hx0NV6fx zmwva~j$yzU{cV({*9|Q5Ur3n{7~4S?EZEKnahsK7=z{zh^>QLn$dsjUPx1JijXsBH z=+M1^;1RTu2vWr(M2LrMPrk96IpVjR!oCHZk=q^5s0=Dd{Noaa26s; z+t!^lG>G2G!eb0}=f|&emY6VE;!U4oBQs=Spkvot@P?Qi14n1d5cwtHIp=j30dW9SF>I0^$LXxYobFj z_GcZMM!cHu2Q=srJZ_+rKv&|m7a9yGVH-%Vn#StY|JoZ{Pzg{bs&3d zh}^W)K&wsX^E@rPcBEZp_ZEgHB)|z*nk+28fG{Nc;@KTAZh0TDZv2_E|EC-xLd0)t zz4>()Y1?zQ=zzCNh}xdys?`?4=_1 zufB8V;edc8F6OLZGSb`j9BEde@&w~)k<_frHa0#ChofoYK0E`kqyApXok4z|G;qL2 z^2q-*>I)sc!H@WK59xg!`$>JMub8$#GhpeZ3H!xNDaJ+Rg)>9!r1#AQ0^9y5DWN_; zsp-jgpNn5B?hMP2DM}5P=Zw8U3{!Bnn&XdNJ3bZf4al}SYRmrHrfuZU*rmlo5PoF$duowTi<};T7alCF2ryMGr z8)y)w-hY3v#3qX1ss7;06awbE5T;GPo(x43#~sQ(;m65%Up>XW^tqiPB@oL`9o zalo70V4O7OgGsA_s$big=<#)+-}WWyzrzCUUu>9Wq^c9Sk35xvBTXJuo}POZyPQcn zQuckM|BMhwZ1kL%egpz&JPO4p^qeOpWjD{ARc!P{SS|5`5y7QvD7Dm6rKTaY|BSBj zJ9j0Qm76_VzO6g!be&628ngC!L6q|9Ww3+mC<|ZlGTEokL7BMxR}X!$qkCc)xZ4Sc zw-hKF2y7-RnDce(C(QAYkcw@?Z9}Kux@!P7r$jMpF|HD_>S|jcH)DQ!`tVOa0uf)w z`5Y6jX|pm|lzz>2Wd;s{u5MJXdmODvL8*J&5*s0VoX=}=6CGJ1R-*2b^<6Fp0t9ff z20NTwho1hI^qpZhg|%>NoM46ToDydG4r2LGH|kSb9sB#C`YbrqzE?3wMv$9s%M7n_ zCJ1U{=Au_|j@zNxX$x3&cXkdugd=J_v4sKarJ7{{l|n=?)q{6T%?39x>YKTrI-MLP z{R|{lf~1>ALrEXta}Jm7R~^jTu#?b(G%gq9m~%vt{&8k@J4j_L*ZWd(jepiO$j#Gg z|ECq>bWPCc!EjzX>%`ODcIq;Z6MNCpH1Uv(O3-WyvymBtMfIH46GNos6eqP8AY+;Z zUcZ7PzA6)J;>h7S1M+a>k%v>YT*3g#!5`l$B_Zu5!b4w=1R*Ug}fsj!??V0oanOR(NN2yYza4`8g~s zf(-%4$v2t^9V%}GkNq)iX^qR|6T!DH`4i&IMuC#ps9y+hHZfG+(_A=R5|C*(al6{) z+o9UoyN|)cLx5Sk$c35ZyM&S%?ewGg*n9DoOTB&G;&|cT%~IR%BtBc6k&5;@yo>4P zj}^%zQv7=_o{kFS-D|=fMpQ+6w{hei#6z-GfRX2i^Z}+P!r%kY0`R51({)5JB$tdS zU0(1dYFttq8>dSyZJw*8x@uXl8AkDoqAAi+Q~M@*>`HbFe=!V*pp(mZ=3BC~_O)%N zJB}M)t3S-Uurex+&yf-5?&BuXpZx#@%vDj{`GgF*iAY$j*RisP6cMa~N$v@yUT`6n zzq2QTXTJXOs{qo!HR)lcXJjZUD-(!*sMH+3NfhW;WzA*He8jvZO9@q)LPx{r2}Cfp zhau@UlW|W%ng&ALt3~$_5U_87kc=m3@Dpz|Kz^nsRpw#;>Oql;C8X_fQ%8k>7)_b_ zO_4?S3=S)ae|+%SNS2=T*0TrU5x@-Fsb;Nj;bs!9f(%^;PaT^Xg=e>S_pQIJIySDm zc)iS(*IA^4S8qse_NxQZFAs&kunRG#ly(s-wRV#!>e^g6j=6=VzISKMe=jF=@ddK! zRRLq3?e>|_=>u8+_|0F)_7m%_o?3-hn?fw9jL*@64^d4 zY4@5LFqHLFYvn`r+IWO2+I9STNMQm>?WoTnY5naQ?;WUxYHA+SFr#)8`G zmMqe6GKW=rpvR$zpYDRZty>Nv`Bq?Dujs(E;7&bF(N0&r7O|K7Nn~>@CPVfmwjrHx4-|=(s#^ke%EHg&cYA4}qyv{C_+rq{fCf%_L)%I^+ zyAy_fbnTbSf^i>RJas;11k#4SzqifPVz?Nf(HzamzBWdXr5zE=sv*|8eAm+HP(eN7 z)b@;vuU=Wb^|jCIU9~LPqkLUkJwb^lPJ{wT$P8Fz*`Tzv|2vR%;KxUN!nBUAJ3ZiR zRzPtfdP=G{hMFlAOKtc@A_Le4d%ZjCnsAw9UuToI8CG{y&5;dStJuv$sV05kHu z9{qP-!bJqHoE4>`S!gbG9k%D5NlD!?S)ab?VOR6vVO;EwYtl+`2IH1U}Dw0(2meRa6%Ou9)eX6mX(iORIO$Z1IcK{85tA_JE2R1KbX zDb`OB2f>q47W+K`8$Qcw;n56G^gYp^c>OaLFTz)Y!&c1`amXw!M`yCM5++n#3d#x* zvbvy=B_WLnKKHLzg%w{nVO;dq%rk4`<2j!(D5H?eQC3_hYeMl@7{3H0DMr_g0itNt zBf=a+a3)Ok`@MpD*}Dt(GOu>8&|GO{E`a)**>I*_s%9Z>sY$gUR+HbfI*Cz~z78?2 zEUq`M%W8I}86a|>P(bDAiDB!F5qdH%plv5*IjjtXpD~K+KXge4ix2tpTpvDsvm`i+ z`Lc=5YT!Xyyd&5`#-{|EtVjs(s*TeFxCK~3FQgD{s(dMj{!PL2P=aCe|r*g zze+9jB+%qmTI~QDRl)J92|>zj6Q4?c=cy9BT2r?aWYw$>M-u;7(~3?BUcw84hpyk? z@e7SazG;E8_^t|}1j^>Oujsdb;LF`Qb35W{LJh9$bXD!uLbU0CE?ye?zreA!jbnKo z)^6R{N+v=kCY7E9pwe22r{#+*)pl&I0Gp8I&WE^+KShWIBHxpszWV$zGHSYZH*;53 zn4K zlC$1d^$+9{?N)~v7?mnvPOPL8g0{G|sqD=%*hi*}VT z)E?ge|LTWMYBu;Qr-QvuO{lWESPXmhD0WZZ+E%r_LPLfVH=q9-PB@VlykRQ^#v(ji z$4GA?Z@>}qf*(zoR|7mdS0GD|!qb4f;Hdvya6qxv()-QItOu~QD*G}Lb*y$wW-nff zu5uUs^!02WRj+VZIQE?8D|r9@nr5vNGpEH+d#n+^iIGuXgq&bD!Z{Cp>^W|2s@S#; zJZFRD2O^{?Dne*aHuv|eg>`(2I=HJ%HJo3fB5qNx8z@Nly9=d;xOy;aoU_> zDDUOohKAxZ=ULB6t&1mL7JjWe>PDi>{rMKkHmihaQ#$r{ze)Qq(;`0h=LFsy<9p|A z!X||#Zbu8HVbbzBr_L5@LPkhW@U+lykcMEF#z%nRvv6PH!wZzTYtB?6=uJBZAf0(j z;$N|zyN#n22q;3>K0YzA>139-?6DBv(;X28o6ny!+`ToWF(V&M?)tjIPHke%5+lh1 zk-4pHsQXd?&v?|i)5U?zq+s-5h9zVWmU$UP`+qnBJKoXdA9{}}fBy%v>idly-?k4= zOm(YdS{3YJQZXeNAC7?MHoD}$Qiguc8C@)hR1^~4sM8n@^E(1ZQ*XSsfKj=0#~pRf z1r5NUcj$9PqTfJ;Ng{O_6XeMu$BkmnyV^qshn6-of(f?*hKSyRLLJK5`grNe>ToVJ zw#>#$jDKuCzBPsPt^dovgDls-*N;BuusJn;sG$qzpjQYx@u;nPV3mCzJnqNugbW{| zrM%qJ$#kabH9oZxFo_+V*Tou0e`)W*8@Pg_3-Mg8XxDbZn-;R_FukQN{yo53K6R}z#ny);h5O*=#Y;Gm;5 znL~GLzm@i=kQ>CBZ~k)%bIizsZrU>q@SJ=&7gRfF=7<3>kLIzkz;)ecAO*k{ZfWymq!5O4pp02Hp}hmhW>rBQHn+o;^U^;18RGu!=NRkzJ%V zO7E8dk%nV~7^3A_W~mnBojcmP&IocnD0LOUyXD?-1MTT`V5>d4+aPX>^aQJ0#8A&# z2wLF~_`n#P2!NnPa0sgZze6xZh<799smYs2z-6ly`0C`-RtmiN`%tVre?3C$nDPrdfr=kC=2Mi&4FH)T-A(DK8vUM?b3Rf4Ak93;HpRu)iHoktn%WE(;fz>Zd(2m-7}|?p++A26LB{ z0h*O==Z0*JVgu3a_}VLg_|&rF?Oj2KIft{o>_RR3xyeC|5$U#-tTA`5J(^vGa;@*> zqlje_>1yJIfC|w0EhaRWvjqB`GF*ABSY1eImyN%jbIZyhv4cwu?0Qrl3n8mWP#&N4 z7K&6j+3>7*5E>uP#Qb1N_M{;iW$w5jg-8qT{*+2TzE8{JwBdx%38Zomug^lSO169o zs`XS=7|>zXdTrt>x>+Oc-n^da+7-=8*Fe-Ma@?sWN>gCJeKm4FV4tNtk!vd`oB)WozDNs z(1i$iyv})G&NfuFKzrr&-ukKB^t&u+yc`>-}u2>}?P|{B03t z;{Lquj~Oou0dg`1{PDL*pSe;Z0&J5teDUrz;u%!T1ixv(QZsrCIJNnfn1WifS_hr_TQD9Tzo~QdM zSy}YvX!rOWB-J7Hz{ zoj23@H>+Ay{q_8_)d~~$6>rw28a(0w&^TSsyW8t_i>kbn{j(}$fsg+K4+cce?=!|C zeLDx_Z}_BZ%NtBk@Z^%O@*=A|h1)*_6u{TgS)?!_?=Au>>su4F;ym0$61xpc&+h-9 zY%Y$>$I!YPqS$0RPE(8na|G^-7n-$-i|yR+PFkz)G0&=_BYX^19(aUoA``dsTJfaOR>h{RiRJY9QWY^eYs;XFd4}x$CRIP(R2KeT(*coYlygjcBJC#^9D+(Wg zXp8{5(A0tWSKye=kr5(i_1=9TwL(S6+7T~8kN$`JjR1gd+|N^m?~64W{KO)C>Qc1N zeL8NMbkKF+vqXhq2cVrC*;LA3a%oI8nVp>-3$B$CW`DUE&m$dDSP(JD1|5`WA6ln? zpHZ)8To!N)LjBOt_^hfU^KsGH)tM*N+nQLL9t-~neF-jjC6KkD$WvFn)+xWtTlx#V zKC`Tz_XQ{X2)Tjz{K}c|0g`5OkT?X2@~CQ$8yhf^fA><{xJ2es-Up&e_rFKx*;d!|kSTSbTNd_zY1Ry56Zgq+YhfkykC7=PD=VT+4N}MmGM~X$ z%^Xteef_1+0-l)zY*f_l`m&z_G9{UN4{}1gS@6f}DH@pz91%<4x}&G`w#$a!+g1ti z`m_`3+)?wo8EGef=GJ80i9+r~^Xp=T_bJTq z|3H{MfBw$suG_O{0NI63DCffP6fmT(2b$O5`p1e14e8k+_QeA_*&T4XHfHVl-Kwjtf zM1z6Z|FNE4=fI(4mfY``fpAjAK=28O4hSf?bFhl=P60o2o&Fn4!T({FYyTnS*vJNZ zH%?RW*VOjy@7H?C9J5dmZO?9T!zkU+H9J{(u;$hZDsoY|CXhYaHQp?h={{Oi8?|81i{|_8Slv%byX7;ngdE@~F|_AG~fB)%M=^*}>mk|ZM?ehtmWzXdE#Pl4MjbA5DpYyzIx zwh}$MM-BvxK6fbDKN^l48#JDwVh|f_$wTe+6V-lZ{-Fv=SaX$XCV+x3ayJYq5I~nReP?a@3^#PD%h)}Dsb5s4M} z-y|b$j2pCq~D(L8aB8^oN|EP+~?!&=jH3oxUi>;&5rdm;Uh4p(f+;6eA*r&=RZ(~!}>;MwK#G_n^O}d8KjsKYcHVhl&%EgdDElEV}D+)+IP6Y z-BGXXX&~c+D}u#rK1Q3P1!NpLr7hg=AfNU*klxCMA}Sw+W3FDO%*{1bay#r3_)+*n zci8@@89LUB5^fK;&BSw{+zf8E=J8nr!HgCBY~i*1TTdG2-&f4!l+wFGM7uQCHq-i{ zi&b5fSw{|-U#XU_q5S@|)4bOq9>`we#)=IUpcOeTpz=VolNUK*CHZmWYkX{%V}IC3 zEIh*hyHBO_pwxFcS9W0u#SSf}O54)`-HxY%-Rb`T4qWnBTeJ#?npqc$AM?$|ul3JQ z_Ne2PMK@LfUPGixc^yotUJ_dQn)_+hzoh`OFNq;V%ulVXxeu;F2A9>A+&j=x?Ju<_ zI(2?c>jGSgWd@b<@-iVhTJq5w+-~P!-2x~~lRY{`)#bg}(3_}&1Tn~%)x@oxJM{K_ z?Wrp_MDQ>69LLI_Zp)VId`*1}uk49iA4^lYQBmBpR&A-n-Q}|y3k4j6k&E*q6C)#` z{)m0HU&dWRO=J|?ip+QjwO9hFMd{^{bA4Ap$6uEotBwj8B`-2oqYD+RSpKx=OykpI z$EJ5-bE!&7Jkr;rQGt`8{_+T#H)Jx<#+Xn%{`F%z&vkEZ2v4=ivQyjc^dYUkptW4f z(=vR2;fp69K7dIX(V1;_30#LR$o6G_5hNAWn3c1kBb&WX5_GxGSYF@57xLA}5BKXg zK=UFBZ3pR5kuXZ~lO3_W-=NZNbkQpYD=17dK1KR1mZSM3fQ>7cqaj1m8t%-Z zb$_zZ5kNK*S=Xt>l99%sTOHS5uy{sz4yJkaM&nm!?ZvO|(j!VA5J$?5y(l(rRt7P+ zEB4~gcnZGfPXtDwg;CHewHa$EuF;_{SY@&j4)X)#NO_@BS_QfE6_HC{|8C4%Na8Sm z`1P|8WJv2>9DU_d(;gCQPg63V#>8KDma1zef;&Lpr1Hjp%hXSNdeFwJP?_cT*UGFDMuuA=2Y2|pGjkJTF>GAcdu z+JNGGW6AO}NVgX_ucIVW{;9%UNEY>sm5<|mNwEVefLxIHsRO_HAkOHjiK_-Byg2_5 zGzoG2tAEQzg&S=kGbkE#APNz*gvp{iOpG#TgSw%e+HCH>JoI%vbz#ih`RiA z`9nSW2Vy*$FMCjp_Uqd=pw6H+Lia6G!j{wj89eTp^m?>tzL}|p;qK4K%`bSlzN1no z@PFz$D2bviS4}bZ=73877(78q}UZF&KgN!Zu&t8M=9nk1`|xE8ltCf(;D~ zPy3;owWe9ixwOob>cT-4ab0vWW9^pdut3dtfr3`PR!*1fPM~-(K1#B66@W|*<7abZ zD3tU3BTsQ)=hU;J*f|`H^Z0(%)~DoX(vdML(&NXfX3@%z<`14YR);YYnTo6Vw&ehD zWQfm!5G!I55-I&^>-3z|S9-5?1#KGvVx##`rJNRavDB@=)hKy!l5$1A&V9d~EYGwv zEQGeyDjx(7lW(T&bPQw! zFhbRURcD+XpZ{iy$>Hf*;Wu%ow_<#S;#m8xr4m^^A=g;QsT^eSz;p1+0j;HIy>jIL zvH%9htFQWImK-~{R{CAFD<2wW-b}qR^bEQ_Ev+TD%mDJ(dyS=a0$PF4`i#TmEYtY^&WF zN{Wi1{BpuP0mJ!PY&msyeh>a$MCCs&v3YzgVgU{w)93R{L78M&Pi*<9FBIRTj7S@ZEkB*F#;A;4Zrj#l+ z8{4l+5NAGc{UO3#432p`;e*fq964U(dZ9G97%0m4k~ao9VRxCBa5x=)_;treFsZ_DnmuE0pzI&b5tQWPVTUW2> ziXgxx{~*|#)h1TlfOmYm)gZX+^yVefT!QlcF3R_x*YzD&QvrS&hMlYok`$UZdJ~CO zcdvYZx86DMZ6N(oR_#w-S&QNH`=Y&@72atz;NL*m`JaPhlmn zF3F#uBP)T(RmctFQSd;Y;u~zRc3e6(N#$VUsktD5RboYh^q{=B5^S{g7ow;Q<^Yob+2-KV^9H8k4soD7) z4D4I@mnY#f3h${z^&DhY3pXKt=N(M9(gL<~pT3Lz4(;)9tDpwYu9l+;D4OfVx6__`s)01GBS? zeQ63|!hVgR)5EAGPLJ%GE(vtYn{Z9s@xpY0zUKG4#Ojh82_?zp6wjUfyNLV_mug6jm|FXlY2=&3^G4uWeGLb#(^sX z!3sxqU?OMX<{q>p16D2z#%cw3kc(%+%q+~Y&I-c?o4G*_2*Qi-9R9VHaJEk19DD!a zgpY^pExmur3OM7t#5U8SEq$j16$QQw6wd>Up zdTRupdbGTbC~mc=YjIe%ePIGn^7#Abq)2T#g5$&s{tGN+77Aa3#Q?R*{NUWmj3~Na z!_j_CQ}?D0V%pN%2hLPs%Xp&pji0Da71O%-hcd^@4%YOQD>#ytnO!gyE_zAouDb~K z#tzY8$K-T{aA`03Kx!!t`XKNtczo-Xz++58(^-mZz ziu1327nz-P+!M4Ps>U-JQ;0j$?T;Y(^;#e-F2Ve@Pzq1 zjHP&NK*}3q#Z{Z-pxYvK6@`+lmFCueSC^(*%Zu4Je+EF@F=v@{yfvB$SFOA|q*vRW z{h9^uk_0?p7S#hC`UfzFELVy?M&z?B%fh!oqx>@b3bL}u>A42j__iw`Y)xamvxDb2 z2*LjEgAdAqf=54a5~N#YQc2L^)L#^LTeB#7~y#u&q#Ef9ssPpdpH7*QKi+au{2Ozm#X*8{1$09Hb|0HmSEC0kHHO?lw(GDd}Wy<3|v#_nf$I z5H$NIvO*X9m}{6YBx(E^*rGrQa~U6wv`q;ap3KN-qIP#e$ke1yO2RTP2K;wHC#nopX zUqkq6!{cCN+hmcTy!}E^ead6rL!4A^`o`{Af3h41?fY((?(EFeIuZsrLgl^vvZ&AVTkwwkQn5P(63W(cs zjOtKu=TH*b-;k}sIdOsAK!b3};}rlA}DzrxJQ0<)6?Z{RGn z2!N1&9LZ!8&`Lf7IfT5xt+Qkksy7}YSa6xEvDL$?%-{JR;X%XDiU_DCt?;1sdcyzy z-xkWpLkjTYvmFPdZyrK}u-I?6w#JGmUd}ZLSv)DPfS0;tNv#zbquBX>^9f+SRX|cQ zkKlr4-NIm7gy|~>2w9^+QT@s@NODEQ7$G8;{eQmkejk800v ztSo>n^rIM08bMIQku9`>f$4ApMW_LVb_5RDOU`Tt`e5}M5#>8gBVCUamp9FVifL31 zwnPpu40=vo@2N?@89skA;YF;wiD8156Eo~(1^b|YP*4JyEz*1+5HqV~1RTXad3*gf z!pADte+Hn@62$nCx<6M|%yP^H)m}M5$x%qq?1M^}pZpxO?tb{l>MG?IG2hX~Zde9sM=c}@7)#r-!tDlbbZlFJl%L-IczRaialijrL;ktfr3 zDet$j*X`A;uCh}&e$(rPBFLHb@aq5AkThSCmc=9=#AQ((L{qczinERZNHkYXZV@YNes?07+j+_TQ(hLs?aOGfSK_c-2?0@9&M1M_WB8@pj$ zG$K2=h?LDy{j)A`sKh1Xga2E-|V`eTs_V zh|qDJl1Gw7$>&_yAJCpa{rvCU4$Jw&*>u=(Ik_)PyYcgmmH`3HGm{0j326gkh)e6z z)boV&dEu1`_0wZ8ix{s;EyM3^AVldT4kjEUid+A8jQ;g8k6)StN+Og98X?LDuM8X> zc_F5>8nqqmo^wJOrXaE-gi$d*T;p_X67kW2k-`Cc zks13Mt)H>1JKWn0uHcLK7%APtRSfch1O)84@Al>)MfK(K&CeImS8Rmc-?jTDVbF;* zIQvT`8}J!VAH!$79DTf91Rd)+_NIjwM7LIJCyX;YtJs!*GN_=4&$DJT30_mG=c}T> z)!CuG)?KBX#NWoKs@dntLe~^#C(EFIPellvfJ>Cm1M2 z<`I2pRmN_oe*mbu z;Eq7ruLcZ*CESNDrTwr&q`=7PSV-4CS>Bf{}Oq(cKN2zHEg);-*tjQaDfz>zgq>zV>Nj05tjyy$?Dj| z>FkRFe7ik9(czJbjE=Fh0~Ct!(!sZdr?P0#FjipoA_@pD4lDhybbIaF{`QMkBp$YF zDizo05}UnIR@l4Evb+ICXnE~w&JF^@6C%{bnP(4C!&pHPg+# zO`?ya%=ln>DoAS)&OMJ5+~wxev&WbKe#fl~ykyZ`!NZ&c7!el95AM#^v{ zNG~U=tjI=7j34Bf*mtCL1MzJe$M^x4oG%FE{dBdQ&oE`E#D4GadTeIJ1%dS3nX@UOt3w zb{rj!9QLz*65FKRi`l&7Q_dAl(mPP|(+H4WkqaF<6Kh$4x6m^xr8{YV(+4K#y)X_) z4rMw41{i|*fR^Fs$-^kOTLVdUf6kp*4eKgzOSW=my}`Y;R9*|c&oJ~!EF2ttyPnK7 zTD1=5pqmup0O;;KLjQf)z4-WeX5H?|W}gRT#|bkthPvCQ+g-a^;0b;RNi5kADXTDB z>YN1f3kApMlWoN~=>FBB7Xxcau?&vnvIw=m;<{4ZI zVgDOKCyI}Ci-}2nt&Ez)@YX?GTKx1gLMcfCSZa~~pQWZq1(ZHQuQ&Ce?AvzDhmO*@_)Jz z8D!bn4j@%`02x>@n?KIiIa|r(;g5$yA?B;R$$Gt=0{Id=aF7bo3%J?f{k?`qWL!p{ zWKH%{o4>l_EZDsR3@*x-;*zS1^yNgmCb$9(IA_2{wh0s^U9}7S4WKjAA!l|7;Drsp zYvo0uoI0hx9!DFrT+i-PgNMa`B5pNwwY7M29PTgId~m ze4@Gzon!fGuga^xe_UTcCNW2FIw(u-2|4+|aB-p#goPYlF8GN~6?A`8c^D@;K?6sFb}4dtaF$A{N2!KS8r-)vDvm&^K;5a21;viIhX(b(i9kXNzWkJu|G(}`^5AXJ zMR<&{uod*+r`Bk<`ynXnI$7U)T2E}GQG29$BLtztn=CRfxFS zMQPvlzRRul78M&mlQdv{<)tW#a+| zdT1J}t=6i>jWU7Fihpy1I%WL=qJ1p3W@>r4LmfezHC^Q&)P!8Nd&gfl;IjRh3E%Mr zb8$!F+6|?hlBg@q$J?=3zx8R9?NPUJNneQ&r1`SJa(-54MA?jGUv$ZTkieCy>GX_! zQnf{ZnsvxOBHZ2~vNWJVXRs=7=8x0ak>Qa{s!fPUX8>W}w0hL73d$&gxBnFh<}?cU zr`(z}QBmy}z2virWRkC6=gdv+c`XUWlrKa4^A+%iyrHhX1gy;oE=(&k=exL%p`O`i zg*FX~B9%3_d2I3ef}qijk=M2cMI-R7<^d+>1kFAOD)<`z{F*Kf8G;exCF#?(z9g9s zJw{H?o>u~8J5phxGS%oQfXF4vIf)cc-!SojQ_a%I%Lt6YmMLJYT*&2n{3dMTV1_A` z+4y{=@g_C3%8v9TIiMx;C~)!7^^-~SXeDW(1t2Zotw4mDHV*1 zH#6Xy#2O52uY~^ie~Q=KV_)yUh9(;E$yG5IMFdqEjG*r)ub6e9`E#ho+81Ic>ViCeVHyW@2s-q zb_E~xcM*ZNJeMg_1XB5tWj`C2a&F(E!?AodbCc$OO?3&h7T@`gnS7(j;GtCDX3i4R zk%rq(gT?@rvh!^b5Y08~BO6#KVdShYO7K812r@SP8aoU-%93lBZ)|yZc{ls-?^U{! zhnH-?&GhiQ$YH36oG_PK20BO@Cqa>8veEIJPyVg~IJ+z%@ub>|BN=%y>8Rz(jS0Lg z%i-)uiafY$hGE2Fp`&Z%oF_-*R4Zauonf~jVdoKo1=7})#*@P5YJ#!2(-p63t`#b) zWluCqKJMX{Yt*0MM#>)|CCB2x@Itlw#`3o7Nhs4Jr`iF+_U{#CGZ$~wYo>qCuX4W6 z+9Um`wA=Ldk4WWA(s#w|k=e#>heP3yN{o7k77W7fS)Yo+)K0bT1#wlZP&CFbFe6Ep1EUxHGPvlw3-!Psq$f@VZu){!I;$t#RCp8PoOY4$B`)^qTvZ1Dk z7(ey_8wtGG4$m&6l-zm&n-O0Sqm|&l&B$o?Td61oWg$1~Q}tB$Kk#Gz7+VI}j0?7> z9d)lEKR0qlx;vfRDuq`;aOdd@*hgb@A(<7zArh#{PssEGamcif6651#LAOCx7KdSB z(jCb#0&-(4$)_|}w3Sfgh^DsRO(H2J{_ugk@KuFdsZ%ev{ zB=ed_!-57yE@dLN+m!_~Lp_CCoy|0Wu}3n)bZW->8#6&(ges9PPo&_;XD*|VH|dAo zduE;34BI5jxa@Y>vDNoZ*2B*eYtL+^e`atRW;ih!?^t7)F#*Yw35hp`u^D~Cg`e7^ zU%9EL`17u?v5O~P1vo#9?qD{;!u`KB6G#1nGzEuMhakG<^a5)@T<%!GR}pGHWZ_US z&_0QO2A~?$L-Xj*GxKJ^z#4-wD(m4 zd9qu@I2pE+XbBSF>QmS$xgaB`{(SKX5Sqwiim2{8D%U53zVgA$OOrxvtg-q8@4Ly+ zomKBXuv88KloHJGyXz~0{Qa)l2{wTMk+xNQ34Pd=>5WbCx8dW9AwvFZ`+Swn5Y;Bwrm4`E=E}LQ=OYt$k>xyz_+Leo#oG2n>l}0cA(Yh0NJdan#}%idCazC zmSp?a-Q}gFPh90Y+A0OK+s%K~&eJK4yLZEe@r_k|1^c=*3+Zn?EvVJUTm1*=s*1y_ zdM*22=_6MWr&QBbghudnA;DyVooWJaI{(=1ZIA}ihAZ$WVGkQ>DpC9~F7lhmHhu;@ zQQK}D^e-|Xk0|5V01P<~5`vJLIyF?t1f5itz?|Dxa)xS$LnQob$*c8cf9iwOiG0O0 z|MsV}R|AbaHW~ECfg!GWmy?|>ZwlW>PEqK^N+6k0S|^of=&9I`e650w(Z|Ly<=61Y zC82$aC2MyNLWa5jw=&5@T)(SMdTraYEBT=2lpsy12g|-eJUV5~;bujRc7_Je2`48` zUBnms?^Z?C@(g%q3YfAIzJgNs>(q#(Bnk4Ux z*&TEjYn{NieNtm+Gsv;ZOY!I1Q8@)DYHZ?L`P(RGd%P@aule<|TTt>Ng0Em`YK^T| z51{;aR-QkC&6iT*pZG7(=~xB<#43vrE91ZO@!ZpRjb9jijVzzOds!f!z?LF&rQYl1c8O5(7FiNwjr0U#w{k-L#R2)M_Y{AquWj(`qo2wGxAk+l~m5-Zf!T^6cIV=+O^11RU=s!A7h)*j*qASg~#2qol`6;+iiZn zsa(&TiO2|_I~v|)MVg#6xN`8=C8!?VHU9Iyyx5xYaCCNQ-I^*ZX0qUtU2$4vMD>|l zggVb(jIHq%uKGj*4EYEEG|<{==Q(dj{8aUQ5Pe7%3OwSlP3xO)iWxze;hgN~FmkqORrelY+TUKJ$gB-S z1Pe$LI}^fuaNX-}>}86WT0}nJ&yr4bF$C}K!NcNiTYgRk08od&Yt{=0>% z>MzD`01jYD@h$c?A}04Ud~XM@dz4&*oEbNgB9!;eQnzW7D=Yc7X6tKKdb;&GJj|@_ zT3a&eaAp@Shf}X3&ESJeL1bJ;_;H9+Ca&S`8~WpIF)uWUrVJn>GYgB{TtN~2}}E2c#MULy@Iw)-g+v_ z4E?>%N66{RzLYvj5dQZ44C`F(1?>xsKjp(clVkGd*j5Z2$!ql7N5l&PpC{+7q@~~R z)ne|Of2F+raa~e@tUF`wxF%e!={APAgsyJ!c1R5>9osJkjbIsrIIO7TP@hiKwLCnR z3jP=?m59}fKCdbB=XYCemAyc=kRKY_e6jykx(Hois~N3{AY5rmsXaVnE41|Q?|64D zU%_qkCoD9*hn|w|<2S5oxlK12iM50%4Al9GpQ3&Lg0G?0PC7`8oG_XO;#25QEa6?Q zhY3drQwiZeRL8eDk@NPU8UwMYrqN>{rqO?WrA!iUTsox4N>Sdn=tfO$H7^)wkMbdc zxV^++c<{cbwXWnroWKY)RNH>di%Eb14#56>bn#j$n2^ExrySr$!Klel4W>9OvfXY~ zsicYxH9FMe5^PSC!CFOzr@bd*f}m7IFP~q~C23|W-s)TwexFJ-_T%jhYMYA0Wu50M zT@mU{vEuZd+;qiFaNCcJ6LSEjfKLbId$2=7&*oAoLGB$3nNqU!#7<=s2-Zn9~vq(wI)1T_^trnW0UWxD;;NWvt+lgFU{cP9CvBxHrrr4 zytq+Q{7@h$BZGy`$33L$aZ>1+Em`N)*C-BOoeEEXCp)h`=3%lW^2t$pszQ3lU+tnT zCM)Q(a4W0!oNtQ2vdnF$QE9$o#81SdOPnvV&1}Z(Mkr4}>6azICi;>W&LenWcd?^k zq7zra4&d=!J}o8r`98(v*{&(1(btQ4^i`n=c62e{yM=bj*n)Gb2PJIzxMd#fV*ZCSGv=NkxELsjd-aL6E6dNKjF+ z-6LN21GA+Ys!izkJpT?UaH(AuK43olHe*1GwflDVY69W45bogpT;gxtNi07Wm{FhL z(rE14uvUdUYf$s0X62S$RM>dc`7B@Wn<9Y}tC~|$iM5hB)=iG(5dpJW`}Wvpu5^W~ zlG+5+7w;Ze$5CF72qj8YU)%pXsWgf(04jG3s5bAg14i;|cb2X3_)AluH`Y#+TUR)3 z6JNUCY~>%7kmgk;k{?pqKGHj*yCF_-Si0lwmw(k;p0g#t7E~Ker8nI#<}C1xG^sr! zGfz&D*0rcv*X;{03G#Kw4{qLEVlq~;Cl-H?+r!Odn|0Lu0Kd8Bv0=4&5EspsHt_>z zNqy(`vLujO0d)tRi|rpo%M*-+l2x z=XnCK5K1#Iub}scRJZ9F*z?7_WN3*JAlXb$4zDY!XqDGijB;-slC_&p`6+p*Tk(vb zo=f8^nzEBqrP>b&g$6k=;kIGzU(N#y!ysZ^DrOD+48i8Y-fz zLw!RK+QOpi-)+TltJNJkKg;gOo!?VCi7!C^XhzHxbM<~Q5bSJL{BwE+c)z>`n|+Y0 z*Vubd7(RqB*g=&SNWUjLsEP|X24wja?K=0^e8R@Axs5>{UiO42)lj%B_z`1FBNhY3 z=ARj>5}_hiT{aW^&fsYhcMPmpSubrAUX0aln^X%*3WWrw@u|2EA?dmDDp6$<{=YVZ z&b0hMaqu2&TXGQ*5lac4Z&bYTww!|H=g(?;?|l>arPeX1(&e=pJt(YuGe)R2lG>Y(K%wF`>$0}V)xI}+Vl;k3R?1$Z72h~IG%zVV@A);J zHf=oFnhkUWdrZqlgS#S9F{XDOO}oO|W*d0h*tw3Q>RCt~gn6Z&UiAk2xkeUz@OUqO z)ou~+n2y+eKaRcd`7wFcQ7#Jf#wB{WFj$WJi$f0Yi)%NiKEXpSgLxV~o`W2Em1z)F zOz4T-#WvI6uJIxVNI*W<-I+A~ric%5i)qxaP9LVMjGY0joBKj*Ce=})@Gc9eS`|sj zhk<)*al`;7F}~ynjbr&~ZFO9E@g>{b>+f8JS-AK&X7oJ7ZoMD7J3qnJ5>XORkmv9I zK~=<#kCd!MDZ&M<&XTbZHU6M@`61S?MR&*`zwrWJ3fnkkcF*b|KXuRSDwe)Rm&jRT ztMJdG&{#!)+28x1W!9KL=;f5_lz#XMN!v%#B8 z_FV1M7XL4YIz6AwO#H-myStCh=Sy%(9g=48=|Z$KHxi8}vfL@4kfv9P{)$bZ!;U75 z&5XYMG`mT^-Mkw8YJ+H9s(r7Lw%GUcQCqN8g`NIQnsJu?Ys=w1rti4eUwxm%Ht^ne ztVh|yzE3Pc{O`-?ZeXMCtHu z-326CBq1Ro8J|CYo(aJa`LNze(+A(Y!LQkJbA`ISrr*zDl10LW@+he%70}R#5wfr| zA3f|J_j3&c4NTV43<_IvJo6&*r2D2#ziQk*yH2fs6*VoJGGjfVlxov*y;=4u!TiESRQvbi#-*-t+i~M>FJl7C z*)d5)w+XLUohN_<`svRYDHCof);Sc^o>=E2gK#@kjl|0?hevMBf z!L#jAPbb>0-ZB{Pkznd`$Ik2W_NQsjiPs1+xh`e0Tx_!>YG&l!(H3NTUnrCO9K3_N zROp1ID>dq-yHloYvxAl~QuML>B!VLAeO3~tm7pz=lw`dcxs-^O@0TJ#y*%~$%+G+s zRNI?tG+blj`L-E-d2+W$c<020FNh;R2PoXcicoVSnlyVe3TH|e~HAANY zKI`F(K=kpva7Z!lS9fFCf9Y^;X)XRY#AG2PC&p$#&*As0g@;KHE6VD9G$=zgVrRq` zjr9Nh<2UnQn*~&(rGxHE%o@XsXv&kc0<=-!xDNoeEi`zfUZ#fWFpYaG1vBl?kXX$j zmTPb!5Po~AG~BblF_<~h=;=BIXx39%>q!uA32D|5j?UMk<#{3c33r6`l=?1A@=ve5yp{ZR=n!xgRk|fUaZ>d z-^vlo`Q}3=RAj;G`amj{dW%mbE|`=TT7ZWrAIj%}{o}6g#x_)bd(B(xbG7L^l#6?B zYW)6?j2ArqKE0JcQeUeZZ|Ge5i)47^K58bhR+hIry};k+IWt#WFITEZD+?92+vbN( zR+Qw|2b}};ThLtDhOQ*iq!}IdH8ZnWmYq(&l5P=2TT&t#b4k|O+IKTpa&3PSdgooj zgZi2C3p$_Emw~G7{N4DpGh!iD>A6oTD$UtnC6!M7@}Y8lhXiGRy*T`^60((z zGCPV1mqj+%s|yB+1F?|+iI^Y0(l9X$q@#IU`@c%W_^%QT1pND@f9%O=dl1MZ6;jZ^ zO1A+>R2C$GFpotVOWzi>1OI)x*F#8>GvWiONOxa!#?x@Z3HcYGz;$%yYCkmmY?rRd zSz>Z>VW+xr|Ht(q| zZEkkUQv17)ghz8u3-55!3;)JyoTn})>m~9q%(2n1n_#h^OFSELjkb5opH*xqd-ZhO z_bS~5>D4_3usKEy0&i)XpRe8Nb?hoXZPnZvnzfgm+q0KD_O>A%M68%`Z<1Ezh}Aw3 zN{yfQaQ124aenOD&flZi6oq17?4rf6vAMI9WRL$AP=5M}-MOaBO*n80{4BR4-J-xh4|F8VFj_l7}XsABB3A805n zGm(M&l|2v}<3!4esu$+Bmt1VGAo)u(LlP_T-b?a*Uh&Qr{C-f8<$^V&x)9WU!jPme zny2v=vVCYqy|;^Mf_itSYre0=_GqIrnE;WOTsn`2kL=9H*ywmI!6BrabcF3HhCHOX zTw(7q?wDkJ;~ft8ogIk%4((tc&>c>yn__G;<|7eI*H&k|UKZTki!*C-`sVz1>4%5L z=>LV}Ieenx(lg0E}ek>Vk;x3p9?iCq}7yQ!xnI4mz4}Q0*-)X5) z%X0}r?l@Vu$$yNfzsa+v2r2wo=ZRL$*jq%)h2)&uNlACIe#*1lluUnVlRV4 zZ+W(75NE0XI_CHcoIggF&6TGLbBcjiyLdQn=JT6zgE!iP{$VH^!c^_a26YI9j zL#tS~I_HQ?4VhHv9(g?s$@}YXm`Fvp7X2s^hwZTH&(djJZ}Xr0eyMfR9L-U*_Xuki zg$77y%z}ph>8phzwtQeJ9@Vkz42zq^9NVCFQYMKL2n3E+il8kdiJ(i|gR!hmOB~WI z|IHb7v#)Oo!Y`4l{re>Z0qV_|B9v$5Ex%66!Grx_za4=gQ zyR36#e*j#f${Quz&p=)48;5<0(Lx{)jfYm6p6h1M&io2HICaP@h((Ejd$sM+GHa`- z48b^kzhZW1)L$k8vX^#-(ktI}h`2k}Kb@`X z-IYy%ydbxbg!OeS1;OFy3XcobaIQG&WCEysMI8hn*HfaU{({!_$n! zw)KZJ3vyGkdHVBN-~6|q&tu*2zIT#HBcG%NCKa$LJM&mvjo2bcw^ASbRr#nRS8AEl znqxQ4=7qZCM^o$WcgZ)~i3?b7yrEOT5-xG z@zgT1`j4Uf{I7yoR;odMPaSiETM@D031$QiJj#XmX33*VUTp4>DsQcce~!f3bz7M{ zJja_%`%EY8OVGuO{?q=}8}%K{MkY!qMyB#0-WrYF*SIiv!reE$O z8bU0=y0VyV0X0|s1K*pd(lj^lgCxH}|r7Yp`Y-{QGrsV*-AT&Z z8{H3NjghAhR}^7cGTwT1@G00Zkb9pl@&nCS8!2I!K}gWD`%;iktCAt5?7jB(X7$$w z8jN=uJ2_8|etczKZqeI2##)j#XutP*#UXZZ+fay4$nw4z{vSdkUG(kAq~!gfVY!<- zTW%Uy?~Y~|7oH4U2JtlcvZ!uQvbtpr(}(4!+M6+Ey*x`DW-exKBX0CvD)>cwsIDNl zs^NpFb8<0OVe~fbfvuHEV%?>KkCgWsJ?>WwGJ^#TrU6BjDO!2M-)QDk)61-ck82H! ziwTOa2L&Acd4T=Y7c$V3~uhS&!5H0$PZ%AdiA)+;A=7ym|dwWsatwY-gAFEw4p8Cf6mMsV&KwUg(p;%z(Z zUrYah?;?bOiD}vWF2zBUTECi#!Qi5ro@0b8W#nUYc|(QkYdHf-lA!lF@rMQPJYQBw zJ>!c|d)jNjDa%0Tr5_!_^s+<;CpNfLi>+`#i#X{?W3z8Ek>jgA-nk8QT^%nW0?Z(v z6kI>8a=}k}GU4L;#YFmr-0d;mL0@l5Z+f?WeTsg7jrtjF4^&05iN-GFixhcn)#{&Chlw+W?>qJ59f=83e9m z6HvCY{vzD3KFF&_#fJ6jAYd%=i5xLiUA-gi8}Iv70F}N4^DdeZ{#^pQYU@b}kXZgw zr#p$_z5a(oWXVfDh3HztJ)^WICJ);zxp2*IxQ%w(T*ckkoNgvH(rwt&dC#J!?Y8Fr z`sq7?UK__+bulhX!J9f$W8)ZkPdw~QLxTyZC_HfdpA$8&4prm++0+jigOY@2NNgH2QK_O$wnD3!ew5Q1^i*tv8bdOWkffQSGbE7iULa)fbIvp=Jb@@ zO-1H>G4JyM0J9~An)KxOi0tCMGW+>bk<(vEhcAat8IX1f^&;Mjs7QeR!#mhB2gH7| zbPIPF8P&nxzO(+&rCUHI;PFd2-`cfAs||>zvhQn$yb1+G2RTIWVsp;(yNwMc=-lAR zunFHRET~dNV6p3nh~jKIe7#fQ@J{jHme<4?ChAApH{lxK~pefTZmtBV+XGH;>&d-;giP8Hz8QspXPR0mv!iq4d zV9lNO$8OP26{=yb;io-36&c)>?Gd4qpm!&DhoZUpCFoE-;xRg9OMH_nU)IZ;s~Bn) zJU`!;{CX|U zB2H6k+IgLgn8YCM8r@HiD|-S$w1e_3CI?E&GaLpM+5|}6*B54&K`AoxDs0Y9OgAZ- zNK8Qx+%Smz#wQODop<}F-v0#sf)2&u;fojftFvg5zCdveD+$a>!Wll$A4@`O_5V67 z1zM)YJV{ND%J)q8Kk0*g=>_N(+`|nI-nSvjh0GfdE(Yoh%FVD0?b}IsdWFNlwIuAk zW%h?c%AI>^+_nUFI6>%1_WrSFCOoQZh1HuY7ZT zg#q6`R)+uyj3xjr2 zwCT7XuUV{8v!Q9)u}Z#UBo_a)zp*ER6psv*$ZqR#c5kYElmX#(6X)3P0!O@%Pd+vm zTwa3-jQii@3Xd&|tGFoSr}xu;e!KUOJzH7jA&;?WM{F@emwpM(FB3KXgzvXd;R=BB zj*0r2-DfGdVo#%~&hJL+-O{yyQ@VvVQXykIg+8NmhYYT{ts~42ZkE?vJbPWTc+Wa8 zu$We8(MlQ)up7_TlC*CiCiS}k2t0DbvrS2c0xi<_a706eK%_7*$=A+t{i8+WM>_OT zh)zZvfQw^VyEo|ZxiK}1^kP7jva`V@v0>ot{BvIFCx!P;S?BYM(|v944`S!cv}UZY z3L=;X@1;Ch6K7b6W>#yZyMI+fOu%XJ{VL!!+8XJ1=F?gMqn%W{4cD7Egd3Kb%KmiY zb=lG3`SbD^1jzd7dHC{MZzybN0!-8~?z{-F$yd+9_Wm_#aRe?h)zF_~sgKbh>vgR|0tPT7oKhK5w9 z$LMrnzK8RY?vXV?rJB@djGdUX6Fkls1UbAU%ue<#8ar}R;+FRxHt4QYC|XaRzjiyM zB#|xL(BMkuJxug9HI0gpywzzDP!3XdaTGbphnkY{R4Vy*@8qca1uPM3NS5}Sey`Fh zcZ_V>yDvX|nlLD9m=^vMQ?2m>4L@I(G7*9Cy~7cC0-G(-9+8H=Z5^b|z@*~}Ib&HL zN)R@?%RyR?6WJ4;$yZjO6ysJ#w4OYBKd)8qOWWSqJI>t+xxW4g$BQrxZD(E&arxZK zLQKOE&gmZ>>aJ?%P5aShKG^Qc)He#nF6`I**-awuH}15Zk`AG+iB_BA=`|GUywEYNrB_rzZR zcC5WJ5+H>@y|(jB*@fYs&gd2bKKU6G2XqUhU!$}+;cfrT*6`T?Ld;=9<_-KmY`t|< zRa^T%O0(%!BsU#OqjV#k(%m54DcvQVQc}_&2q@jHB1j`8-Q9KP_WQoSxc8oa7-u-f zIS$rZb3V@}dGL#0R_itlzs}tqD~wPaj2bsN{p|7#Ubb^+-SW$Xe&x(BF6;54Qre|X z3MCb{>`TIMRkD>TB$T&gY%P17qyu|t5%5H|*s(RG7$%zNPhPy8rW{0T zCGEM2zQiX!1hT9<(dgG<*xiFrGVDRpBTMIlrmlc^B!3{{soUuy1NvFlT&tBbL|Oz5 z1qzV~U&l=vso0Moz(%0%Sil~np3<{_nIcM4`of7%T7Qp^>cJ^4d8eBsQt zN)foX)UkBDi2ipIn3pP-_@?-nlD?hpeHq0U?1GXJK$sXElK@x++M6*Hbehso3jTmW z%liE3eHsEMc_d#mCOQ8E^=|2E8b9=p``%3AT%*0M_ekP4c%Ko(0?~MbKKAm1-*o~T zUZgrgTz2Jmf*2&cO|u#b^&&(4FnU6U*ur+f9P?a5`R$etLKDv?!>0Xa3boPTeNH)Q z{56w7DH~-X(K&?ti&MF(VB-A#2bEqgYGNo!&4wQ0%WlPD$H#@;7lgbejD1E|gnemm zS2V2lTMmEStVmSdO=R%$(?Re!o^881oS;Rk3U*KUZa3&tEq|oREYZZkkAun)cTdqx zZA){!t~uqWFnab3m0tCx%P7qA!+HC}&kZ_S^csO_$oMEZ^_eo3ct&MCc@LA>bmbTR zVI74b`7lEw4u%e#&rz2Qj&b0mWU zx57VL!`e(5XQ)H~{-GfB?xH>m4(|k%{e1+>>%28Dj4rP_QsA=sSwFZTqu1us5JDTp z&E%D~;4yE1!Z{reMK4E^O$et&L+v;P_XWw21W@hL+%+DvV#8BFMvxta6Dobi>d;RE zuAjiuFR#s)Z3clUHBbbJIwz23Al-S3ZKc7I&^zuhS@xh1s?)1sM<|s!_)dgFpbwUYH(Y=^q9IY&5n+( z@FBx_3uoorGF17H#W__M?c_&{f2|4{Z+nVsa$tzR_M)6-ySVAQ%rAO>SB*?_9?=Tq zjRleffwac&5a;h=CR6KgT7lgY7b3L+lD^dDR8#rPN5&Cc+T8m6yu{534o|F^sC?Y? z-Y4A56WYFmQ9=V%q{vKNxK1Q~tdU8m3~D>NJhSxeAG8Zcggz8TYTFJj_QkzIHxN?& zu4p1nV)UP3o*f|w8kiHq?zJ7f5XJs!1<^)Ht{xZ6@yT4CLp)2q62Rl|(SYyIq2r%# zV<&OO3^#m1>8N{76ueF!Uo#?>VXko|1NV8d@ZFIF38#6a#Y|ujO*V4B>s`1>Wgn}x z*GCm(fzp*QaU$Y+lNn1BB=Imf|Kvn!z`4bwRHG~?6MNTsAk*x8NL)ApIw>gboqFOT z*#x)ICKNN67t&P=n3?v8LVBE0Cfwel&f6bgv=2t_DInbif1r4KaeXDlLOSxd7Hm;S zIPT?vUMj%-_Hu~-^3o331aZYjU99vv%duTYF*@V)4_SQ2Wnd&c%P@a*LM%iiY>7%R z8C2nVkyFWxC4Ku8@#$vi@nKUJRqSWaJ0rv4@#5|t-!`8(*3u$q!l~%^DLrG%CUUD~ zl~I7DD^so!q^GYNf)oQs;1v8i_8bg6&?P7?3lbTh$@Xn~$r<@l62s85619z02({w( zYg1`asq&+QS_9&a(Oz;5chD>r|M}a=*XBq8>>NnjpeIuH;|7!cz->zV`S)r#%`OmS7?Iu^O4)L5=M)A`R=T^Lxaz? z>(vFJHX-DGF`r_L(Rhj9%}r66wmtqvmgu(dbDhZ2IH`L#==wKdf%Tv;_}ss)<~kG% zb^vJ##DhG6$0ZYWQ=$9nkt>Y|A2GzUlS43f3Q(t9-~{%u$F%g^0~tn@xHjw$vK-GK ziA#V2BN6bZR4-)6^$PBGf65cv03C<+2AyHUf*M8!&2W}Gl3{sO3J4>f*LPH+geU6HEEfCC~*}%PMwtc7JMpBHEU96Z2~IvLuYx z36w^D=NekgOz^uTf>NTmNo$~;kh|=)!G|3V32cX%&n9O;^f@BmA+0u(UQ|@{u_y4_ zeoF*7IsIuu_;Q1i+{aPP1R2~$tFx^!O;y~l#%!Wj^)e}ch?Ut7;S(cGiY~o@NPreC z4|4eq9I`&-_)~BH9O72?fOw2XcQKNV)i{C5OWuS%m3R{VUz*>GlYvV(6(G0Lpzxfk z)l&`@pgpPV{k||N^3z7eCaA^6^#eIwgaibI^rw6@xVQjLLxa$3nu1N_E>g4}&uNY9 z(>@s!=9g}0`Mb6R^dPd=FUG&22YabKFclCVDr}3Eqif~d$#r)579CQ`TklGdl+d@& z(R9c3_w={QC@UpvTL z&q>k2!|41ELa_~j^}$mQJQ%R)_FD>9GE8ahEFZWvbBS*rW(^Y2?K4+1vBy|X07TWr7B+h7dV1X(bM5C<_z zbP~E?n+T_|8BzR_`J(3!Ht#f(sR?4tTIkCg0x$OjlZf{F3q7rjCjsj;F9QIw8Qz-@gC) zcC5gIJkd8Pc@^zK2%6*^JJB8@dIge_Re>U^l0AR1UllB@!JDK^<(CY&_+koZ5x?@c zXl~F=8Kx>h8YI4q2h_Xcs$kaj9t18}CWh1M=*OuFQTq~!t90EmW6&fJfkic$XyO|t zY)`;IDo719Q#9X?K(S5(A zUni!cs1Ta(Wi?2O5$0^VQAPxYEeZ>Y*@K4k+NazFp%`H;L*JGkXRtjHuu*c_H=oPR zZ_&;}4e%K`v6YKs5k)YlzuVB>rXp;n;!}Ong*ftfnxk>G1x;YFk+k6x@z!t?Ro+%r zQ)o=<&@G$qJ!Za{_FL{3$7RGYf2E$SLa8+H!|1A<$I2y1>DbTx_n?o2is@Zai=hS@&-y|S=q>hZE40u4x z3LTJYO+F07WlgZQB(n%$xVA~$pHT365z0ecnblRfYD1ncC_Pw4ulQlc@TpjL*Iclt z9qxwT{Q@N37IJt4fKmQd-QeB`PmqzZ8&OxGuO%!AM(t~-aqmGeYvU3ls48||;~*%X zXo~edqsN?=_YHot{0E;<>*Ce%p;&&ph<3+yPGATr_39C~Sobs9zl0Xe2l1iuE$B7$ ziH}`W_VWTM?F-i{dgOLN)O}3tCtNxgi^0tRFAMSiWFL?|{`EdutpxIy9L+4y2v4eZ zrVgtLSB>L!_OZu(8kQ)P{Vr6DB>V5L*p4gJT2`SonV80yN_?k4iIee`A=i`782B;Y zkPfA&&WzKXjS-3;Zrcm1LUn6Y?3_2_?EkM9f%<5WCSJRRd*w#tEA9On8b6hXgLDC5 zh0b&Q7IHkl{+|xtzFsz(JqfKvrSR%J)Lw230DC^RQ2di8Pcn~iok6~fz!@w!>G_LP znz0e&8w`mk%=N#oSw5P_HpwJX`+FknhJOW4mfuCP$p|(yxOB^*?WO$_qQl<5#r&X3 zU2l`sf{*w+S!=|JLr;VUnPR^!ZoTd#JXrmd;&#j%#Y+^`fU#35^zm zjI)k8WLXPV6_q>;aV5%mjf3BS7nM)dFKtIbQIRO_?6(2ML90eu&Lv!Za#9jLZsx4s z?KKm5t|6@|QvS*E0zEGEH_S;7V0{+o&Mu!>@$&#YjZM<3{(0o;;9xPvohH~^#g8&< z@NxG+n#$W@m*SQ7kby}cD7w|3)<@j}B~O>%bet0Ygns=D?=fTs0fh z=`w$&Ik}nqT~VgwiG%-zJmZ%u+3TjbB8ms0Z^}L&y3EYs8}(gt2CE70erh zwcZyXM5T&Pp=k92i2vVi4}ORm(!dq2++V)Kk=-4g$A}GPN9l=q@4)T_4A*E<)gUGF zU!OThv7#YnU)eAsB8~#-*GePAC=xLa+7G~Ez6Ej}N&vbv20pZ^0`|1vL0H82s?sJH zM|FEi_Hx6;5c|36F=*%n$&DE}VykfLag=evN>g8bY~jO- zxx@ed#o^NFG9VW|D3mFAp!4&r9kp!U%U9Bc|^j&fLAgn3}205$*z7tQa{DTT$E)GyS zF-DDHqQqeZ_3aWM@QCUmMG+T*_9A*@fBCmF+)7;*Ah4l#+?~in`>JkP1=f%Cx^-9O zKj#81(}1qBg3pl;N<0MDh=NAJ;=I1H5~nV1uX?gBS2VsI^9Y&<=DU5viZ^X2+j81g zbh(^3W{9$Qqg0iAUaY_lJt!8}d&33V(VpwmoQYNjMPR&)o$0|5u@m}g-p2d43FRJS z3ZtCc_3=kLC2FVF(ibQLUCq}i5kWonbf|#L>OG8U0)2&AS&gHQmmQCI-T5YV(6m(@ zq%M8|V1lX^1b-aD~^IB8EX=+ zolX82DlZaZNk~^rd09mH;qMS{?f2x&R+?y(CwD4O-2E0$T^s8BANMl^nXZOuDkb}m zU+4b*;&_ssJNy0mFppH|*}#VM)Z1R6+`8IySF*WpNm`yq0F-%J=Unydrg7;OayfUC z*dsAz>A@^#cv`RQTX}1&>8d<@liqtbI-;be!<^Obm_6B%^1khhy6`yqewL8H$6Kod zGaS;0G-u!T&Wa{yCA9~?E^YefQ9~61{PP*EuA1d5od5k+|1nH25rTb9186chEu#IZ z{RMEtF>B1eZ571CT1=dDo5e~KW8UrLf4{r7dZZxe=T!#IX|nZDs($D9oZT@Y(!?0# zeiP?TEP~?ShRg2>O!`D2Gdu76emO&MpjkQ|t?0|=rKgqEICXe_ESMfu zY3E2jgh-Hgf0#9SYXIKIz{T}jJC%K=Wy-#x6>8HwTy}jzwwuWeqgN|Lx8)`=LQ@h zu}Y^Rk*nnp4^^YpL^&@9bTG{Dulbfr3qC!HO~c=N2R97=RE*H2p?GOin+-HiGiLoQ z6cxpds9O5S&v4@n>IGY?t>IK3+5w;EU6X;1@Ig8tVjBRY(zpYyX+!&%Vw#tbznQzj z2o%AL>GKOK7sT+S@Ozxb|5*swp$TkgyeMQRw)g~2*<5-4Ug2YrdG*V$lr48=X(0n+0yNqY(O6DiZ zS9`mN_!sM>m({aE2d}%Y7}e|(D|>dSy%||2N}c`utEX{*gK$!ZCvWimxXCW(&GkZn z zi-sn+EJ*OLV0U~4>CxVj5Zv^9p_X;kl2*^-DlM;>&ovg!f`56KreC`IYWEZ=X`;QI z)uA*us%z04@j(z8wu<1MkjGqe24zD1@$T?rQWwah?vef?%g^GhLVNXhMhcJM zHcOwF8)Y)YQ=4a02p*;XwH5p&wq#+z``5qcHjXDLL9Q3;LI`f(eS5rbjKV*_tEP)f zF~Csnj|yuC2K#ta`%dfjCe#G&P>yv*T|A2|m|#QG>)`~V>}Mk1+1F<4!+`n(MzW?Y zZtDj+BhcW|!ZvJtc1;-9cNYSNo|94iEU956G9Kn_RDW0EnPTbeH4Uo=FSm3^e9HHf z1q!d5g!`A|YOl_4jjBd{Te011XyO8C;NUD}G3IA7;5*KGeoJ6sO+ST0$cHWuS}rdP zxjmLR_{o=>?`QZAYdDrh3hC_Prh}FKf4ySRGl+4-XKtI$5RBfnA!I2@>%G${jFsl4 zY7F=8K?{6bP4lc1Mse{b_19j|^jsTB6h5i60X#p#e1Scm6=jGu93Jh|E*Xu zrornEgLNmRq|*5gb4@rB+0376V-gt3qpkL4YODRtzBUp%7Cj;6ea(nH@)3rAwCsp3 z0nI5(1=P9YqO@>9 znsLe$uOnG2vhQ$gTfU#V_i`yk*Br}`e@EQFTKqtZM5hGz3u}K`JzzNZBeh!{;1e+MIxbe<{rzet{K=#%nnN+9uWsm;RoPXs zDfvU=CF!U&9{PYJzbHv-a1rI*b7=vBC?qntBxjc<2KU?B?w+w+vc8Dtm+wUx(Rkl7 zSyb`$YR~A}20}Zhh^-U8*|0>Mx(|VI(BUojjMnK4LD^1u zJS6)a_fFz+d9cXZ30X&?_xT0#{hCjo1}n}N3DsIuGC!%Sxu*z=5bl%3@%S5`jD?e= ztw0aaH_4{dM?>w){t?rtOi-F(L7^8(6UXkDeK&zO5>1-7J8UQF!AKB!`fet6Sil;& zMw#Ik|GQ)9_$aSPmuBNdx_;gr$roE$kz78JnW7NhAVIw`3UO$;UpHUtkxUnt%BYsm zPf?u9L|%eGZk=^*5+8b4E=7aM~=+DRR$EySTHVUJT_ieqJKL;2(DRVE*R1$Bfn1i$A4($3B#z@j$dApdPqBRIQ!!|sw2tL5D%TrXf-yu1BEj2W(Ha#$9yyi1dwle zZhT|t(?hU*MHC58zuA!NdR&i8G~UH7Bqj--##Mg%>CHuqbr&VeVI?tcuc;a3*~x9hS4LZYjJDQT`7j z|L$m~tmm?jbpo|8l$o8lVt+;d zrDRsD4Wy|!+9o#D-K3JJg&p>+pE=O$j&E!nS!*rLs-(%D3Wr*8w%r3}Ymm9JaOjG4Q1C}hD6Fa4@HCj?<~Nr~%Av z%K=9UJepEcZjXiUpZKlU0NEK6_$tT=lh)CLduxb35YG_6w(Sh;7Ji=TUF5xKv1(mS z+ZPLRQ!c+ReE0c;Zt2Y)e+{gy<9Kn#u?_03>oE2qWxojQe{F{(uH1>I5#wYlD}TWG zAjKK?qhTKVjMjaGw7Qv7Er-$sp(^J5e_v4m>X$|`#!aKV)!;Tp zg9%q&ZPTefAOd2EBPfPt>cS_uo|T9li8bGqguh7IFBceB6c{UpS8g<;J~obMW1iV& z+fA1amHA}>_HE(wWmU1XbZKHWg#t4)KR#)C31fiK8BBIEGS4Rt7-Oo^OOy_I#fGm` zi8WHi1L4ruTOg(8(GnJvleq@$^xhp1vJRTtR$KU;5byZ~HYHiCJNHK7d64>cL(Gxk zf0H1y83)OEjMM;@zP(1VV;3maX0A`#)1|#|y7&u70#{yA6Qix);FdS=Cp=WxrjmV; z8%`u%iL@e;G?0*rr?BTSqecpBEkK`AXiy@cS_Rv(`&YXhHq9z>%MdCE+pSfD#ky$Qwt9OH?;g9{j)j3KrodL%n;UFYxZ(gJCJ<+* z`OHkee3e&UWO3OPdoVOYd1k~O!Tr;#jU!^Zwr$Z)gy2vhqS?4I4UJbyo0mfr$t5(9 zX6~oL+@9=*rMYubDP7Cq1GsmdQa{%1Z5(1g4u9eNFJ}#tQm(|p#hUCy`0rIuKY}gf z?mf@q5&sLJR{U66da+Vkojk#x+1qE_r6hvIN>FKH$5(Ws&>( z5rX)|PX|Mc372pQ8D~BSO(I*OkrL)XQ-Fv8$&-C67&G=Pj~^3sj6L z$!Uwbr8L$<3u38O7T`bsj|YT`PWPy%+(}pykOI_?6leKSxwAX|fgwE&@*d;8rLXMQ`Uc}MU zfIg83GX7s`vVx_U`HT}jPQqTF1RUo1R{bU)I}==Q|e*k*7B`O)PA@cv6%&y0YqiO^8dMIZr1T!0e@?b8U*}) z!|p~wGWezDUj-oqC;qSSoPOa{P96=@oSzliv`!6?J@n)Kdq)~NglUXO+G{DwOsSpW z*j|RFIP~(E2-wZAH|T23kmWcbSP;O&5<6WcLViWw+-(N{ z6cKI>W$*CO)`U9OCXq6(eXPVNZbp+{B7r<6>oDl)YvZo_qU6oGDc!enLrz6dT-hKi zQZJeA`+}v%Z~ceTSn#NRsVT5NB^@I0U64tGSA-9ng9rBYCPsr3gW7#V{I?_hGE%tN z+#&~dPYZ3UIawBgHuCJGoXEDU&SO$7P90mBz|ZE>pAN1%OruEIl^^>pXc72iJH<%1 zZy87eM9SvFhgq+La&xDLRi#fzT)p5ri2jM#{vojmIJj3$x;pU>hoMI(-T1i>V}`1` zP8`G+f~m%+tb){M2MhD3pncE_7629>br4`C4uW*qFn06yCkn z=f+6pcsfs{V>O-LYHJpGge^&VPFt)wz$B-V8ss{*AfO z`f(TPf}!3DhxEn>P3-p|^bN_hWNAl}J_V{zXA3isGV0w#X)m3Gr80IApNvFslF%Ot zW;_S`jQ}L@JN==V_nDLmS3@!&h}Nj)@0Sq|4HLyGgN`+Kd<1fZ{pKbVYpnD2DaAnx z-Tq#{Gn<(gLUxqhjN3?9M9+!)&(C4yORW0tfAi&B#Qo?IVC|Or=Ub!1YFG3*wD{lx zQOOvT0<~tIT~_E=D5LU6XQ8zjg2F2X;(b_~&`g=J&1O*42ZXPt6lW(lT(hd8`d6g! zQ7^(143iY>d|rjjpA)1>laNSaNJqs=oo3%PGC1Alz!YCU3y7coNtH(Qv=4;L+gdLvYa5L~7?A0)d4!rxEFWk98 zpGg-0+iE&D`78{0B96&>)7OZs7BW!{)to+TqduO|vV8k7*+{#XeeCmv{+pbuXcl>B+Q zzGjCU)S`5??yTPJg%%;%+Y9d`gwF~>))$ZNi#K{UF)TeAG zMPveL`-zH`&iOHcu0Er=cGDw7YnTXE+H4(Yfp1sk&wfD}tvH+Wu@}6y-&dM&rct?t zFaz?q_LlLsoK!)>?{|}fAUB@VMdYpe6kEL0eob_gwi)$LnZoEw)Bz9?Hmd=0RvoJw zC)gDm3wSy9gVXxO_k1KJ~**3(4twag?LxpmdZ*B)SV?{qgVCZA@tsGANMn&~rnpRuR-O}TIUd<;# zNJ*iOOJWD&d1M3Zo+P1VKpCQw7nyN0W%HwQ8nm=@$_v7_i{Om;OH*5t-F z7(68qlf-fL0>oqU+;|Ty@`>H+d8qWxeYbAK2oUUTk0U;lO3UGOE+~wQDndAvD&L}T z62(?SzRa&QqFAXNO$RTP61G&^iFdS*qT#rkxGs39n7iaJ$Onwu5h|<~iG%jrx)nIt8gjT!e^im0*sPElSgKKJ6~AWk+aw4-OU=QfG&Fm~sOJ=&mHc ztFOyQX9f}=Rc;R;<85fB;|bf3YKf`iXWQ(g@#ycD^#-+G_!P#4qwzA6_)@$;XcFrb z%X{A*7A@Q^vZ@p-GM)GayE^M6OnKl&THMt7UKeJl6vok0!dv1()O zO@oJqmdKlU%2AIteX%XPz%g06;TJk}y;d~zArzPhS+DF}Qq^|Dusx1H^b-0YuMuh# z#rRKN1)drUrf;EO62K1-TCQGi=4rK}Bar!rD{)jZ+Lx5_-&5~Jx1aUkqUw2zAZdvF^L&=jn8 z6a44y0p{9m59rKQmgwvILu1t{grLZ!=A`F> z*0X-Ou>>Q*yS~`AT<{DL@Np+Qt}%hDvH}}?LKRKBU&EGC*oJr;`Zeh74|&?7ohbf0 zekL$LI(OfT1i$aN`(Y+!)p8iX-TG%T{%oxXb_9e{1fdbo&q%=$N8h1|>u*UR>hGGo zQo)g-F0YO{LJ)fC7CjNc12Iro^!!XfL1F9`Wa7Bk>K$j^Ch}H39ay~iZ!pP)fU-n& z(0_OpBqi2pt-}XNf*YjUxzrS$rI<8a!9-FWM~oh^c<6cJP>&Qlh10LYgN2rsepqFi zy9`D0G~$BS3yfG|j&2Rg&nFu?sOxp_C^N(hG6sd~;{T~*p|~euH9mEEhFGKFxcotb zK)|Sv1ZmQw%9j0%Uk)2h8#*2;7C$Sjp`}EWkVZub?kv7F7hpe-CqIWcK7FIG`!x3W zgzuBjy6UdVP*$lt1Cy8*LpREe-94z>)W5%YqB~A_gKqD+J^mVdOc?Y4&uP@$RC0&S zjmtvlyJMq_ZFrcKeBW<^(6egcAalA+$QmSvF!Xpkv|e-x5f(CUgEPuQKt*H*hc+i^ zqcJeBnfSgFjH_$S3~P?}U`4**=OuVXY9gRR9Mme+c|Wagco{kW4@QS7z`QmY3X&A= zA!xi^h>qxH$#rE$M?~ICiH)}y>G?)WAyOeJvbVR26z)dw40Vghd?{8s0dN#%L zZbQ(w!%8)MQ)uM2eJ9g>l$=!@vvs19_}A!{we_b$r+GfzT&HobC~&RB#X7Hdn=AD9 z(RSaQ!BZg9yy+3aBxZ+x#LM)E=rMNJKXoxjm#Ehb<^SEc#?((Jjz&SM5YCa{q=Jh1 z7776=ghragG+X5@Q(((=FPsCF!Uo}Zp)SJwiu#^f5A{SR}tHM9Js zYB)rNB<%Tb(X)z4Ir32pTe(jL%{~hpi(QP#O0XkU%vfkv|hz0~8HUc!W?2`SbB9(Y+1CUSJ%#b;T@~F*2uu3jTr*){7 zL&4dxu4_;7ML{jk0@C*u->Z2nPXH*!Im>+1#Vewjrrt7r@(yR6(n!`K)rqG-$D>#` z&lLoEcDYw(`*%xE)19xf_+HjoP?J_U1zTVuxJ1W0`G4^2EXw8Lp$OCsrH%zk|x<9cdHvraI z!SBx)w3;!Gp@ZgRqZ^bm-7!kT&8+>+ssZB#^FrGZC8$d)`pjKO+4>0la#=%)2-r|= zylvVsto)5PUjvqpi^zpyJfxC#zh>62{rqz6+YecTLx5?HMXR*#r$SB({-*gc+_ZuH9+cB=zCJx$z9)TD?z5~BMM%u0jsVZsHLiX3Y zAx!EjK&khZfpAxXaoWbnOiRMj@8NpWP(#Bdna$4X$A|T1R3}QP0lHw`Rw#u#OLtRy z9JL}&OA!HAzL~BqqIV<8shy}cYujT68?K%kd}6;=hS=F`3eL#^u;x|n;F_ZP?1%_e zrY}}^9Cv0V=;rx5>=2AEugIi|E+T%6-^|?3otp1+hvq^ig^#?~sEvK3dxZku!8)n> zgMuKR7J0ZVzq9W+Q`015!NyUZv5iJ>oj?m8y4fmesuSaU zx5OydA0BQU2O@}k&5zG(r}ad5bN;QuQJrx{3{4P@qoiat&Z<7F>I;{0mTI0|Na>3B zQI}D;@sSpdV0{@1oVUZt1)L)*a7`5mY2e-rt)0VJoRPO51)82z7f!`*emW=?9L0om^4;hL!h=NJY=e zDlR2h5OKKQC<_JGmxEU(BiGX8PE$WJFG&%8>2?hIyU5ADxK2jI(61M5!C}gR2ltW zpQ1h&He$sqc;$XsqeNPEAF5wmnT0>eWCcAj^@n<`uJ2A+OVd|vrJxLWjDf>_rv2UE zVgMiWM=Gf4Y?4=*Tam+TT^O@g^`6XX%$B6F^Vg?uH+yUSQMDfLmCM8{ru@%O-iuo@ z)3G&6_$JD@VDddA#Sv<47)pQWh^gN{RK01GwQR^Bj;^@~E&bBQCldQ+y8RZric)yO zG2W*AjKttiZL*P&=AaQ|FOMr?L)fKcNi4nTz|!XII^F*qL3L2DA$Yv8RXS6;@tsCI zlV&15+imx-vd(-aCr-6U1u3a~SoOo{-pf1=1at&2!c(AmuFJ_emHaKFuF|gUR+aHB zDh4@_eB)Qau-7d}6mRC$1B33x2^aSHX~lFtee#1-(RH&7!LIHd-zIL9r+NVA>eLfA zw;We;+ZL1f4paYAuB5(OPhbgFR5+{HRTJ~2R}gVe`Wv0StHv_N)feZ^k;9?>Q4}7Z z3b#}xUmPAsCse8+G!!X1Cg#g7ix>|5GyELGsLgw@@^td|w`4Pp~a zv3OIbtir;umMa->Se4+@$(7n%G(qc=Ad_$J1zgr322Nebu(S)%8%vS{WS5P(f_UM= z;%&rilEfJX_k9fJTSLyq`ZCF@DefzgXCU-Gi9I9n2wjxg4F#7E?VWJ0!%YpCU%pyu>W>Zhl zU_9~7p*-<%)l0lxb0~iF2{3m%dSezDXh;*gR=Fc~47eV(j(#$C_k*14?%NY<+a4*1 zzSBlspL;t#z=dyHQL{l9kXz+*|B#FImUI=~<5$@7pDeg^V2jr^>mzx;c|)Y7Z;~$74#m+K z4GXvehcXkE+z-C=0iUw!%S>>)1b}RKQIuo={@h) z0q_mt!I*Vw%W{{ZLI6hcSHkQO_2-lV%!~=zk?4jmRf}@2Kkg1runIB>FuI!s0HfjS z5kA*vYL)nO>br`_=$bD#BJ`*UoVx9$s4GOg#X1uq7GyVBYKO<=`?2aV6bS)0UbWcFzAtS39y^^2czWHzFn{* z0<7VCcYd5K{s(9g%_0ccgRHyKm?aWltj3PrpEI#+r)WIjY*5+ zU+;^3#j?FMw|l<+jM4+CNs|z zNQtPHk>AUeo?%cnVee<&H9&+%9Xy=QcE~)6_HTMa3Ksp0la)_dZ_2-Ma47Iyk#zr$?7eRA~AL$yEL|%zrQ!~{GCYSoL-dat8R^c zxbG12_~1W&HR7zUTiNknh2Fov)_>3nbL1cp1FeVj%**41p1SCn-{}vYw6D@zAHM@v zyt%i=#7HNp3t-1sY9c`)@e5cowAKo^*G6IUPp;S~7A#=l8*D;$%FEB*rzCKyi*Vc+ zqD!eeqqCyxwzu!9kWve};{18`SPdd5KAz=p#d;&7KlyZ3ZV>kMy=DKMlae`t67Q(e z)g=oVgcrYft=Kbha}CeinjGU5i3H62IQNMo?ktpq?Ty`#W*m3BF;XiPw8vrVdgj^s zkC#G!5=T_fefZifVQW5=7%7-)c`rx!{f6haCDk@e*{sAQg)j3<>(J>=QpM9}r(`Di zpO#!`$mc)LRZB1|(?+RC{&r~YzbIEb*m&hOiQ2P&q)8#Bo;SWn!rx%kVjw;HscNe{ zUh2)xSmBvgG72`eQqF@T2KCR7w1YD8`RzkXr5aujI$@>d*^=2ME_;Lo9F3pyeH z@)|h9OLM7&U==$M%jB-!l5L+*H=bFfs5FSE{<-F4Du@HIIHlX@EkDBv;2HcbOM>5?Rv{K% z#T*oWFS7spRd_TpSNjqxny)62<~GHu;WN=vhBp_n@TXMG|LQlY|SglD)v zW4gKh@SHr?fqCH=YQV8(-|}46G-4x9ac6#-x9O^^TK%*yeZM~7z(G19EyvG+dg3?B z^H;jpnPp|%rx$v5!Ai51Um>RNA-jy-uVrW1U3ja!2d;$|OfOvKf5$x>MBO;%e$D=i zo+nW@5I63qHI<+-E1eLy(|R4CUaG)1_pm@b$7fxc!=U`(fipFF$|*hd8fLEfUwWqh z{_;aRBk^cTVeKDa^VLBj+bW8Ak1P`aB09)kFZ%4V0Gxlbe-Yr~s$lT9zSx_^Hqh^U z?gA8L`rFw6)1!k?SMp~~_TZ3%*ut31so%+~Ic5k-7gQHTdmq=33| zrnlMor-^%WMF1o;=wGieGA|X-1ub*cPKCt@zBIB_XenbNUusq|)E#&p;U~84=&%Ai zLjRAe;6KmAmnzVa_DVR|@x|w+wxbsgJ(K^<0_euTKF{Q`dXr4ASXuucTQAx53Br;y zZn!VlXgP<3sTHnc*xKJ3oubhsOvARZ8mmAUv=j6hrbsXmc-b`00k(6LjruA_)tfjG zvedqmN~NgD$M`oq=bvKRV#vKu3Pcl4Q&g%@`?BXn>0j@G+W}9&-DK?832=-F69IVy zR3%eaz4RM*=qcKIxVvC=g~JnN1iPdI0lXC`*qp*<^7`H-O_oxnQSn6Rd_qmrwygVG zY|b0#G>DQJFH&hXw_}-I@+Zx?N`bjwE2$X! zzT5E9=XPo*<-1!uZ0*jIes70NZ#Eb8_Um}dW*UVi-)#yBuvm{$+??L{T)b4WX`j*Z z`n#Hm4B{O4-95;q1E zkQ<0&(P5s}cf|tQEBU>3f~@NY0^gcvoaT_Wli}ywZ+}5E?F0dB^}(Uz-s5>nYV|KL z5s?5-Z=r)h1egT=h{MLWFz&BCu<-@ff*A(Yi16S7dtn%6SY+6peh>WNKy$MGWrDrJvhdw&-mSmVcpj!*#Mb z4~R)?yNfmWG+EG)qB245@4h>8XnkE_U?-GKShEnw+!)ZQbXrtA9_?=>VMx`3ok|xO zL%`b9In_6GJ-MrrEUVOg*O=EoR!1?)e?}WMkU04N`^-e)NVAU?q=tcjKoRD*c8~f2 zdpQe1deu0HT6(UrN7G(mx740f-FhM?fJK`vaPTeU;i~7F2a^ytdItp9E<0_!()CT! z`uBY%YMq;7h3)8FS^g_d!ABIIqmVp!?()d zdF&1vng>Z9Z0=s9`Rsa9Q-6ib&{VzE*HF5>*0KMS+^{{xa$%h|Jy)-c-~M}v->rrk~47Z3;ztDav!{{*fzZb17NZhiprfoPchePsS~C62TaEm>$8 z372K;(&tqhKi{8_P!bq;NupW}W5Ejkv0y*cEv=#8Zo{`T#Gqqqi4bJK_WlviSu(`KFsmKzXv~R3f1#igXkjRwBQ2_fzrmFh^v1n$zfk`Yh-OL0j_%(Pe*n=z( zv|+L{w6E>0lv!$)E0;OxL*Szv&`?7 zOH#F$5~!le3t8N!H9s4`gl;Q;SALg3(t5hRz-31wAq)X$9&g5lEUGn zr!C`gXiH_XNOdZp5XrS@`|0a)&BD5Ap4udLggCjMiR%hQMRR^AzhC2sFl+q#V*l@h z?HV%(V5zVnfqY4f7D*<;lQa}wt8cALdqV{DW+FNEaG07^%ToAkQNbE9$%TDqG-_&` z)JKIb$zV&+CuY9)c!U4kvd`H8cmZ@#QLqmM--^Y}&k{jt>$9ZdGt_{Ri3UqEkd3rK zXw;a&F>Z{agy3A*}p%aowEy*YX* z*eqFAB`dv>NB=YTSp`bebXQ%f++RLy%AC5dP%m>^%VLR;uQQs0PvzMWwno#TUFmaa zc(4HczXrUZQYm9_N>8+UyXKim{y*%!Wk8kdwl)ltNh=*9-Hn1G-JQ}QEnQMl(%lUb z5`v&~N+Td0lF};O-5uXOU2E@k);@cm^S%Gi4_UatIp_1-;~8;{Yg{9r(G6`v0C#In z(u5YsbmVT8HY)1#MuUamIWRSVhn!a8PMvecbUe<`LJ3SMIy@#O88(~k zND3a4W!~kV6aah|M+2!}SYm2lsyD!HkLx}byN7dN+Vbl-h*Ht2dA)rp$NTFdOFcCD z3Fs+z^RJFGw1MI0r3D#!CMaOqKhw)pu;LmH;)Mz`6yM`CBde$yQbl z{v~O5fOxYe_Z~i!suSu8A!aBw0-j^JdLl^YT{QZ1Xu(^lz%(oC)Q$yvyj- zMAyGvMSi`I;W{nj@#*=83)0=%G6zTR6W%eCQS#`gWrV4zPqW{+OSz<4+vQ4rNDrjM zWt7>A_<-~8jtNYuO7{IQ1YIaO*Ez3RYLCCP(tJOqf#q&}*rgs|OG2O>3`xxe6smYK z?{lMqUEWMApCTh_aKcB$F4*2oY|$<14Ze$ky0FBr9*v8u3kDMe!jc2a8qqmT;O5A_ ze@p0RFtv0oT1>$qjEGge$rrxXrZ!#Ixfk;g^!>?>unNAQct8|$A^kTP%)bw5=5rWW z=(oBq)Wb!wAYA}5yb|pyN&Wb+V@M3oZz%=q|(@?6b+H{0dpL!0l`CxML#6b*_ zGsDF?ywpqyGncB(SJCLtb7lD=jPx%=Mzg(5Li0FiXe z@WkqRoGbb%F5^bHt6+|-?GK*gKd{@s6-zn9@SJ$u{6CvcXROs4URyFhRReod^#Xtp z;?>4GyL2A|VbnRPdG{%r^H)bOS+OK0bqfH!J_Q4kasz-5M|xfw7&|}pSRLd}0`EZn zrVAr@)no8*!SbItf7lV3esuhp1%eKdt}4jOA*iN|&5Kn$--RDc^g+`frzfIpf?+Ev zi^{qpZArL_Cb>k01*WX{_{AxB#2_$i`GVX;Z3VPIMvKatt>}$3@q3=CfOXU|K(G95 z^2Eq-X2`zAekQdkFf$;&@m=Xxfhzr$SZvvY)yk$?>ZT)I&x6j{N*-9B#F5A^%D_{x zXpXxv`2B_dT5=8n`cNsgw9ZTsvhCdhbNbBae$`(7_KCTGX$HYom%%`3<&lHRNrm}( zrM@|;4{w~*oAO?1UIm}0#bTB+pGa1iYkkr;n{R_No^1`*ymsq^Ts@>WefLZBeu$4K z9`2I#nTg5p*UpIiF?I8%t@lwf&V{_MWyc!RN^iW=sRsg4Jz5=vJN`8_6CR^3cUY1v z)GQk|VC!^z3f)F|8(i%_b4?6O7D2X0FELn-R3|6k}Iz0`~I>`z4iEFulR9Kvf9r%>0Zy z)8ZoF_}dK664^pmO7?Vtkk-2`y?e7ZZ%#H%2`5px&$T|g9lYctr~i1?1fGh~ykvc= zt<)Yt6h_3e9u!OUQe7S$&CGkm&%W8EAAsT0WFZQfRuEPL;URb4=Yl0ybB0pS|HLdw zEh)<6tsMf|J?{5BnY_C$3hi?1>bz)M%l!DOC8oBYmVhVgRa#ZbOZ1FiK|J+}oXEW& zEyf>?9iJ6wq_WO=i!om|TO=pbE6^)`$hj+d{wav~w1CS%j>wXc;|H&Qpp)epnVK5b zwMr-QzE}joXxikJ(rELqu{Re;3+^15@f|ZKYtEY7efVGM2sksYYpHE_hHEWvLS0EM zospWv)OS5vVReo$H$^OEs9DR+>AMpf1!?K`KptIIL7_TQWMNpy$LkzS8L;lTBcc=J zK3&M$gh}^F%a4D^Y~kgGwU1$W%r*8DD?ia9Pv@*syH9Cdh&k3&i;oZ|5UTgcz;o5mkG=vrfD(kd_I}0wF|eEl9wkLoDEo&k*S5pSZQv9}n{r4-ElJ|Bv_H&$8dX&|2GM|`?<)$T(uAnEgJ!+F@SlJIeMEKt#A&SEkE zm*}G`-K#5064ov36sg|u+BvC{SwXRnJaqi_3U*!-#+aKaG75~${hQ}~3i&+a*B{y0ZMM3%#wf5_gngzYaVLmUJm{2NU^n+hs9TKc)!VHYJQ^ zxzYn33w$#2+vQy2rmn69MuccFHki z0=ePN;!}k))z&{Or+x)t$`>~MSyD4^0Gx}~^Qnp{AWXneg(4Y{|AYE7+E)`Y*q~P$ ztN1{6^I++-!};Tx>lJC_I7w2oJU;Rq-m()Xx8}GDUU+1E#}{mR%vBrnZHP~=Zfj1f z`7O_<&!~QmPoE%W+H0Kd$$5Obqf^(F3M?xespg}_d-Q6B6gT_yqzVg4k(yot-q zeD#aC?vuTbT9F3p556jF4H5d|wsrLy8*PJMYy1F)0xA+sW^EtFc-GR5Z=x5paa**n zT`HQFT%+d%?tR%`HKc00$j_{L;P)O2juCztst$xs#6hUhNC1b1LJZ?J%K#nV_Zf?O z_x1LpOlCe?mPSbd3d$4U_6AijgQWpPWeFCH;M;=Qn5}7F)L+WDsSM~7#6^R%cQitp z9CUr8Qa{YXh3$tjX0bk7f$P^En#Kms-s&TV9D)%<@vY&KC=zhM#&AIi5LnL&UaT`5 zJJOf27%$jqe_n)1IVaHA1e6|5fnlO_i?J;LNv_ccKoToqF9$q%sFEUntc5<1nd0o_ zXamx;)59!xXkwg#yaoOlT3|m&Z9G==CJ-)At3o~a28uD&Ka&$T>Ur!y^smk3qEEF2 z@FlPAJy;7g8cfd3;+5&$x(Zm|F{lTYGBUI+;g>4K4dQnA2IeT@ ze9%iKAr7T)6E3LT!}jv;8Gb>QZG0kur9q`2zZ`7X1$TA^>M7&L5?Wlz*uD!$k}m3l z0%y9sY(0+6CSV!4+9yR)119gIeX@O!gq)8b<-sipiSp+|>`?1mwP9Y?8U;Kxb8l)f zbDvH`gpj@IIn3|vs1?SF;LiX8ZQ5I3$Y#06sNpH`-pL)C%K-u=Y(Y-+>ahY%v^+>% z+u-1TR@J#GK*~B`H3U$-|1k|FhB*bU_uD5pQOsdYA5M$m))`^MQ9dAmGzSZz7(?7W zTzf*s(ay>33Qi~3!NTMHa^EAe(#S2apC#sRuz_(HGp4GiSb+P1`i#v)7#uQ^5;vnE z3{ZZoR{Y>AN=hi(gF%2@=;|ZOcX7B?x`TdW?^9ZX^aWjY4D~nYlX5IjOtU)7=R^wH~=%Tr*hKXiZNTk`H2+8%auhxq16o?Tx+#Rgbz|I`#Q{iDaO*w@@# zntp55)}(SOP!n-u`AYQx{Do)qTF>`0W{zaV%g*ZpM{g(vT#PALg8dPeoV5j^m-uMv zyPHNIljw^I_mBX@52lfL-2bSBd*&-r6c~Ns9tA}+W&_aH{oVfzBnE3s{U56}d=fmy zoztF&*9wOJ0?5vmZGotzl)lSTV4v9557eHxWIdPE6|Zl3J*bhwiGb#rPLinvyy@ds zWi_wPG}`=0O>^DP5+mhQZx}%Fw!YEtvX<(bV2e`ke+SM9V-9T^)?SRJ(ze6oMcCYu!AC@Pxws zoHFkA;8`F-S;)nj!6H+AjcK+HnRp#Y%jBzAWIb-xCcyG{xl zNfkdf+^x1Q90lm0f2FkVXRRH!YvB=l3c~gH8@rHhMl2eA?+eppWg_dgy_O@h&G}&r zp&dZ($L3EiTyXkRk{-j-T-oPr_m?FY+jjXvx5$=Bx{u=Df=vnQ2!7r5Rk8pqxjJg! zvpnKgbzcuW;=Pbikr(p8o^Hh${=-oDQ;!Z0bDH?t95qKY% zs5($Yqogmu%*%T7)ow!agfjh=VF<6_7;-~90bB1hLNtQPAEhe*oZ#Hs@XTl=0+Hp0 z+x%AEtkr#Gp?sfUcW~=_7Fyf`W1YH@3zGs&KLg*2lKJF<836&W=~ezB_QC?7Z%I;Y zq5K3{FNO-#3ZlH2;W}Hv45RLEfLyM&Y$c5GUg@_bV-pJdo$AR^z}6(qKy=5U`KiRh7+BZPbpQ0|;3H*VGY7Q{j(q@184Wjfip>H|K0^23M8EK>!zxp!n4TxsZhAaWCMS$O#NY)2m(Tn{|6n|T{>1wxeCl@xNR2?Bl zKQBzQOqS>c@T4YhH-AcdK+oJZ`ze|H{5Lq$!v~#T_$VHRQ;LzBmsc-JRG-LA$$~wM z%6)gQ)C8;oup?m3GRwK!wMh)~A>BeXR|MFoY}= z*R=qAN*Y9s3-IklP*LPx63K*ysU(3?JLApSZV4TjUdF;l@f8jpkdk}L!XAx0ODodh zM{ks&Wy3;&vv7YC0QRmnZx28AZ$t{`{^2h`qv*H45P;np4v-XkJH@{f07>zy9MWI5 zpt0Jp#`Q_68=9UjnX-jR2#rrjASG`-v98WK*UC&uv7n_CM~GAdezPV#Ek^w2q2+!e zLJarljw?`>uO?PLiAQ*O|2UTmnl3h0Qyh4A+b;DBXaMQl%`Y|qGLwcDdSFdHpdISRlXaasQ`wC!6^x=kXwnM^ z4bSL2yx33}(%~)tDinCs#|mFSP}j3oUgqKqQT!koWdX$8n#0`&fEp9YFXu_U=xamZ z6NJL?7;%PQz1n7wT1Qd`jN{(j^#0rTk5IDwvEF^{sW9#?j@936RDZmpo&1~DJKzI` zLZX@U-B<7*KDCIYRxsd;4cq_SnHGEAf->$zp?0!M0MF#Z56G56b+sH`uH}Bmmcri_s*i=Q3>y6$r%4 zVmA)P-~1syBT`ob+cE#%HLph`)T0k29p*92D|+GpGPjIUtgOulJL(tz%TfO&xZ-ym z4A-WF_elRIr_F=BCZdz_53Zmq_f``>@R>h6Zg4(8Pj%QX3_$NVnH^mpuN=J&bpD`A z_%0Yi02)yP>aYFtzWnR&$pVEvm*b>R#4%AKjrYe+0SbwOLKz#u*3dJ$^`o{-Vz(UU z?yAguD3f3W7pWQyRwx5p3>9e|^#6M{&%pdO>j2m!1m^K*tDV> zD%=Q4uwAV3{1>EL4U~JlDDa3kMWqe0c7qLUFw`FX7f2z*U`ytdCk?0`w}66!)an+X z3yrX1ev{8WA^X96*e8vW7lHPvB`>NS#~2@_aoH(?&z_V#aRUd5VMD16i)GrM4fH@g zBav<{gmYboHz1;0jF)4pxYq%8ThU@AsEG(&0V!r!INSAl@Xczn)HV*&7h$tKT?F$8 z?m4Dd@V)HK@uH$}t+mIm+C7GWFEtOkYqNv;KQp@LbGh+J?4@rl)5_fgcp;S6yFXJU zBOfdbxA8tTY=x6b3-b-&?7<`BVjhCOHamFNv8PcQvfmLf_i$nX3}R^Ae07??+$#G7 zCI)8L*`E|`F)?+|pbg<^nU9^IlJQo2Y}1hg%dkl6deE`tg)01T~9w^ZxZUmz9bHRpUu@_6+kIm;A>$`K}SJFG2#Cx*LOz40>45loRR&#Kaw=`erSxv2VYdt zm#RS;dHjfRvLi?b_@BoJ&pf~LoswE_S3DmQ^w_Ix91_B5IL)*!tzW%dd*SqI@O<)4 ztm_5v>y#56MP_V`K$teoyUgLyVPj;y2~f&jsl{e$EAe*ib~({Q*$zhu_5Hr2j0^v% z8xB+Hh-&_L&M@5fyN_|@6Av25;Gnoi`4BB+&@jfXtV|J_u1{Tj8srPaYDI-nQ2Z)_ zg&U#iWnMehLEl~mLiVXpR}ws8Nu+6FQ!0I@%3pS(UA?HGL6-4%Zwo4ebAYrVnWPij zHI3|9dD2-*a(pX76;HyRRrDUP)>rMpi9+~=JW~f!Rc4%Wb|s#=^TmiF=F+;Hnh5bC zZ1*X6BrH$qr@GXbg>roeZS?PBE8Xkuw$#_L_rsQI9WOwl|{NDjnH z<$}N>O~H~ufG}yUzRF4=8)%aC0CFMEwVzYeXmy-K)I)NDY8Ug^pbuA979boUwc7!@ z5K3B{j786mhlm@UKSV^o8IhhiT!Qz%B^yueh0?*y zq07u$omGBm#Yo0waq?x-^2etm8<*%C_YPArcSTTii!Ze8h4{e}#wp5bf_f?NGwo;C zxbXyL(#{JM;o-&9Ah&mjH5phZFA$+%w`R4vUJ|;W9zHy_{TqHqU@s5m;jQ$c>9@r4 z*!Gup@-AjE&sa+DzLt;I-&yankNc3H-PtLAF8p*@5djBHx7Eq~NeSmc&RvyOVLyVg zRnRsi3I`cXs9p782$Q}ZS~(F~@3^^Sg9iS?%HS!LlDLMX3Vji>;ZHEgd)9~2IEyZi zKMCon+WUOIMAUgoxr=H zW!$nYpip_=1JUmChoZ^IZhumu2$f|6Ieh!9|52>&DSRsZO9!y82EP*7gl5pvuM$4+ zp){Yif12ZS$pvmaAAX)t!Gvofh0kKGVP0#VG#`|PDX|q^ra>zam(bn&jH5R@f4R=t zs;A-EQy}<;VK?WPA~2ydu&0W`-_K?f5hbNX!5Jm%25EeDwjfN%+zRBPQBE<(2w|Ey z{crh?h9JwNi3xQYv;HA&9T)ZV^}&k8W0EsMvVZlV&_#9yGvp9p5NGoL-KKjx75#64 z1Zqf-6tQrKu0k2Nu+X?;RVm>*FB&tdkzbUg`YA7T76>Ll4Y39S4LJ+;wKjk4APO^?*}`m8AER+#)w=JOL|1o%w)-CB)hoz)lQ)(+&k|%YqnrsY3UI}@h&Rt4b6Ww4~jqk@*WrZqJT^s zooQA)q-j3EjfPNx$n5HLN5KSwhoD4Hsnoz8L^wCc)p9X_FQae6Nl|)!T0#~kT z|Mg86^dn}^6PjBVD)=BroUAFWlySV=dp#V2=Zzsg2;_^<-e=^`1y0l|Vk#^1SwtL9 z!{{?Dngp`q-fnBPNNm7$1_1?7yv_%L#?BmGm&YpiBM>hA@slw_rA7{^_3xCWNY!ul zLxhe)qRx+`QMt9ej7%59gl=!=0}TmF^r+m?DlyhR3rE3?-WPGS2C3zJe~dn9nqq~o z!Ms`q(*oVDZOm?l7o9g|B3Cpq^|ci1hH(S|>|a31++PLI5%J!z!PG)7_Q z08}bXX%`p88vak;4shw@89H|ci%4FN%FvJFEEO~77ZW*PjP_xA?+1(u-U*X@WeRKM z?d@Sdn7;Y7=dC$GxM`GUx?`mIKz-a3lIeVpn2%i2A}_K&!}$@?7DKM$#4EvWPTX;} zPJPG~@8+(%G&lNY5DrF|=Nurb-&CIqRJ)YQe?=+&`V(mW+tqlF2WjiHK;{hm)V+N;PMGD~|A@kU!$r3l_h$fur~HTQz@nKV)&oZP5R>tES~;svRN7&t zu@drzZ{&i%<@o1rg49BP%)|nLIo{$*ga?W$=Nos;JMW9YP#Q#kkJN46j}x7SDgK)d zXv!_6SQvL;JU{K}p~9kn)wok5N$e?XJAb|uQu$bbFB_ zmr;tqAojTS!f-aoZG8xT4SrM1pKs^$_r7dkAXqFILf7^_GdWX84sDQ1^rI9^6wcUZ zH)#;TZ`6k7@D-ueV?V4V_yjgZHy?|tKAW@meoV)a^kDV=sya2P8TYw!?bD~nLtx5~ zX}f|&>5Jdf2OqvyBSWy!Oav+99K6X>apLa;MoLZyPa3FW_(!uEJOS|kDPji4;1)bj zW5q4Sl~L+V=0Mg?Pqq95YfokI^N%SewibNPu;MWS_sy%k}s31$*0u)HTFUkaAh{LLs}f8iA|%!QI{2bAL;V$VT`#tgSv4rG9@)!^E~CHUBzDW)dbGaSXC}@m~WnxGNs=as*e#;4pRe*P;_C+#iyPz@#Sl7#Y8m`|dl%mR$N!RXy+EyWHfDwY{3gG?DeonP!n;|KE={Y0mS<8virCEm;5#0xS>`Cu|vlD*CLrqT=}9X zk+e|p){O&;2;c9gb|h zD_FSh_{qB;k4RmqPNKZ6Spv(`EYd;*u&Z>o>?Bb{PhiZ3iKNPb&};^=17b>Qmzl3x z?jr=&eGvxNFPSGaQ1GDV3jKQm-ghtFdxp|loDz3!S};SA{zyM7|9kp5_U}(LgJQVP z+Xy5BfK9utoHkoytJ6+b_{&M)u!p+yEu~z(*#zE*3o6l_bWLx30hqHaRr02ETgu>? zW93+ZKQ)!*eQQ538+t}SH1X`mlzHDb4Mq=yIb6m3cZf6zdp>tp_%|XVtvVg&mt`Km zwwR>F1gYSW`)O_DBysb};yh2W6KVlYR4mPOVUbrZe0Y=-!FH&QPPr1!T*_cdV<*#r zK?u04GBR%6ys4&g#R*<(tj;)X;w1f%EJ<V$kQ`VA)V+Sk>%Cg2n6lg~AQH76P z2a_$g)gleO#o65SHNqvuvc=CCx(w&yuz4m*^>j#Ge>!MX19wS9J)iD8p*^15a=kL+ zFpI&AWBmeKsWP`1+x}%+d;;h{mNKRyD>Hf=k-o(3EfIdOlPFo+62LrhwIqny4p)B)nDazTe#X7Er5}ag%vVAH&rg2WjDE$P@ z2h-^~8Tc|;WgOMsRhkb?eg}o*eJDo|W~Ky+8R(GN@FI%ipwJ37RA316SD6pYNaE8M zel&p+Ja4sh)gMrMNx-H%Wuk5FRmpmU-EAgIpwVroT;u!mFv`yJ!^as3(oE-`fc8#( zj~(^tnR37{dFiygWqzcu=6FOy#`jELh(K0r{(QY_#tCenpRoC2LC(p$Dn@Q_v#H5E z;X)o;sI*DhPmNL&bGf8uLTJwd6LRzJ)3j0ydK z@?*`LA&*&A=~yst@UT&My|0@e7I@DIu>Kp?kVA(0m+$>61g}H=G-TBAH0k71l+wBe zUxMx7mTwR|0kdWt9+~8E&Uc@yA9JN{MZdaTTdsa>vf8;vJhGw^Hr#_%aO0crrR@PO zJKmS+zM8se`p83@F@lLHRrVf!6-}155~;^_1%5b}V3R~}lG7~AKu)V|ydY2IxIe7p zCd5n#pVHmJ>~{0Zo|jz#&Q<4+8>|3NafqVi=)pR2D znPzmT24k#Oxs~to5;gU?u;OJavfzA?I!M+ODOtzSLN37mZX$RVYT8bAug!u_OkEs> zToWlcuN=sVL!c#?X6b{=r;~@2?$H6r<)^+Ond(BJSzPycl<}tCOwr1dJk3ZrHYTp zd3gVXD!2qidScc7N14yf7CsFFdE7998P;b{w`w$l%%}`af;Tr?1_n0(S+FGmk}ZK7 zpiA`7^puir_(`$y4`BskngihJ8)s~5e_5$NfoQor>TcGeZaMFKga(g-qka$119)cK z2!N`+CIv@n140}ATl;)xk*A^0T>0C<#O1F9~LO8sZ#qUC`W8%s;%cW%yr zEBrQRTYG4xVo9@DOSwn#G=p^#18D~-S3T1l#YgM@<>SWomYW^BaXI}%oR%Wb(>_N9 zJ~8+$%&piMz=&$ma=56>e`V~o?_6#UlbIrxh@+S;sivo%FzHCO@l+59Rdlhw3A#2e zZ*5Q+uO4jbFrd*^Kb3Lbz^;7)Zhz66kqG_e zBD^bV8&*%l5eG0daGBFb{|p$}`N!o4z1^D4he=V!9E*|kVC!$Epb4O?Mm;$9GV~v`1X}~U$L(fw1Z3nGxN)Z zztd!c2`&S$3mIDVeY@eDWJgWD0DfEOAndtP9(E+*Qs^S4-)1DaanX5^!A&99AC%^0 zTYu9nbgR5m(M?u;^ZU8I@JOZMx!H$4%Y33H?KwIz#$iPd%aakH9OIA2)HOgNH2Aha zs=^om+hCm#$d>^u$TfX#%A`)DjQQj1lOg`9~+X#^D^_ z3<#$Bgcn5$y4r@S;~t1*Gg+CRTR)uy&%IB^HLr5ea`0*NLQ}z*lz}qYp-V!n zN1et5A^N2ksOzUSZT|psTPZ0Z(Fh+1$w5(sSQs$<3zld|zHlgh)NK{f7L7eLxVxMT`esO=KKRZS9=Y;F424Mcr4~DtXR{v3f$7sKreOo1 zaZ*UqeIUqDiM~wM7Y4c%wY=Nq?bnp*+p3aO2OT*xU#ZU_+CAH4#c#~=96{xz38<r!zd%BI}@|VJE9`b+lfEwN3!pbL-|qL+z|Z zPF)3RhAa}_h(kymrBA^6qH`wTf|vO8kjoD$)&>+i(tDk3mxG0FHl9nMe#5|9k^- zcIJu4L4P16PpK&&icjeDSh3+h71?9FHintT{_j4)-(vTCkYp=OhfM52$jdAXkL;_D zN9ex;duudyk2EO>B6|qextFlZzTH(-j5yiy!&M&^E+sre+xZ=@tabm_hqq@fb6lDd z%%PvMyc_&k7OAVW!kdpRzY%B_8n%>XurFT|+)^EHd}i9xO7g%%RhHEObj07J)zx zupXqaNE!i|-IS(~z<{9p9S?AZ3Z?k=xik?iu8MO#G;OZw-VPLxeiC0KATesdD^$TM4J zCwRG3yX7eph8IODnh1(@ga$k%?XJ&c`Sn{8^ zr2`!-0~Q|XCZF4*EIVC-a0pGhYwjvsYOpvvyr7+1J8>G$jG3xw)SP2K>q>2?7x^o> zcn>hRnJ4>}|8%X^h2pux-lgz}5#SpK`36S4MLa_nrE|+-qe3S*-nZAc;HdHxI zQ0}smPbp@j;qOd8pjShfEYZ;<)-1zY`7vVt2jFs!`MVZS{97&1wTvc!2mk4=OGW?( z@=qwPbx@q*DyrwA!p1kS-G`2`<;hi^(;xLhYY&!1h_6^gECq$){;F$HE>#C9PR-Hk zfc0yL1c@DI2Zl7yE$ewCT->x}(;|ME1uxeG1yBNIT#Jw~!HJsEA@MpM;dDevnhv=M zE|^I~Y7@fJ2g`{k64gFi(JV_Ji$sTEC%A66%=@FKB?fMD-ww7Bp9)r3U$tf|Gp~tM zw1#{cA4>6key?kQK6vR?V@?O#zTEC1*DKxcMlcIN9|>MAq+dJ_r%|sbmnZ7li*R95 z9-yo$UpVIr!Rg7A4#vR{XH2wwfhf*^b7%(Etp#8boRAm@(REG}CbT6I!G~e&5>A)LCp& zDatyy0ZW4U)&M~zECv8OJ}f4}ETK7RDdR>8TFsvB6|+xH*fQ<6ELPspsu6E{Awt+JDiheZ}gtv}dwY;i5bg z;I@GpQiFLVh{8^UjplEr*1J@vIAO5MnmFm{w#CT|+b$G=6X#`a4J8T9E519>u4ssj zP%;nSbgnVb`5(-|tQY^5qJvxv@1LdsYY7_T!rx-aQ&p(%Pt+C{yvY9G2zv=(pji9v zTF~J^i}{xhCTIlGZNO6w@9Xm%;Q+LOM}iqYt8HWX3yu53xg!XLAMg-BBlmD!CS*zR-A7Dvte1ro_!^?Ktt_6RpH(5EP8At zrvu7ymOE{gnaS!Qn!OD@U&E@XCqSNLA4pj?Hay?ft-`nOVvyrT8 zh-KWjG@mWocS(KZn+Wjy0CZJxNUrtriSZeXT1Q+IgVM+y{1g4S6E}XHI*{YGoh*um z2g=?xa{24EBR+~B8D*MSU0L ziHBR+q{wDtL0bNc5Br|*e}~nd?Jk3xW;(0leB@3b|HtjW05abit9fqs){d-AbkB;t z`Hlpv`-Z$vtNb~gIIJ8QT&8~_mSz+SOwg|i{r-bdE@2vMO}BWHJdi!{*4Cr`)}QsP zabcdl`p8(_!ije%poDs)@cX7U^B;wZGk|ytmPStOsODdjj{4au!CKKXks#Q7QH%L6 zO=Jq_CBT{-E*;dy=wTMqYDnd~5~3N)4#*AqC8e^zBaJnMuL?eagrG_H>d5e)t_lkh z5ca#c)%;(ITNh5Kc*pd(r2Gv&%zJIWK@o3E(s)bKIGa?^{kuxmBlH8)+#h&XQ;e+$ zeHDha%`?=QzZ1ef&hKuwVL51ee(GLggeb-yTu?ZyvEU7%qMnbXW@o zPYRw#Ntb$QHVU3-{?WS7cY~HUwC41RLP^9#e?MNW=pn6V&1YXWLDrq`JYQH;S_rWF z?H8%dfAu;7f?Dq&aBz2bPg`k);NXPeU`De23)v8Fyt(^8NJbhA9M4LG$;M$&QBW`` zi07g)g!_&vCq~E6Nr*$SSx}h5)i(U`HYg-=^`N<^qA0XcwdVH88Q)%2%DA-cF7xdz z45ss}efzey{pF{gkB4GmV~xU;JT70G#uA2uhyMN&uS21b_H^`v6eiJQL*Hf4AgO;ebn^R0DzU<#Ok4pIK@Ie) z%m$>$$S4%P!jPSEYuEtr??0sND=?XxyS>_1+T;sUCI-O5h*4lcUBSz|K; zE_yF&6=dP2K%&HPYl4->m^7~6K)jnXF^?_V<^YjJO z?&qjI1okOgY5YJps}D$Ry#CVN(IE{saK1Jr`TehGvRVPBlJ!yZdCsmsAnYapA&RX& z?tfgJH7ZssyE{MXe9AqW>|NA(EsMwQcz;|s>fX_^KYgkO#vo_`cKH@8A=W;< zaDV*!SLSeg5*ZT$gMv0*ZG#Jle`fnaj|g@P;2^#9@4cs{!4k_~h(OGX4(zYaER96? z^M%Xb!oiaybSJKUggk0043}m zoR|6*rM?=IZwA%w(XV%_gRl=7fi9oHs}AtRJP(-0fu0%<@gH{!MN88cyoa$IT(^lK zy7P0mZqb0=5C6QGC|VkZpzRIxJ?M=J82d5UF@s@mkQ#Cb>vC46!Ps3e26X8#@(M7>(b?{pp zpn`DEj(v79fZ7)eH1m`G`N=4JeL0~7ELs#lYVDGNGKzF2zkBh45!cFi{o(%ENi~DW;|NaYw#BY{zFvyBRDeT53 z^R0e@ZXrK${xv+@GQ*r^1@-^vH22y4;;5zifIcNPU>GL>bqP6;A$V?M)RX?V&!z*5 zm`nf5XA^^fRawbK?ZK9=W7%TJjGCqC$Lk|v9HxECVy?XjAcouzq=4?ZCNOKVfmsnhu#aofJ{od|&23L7Um7?UcT6dQ<8)T4iyo6WoTE+a zaXEH-g!Pm0Z+FHJ8y>tFCJhJ-eyn2x@FeK>>0H-J?jb4`_DjG)OP>5|T--0ro5dN=sl;GFzsb7l!%QaK1pn`pvs$@Rb4wgUb zDp(Aff5Ml)`o-%G>PlJ`mT$@$6@c>$=GK-{NQV#$j}0DSV~5?5l{$9*vF{&666F}Ihjo00Pk9n#6X^0q63?5*QC zn&o$t=X+mNyyrZ-&;=r}S`W~uGyZute}3xN9K=^Y>nNGjjOReT%?Fc_*$J810^sqs+!hoT;lbcjNiZQT5rUp%!_sEGnOOX?_M?@s6gF$ziN(MoTliV{)U$u{bh z%_!;m<2}{_t*1qiHrjN9)*Y^n9q}IyZyN443I{xo*b8j7-rfIuQb*wqyYbt$;Km6B-#1&c``qrfye9e zGaj3+76bvod5t?%XI@1skpE;*QY>$dj-RpM*Y*2BB_4Q0auy*vgF8=^$(Jr!eK;?; ztNteo`dR1_&*lcJZN6@wQs}?92sj9) z=sdvxVTt~)yzxkGFj)E)%m`VpFd3=>R&mKJ!0u>hXgZVyf!JIsSbU?~pNMRYcS&6N1lTTg{Gts{{Z0lP(?CisBAUK*WWx~X-6GD&Q zrTL?H`pbep!gA@TQ~ho;sQv6+cJ(q-Z0}0OS*d{LZlF{>zm(A;l+3Fz^gRbkBM_1|zju%hX`*7Z1+3GynQdEn~MOVDMC(X4hF84-9sGuoJNOs*=nfz}C z@>m^2oPs7Q*cED@H!U;29azcmc!ITf2w^NQ7mb39Iyq9eCv=O?C1t9c5%=Nh2*c4= zIDQuU7q0{dZw`-N%&1dS>=b8YfcQGoZ4tHP8jMTNY;%JJ(OhFygx7!&dkALBr!d`} zsrSolk)Cv! zH;Y*HF2_^~mCW25R9;!C^JMMvZW@j~m!eJDxf{*JNYsf_p1GYjqm?*0*|A$Q*^29T zTxe4$(L10@%`@L!e>iSZg#tI=*4ohb0OyZK9D$0zg(nFPii|B-GI5~ zk*~%U5^1L?QaLTkb6O&MchbOHI54J39=A)r`&pB{>C{4BrD2lwCBvt`+sD2uEKtY1 zCxTBGF%V=9dU+$-dHY}&!rf`xqEhd|sQYRzGI6W`fyOxc7{`T2w^Y9_k8?noB4F&5 zw*DbOKTE39$Aov2RLgsJdI?ohkNQ9E-IlxVxv8IgHPhhJy>C03cBx}skDJ;5l%FFc~c1SpsNJrA@A)sC z?FHRYyP5++eXcU89-Wg_%SkjD^4zWGt_WmgAiiLQTm9uq{`fA}9wv5Yx$w|DIFjf| zU+tWC5i7gtqZXH)G%$Pq!ex7k64uuTE}$Qv$tIw)cL*k%e>79evIZby)@V-Z1Hj^u z-ItTMfgvH*WdH+lN{A8 zey!}3y%4qJoSMDe?H?UU^d`4`S98V%hY|squ{bq*bz>jj#&3d@OR7~0(S7yAQ@1j= zk?>I2IoRtigr#D@(|B&|8(+kwMpC3DB(J@@ab3ZE@KG#~BQS=(jU)4H^PsTJU z-=67sGb=P`#?$GE(yIGz1*NEeso%3ryu0!49g)(l+LzyMR=fS_Jgdxgs%UYObJ$mR z8NKL4U)B?7Oa zR29VkHpcoTQp0B7+(FO&m*76oMK%Fbt*?fPrXAD8I0y092Hw##`5MnrQB&suoa}|K zRFYncw;or2^cS+SGejJmR(I!J@9CN|{|^q$O&g{%EmqNaA8iagWZISAtyJ2+CAreb ze(jQaXO(}WB&hErYj%77X-R8`8`-{#^w8|(n(4>9Y^QpGWvVC*!TFI*=K|2_}1y2%m~_H|?$#i<;oS(z=upF3WgP-2Lc%@s)ZrdtorJZ7gqjQr!PWWOvSddnwBe5EBWX7_cO8*RUz4Ngs~Ym&`-QGZf0Z~v<5D@`Ux)GF; z4(Se&R_X3;6;KqAZcw^Aq!ARPrJD^>(jA+;YdhzhJI?RkzlNE??f$;^UG=PIJu5RH zZqR5TONnKr%zRiLMlKkec{p!9Q zfAa4q3k*Ixlhez}OzMv`YLBgn1vZ@Xli~&!%*XKtU-UfM>655&crcOG9^W!(&!j*| z?5WPsP%ggGd=~O#@7;HZVCBtE$k#vU)1H?nSF0~L=n}ry@{+xIlBYK%-L?B5YpG7a zA&BSCCqH?LGR9ZN;%JL&qjKqo&90Z7@7VH6Pvx-q;$QPy?$KT@@7(4$U>;VgScBF+{fO?u^LJZLaw-(0_Z9ZVzY!xH)jdTC*{^=q zqA5B$sX}^Iz`rs`q4pbx3-Q)-enh%9d>$aGG6zknVEx5JsGi$^Rn(H8oKIlAsJ*3V7`1-c&s7gGukXSmUJ7n3!Ac9EJ5cK1yw2XT;r` z4}Bi&j#HLc?C3qJ9Q9<7F`4PCE=hOq>EN};`_(?i#lYf8GI?w}?x4lJsG=p=>Z*dC z;BEa_I$Em1^qWR$da<81gUq_@z3xG=uA&_i@>6G1hOAOIlPfxP7by2iH&qK_w2Yhz zvIbpk$K-iP&0P-*kJQ6UknG$?HXI%DLDH@UX4tcNgTdmf|41(YuJ@utffK?HD1CN@ zXywwxOmv$Qb2ZGS@_68MKhBD7pR63QK1pDlyc!aLs63;-&PADiLVz{NQgg%IKM_57 zJgSMoS{p}ZkN>CN#+-H@9wLWte_LfdiafFhar!v1ufiDNqJ7)xes^B!YX4-(K*d6t z=gR%s3RTas!^fRz>d|ezWZvVsQi+^~>2eLr!TQJD`9&9-JGu7lRi>V@1XL!Kl1mo{ z*h@8x_Hcva-ogr6-Q)A5_L~RZ zDbop=R66WrE^$9N-H=;-L@5y*aZl8L1dpuH%s&>IK$36qspmlG`~v_mQr`j(FbIRC z&(}`2TFI3&WQmCdy=rS=9zVDr=hl&+v_KPHHOkX;VcbH$Y5R7xL zd2FgPdbn}+A--Y*Z%u1`V##3sqdTIqDo)tA^)+oddG6?n-e)g~+dQ7u^f-OELLDcNbmk?ijnJ5wRnSXvHvf)e}%Vu+&OqOV<_>5W$dY9&O_#VWQg2Z?tOz+ zfxm+53gT=tH##%+MO#;v1X(&_oCLXp!>dKnXtQ6IN&J~M3N;F14k*jR(MCexlu}ew zOyJ5FVFof#B(UgYOiZ$BkCtz6v%I zt6L(<2T5wDHh(pYiqL0UKA_9(8ti-RLoRmNL9u z<;+_*hMx>oOdLn^lRxM*s6+NJZnrpiB5e2c1v5n+H3a9Rk~tNfKC?Ox^>NXPq+zE|0?OR%&*z=f;(tWU8e*z_zVNq zwfBr=+GIq{m)cjcRowGGh-!741>9SDWzZBCO?}_d=d^5gP>0)ao0W{3YO;o|&2&HwFEd9c3 zWQ3INoC#qvnT1mOC&cM5_C(n8dl-1?7hl!|M&w5+xXF2r!6)(5Bb?3?HxLbVe8q*B zHu#JZy#H^U{rjgAiD?i`ivX>`X!U!2G5SZdwFuQpm%-k zZl6rG{r)SE`8BUM@QXW1UHJUU$T>qpiiHUwtCE96hxy>?uX!vBCS$ zxpZzdcB1h|x0+&wj}erhU^tLW|6u&sY7tFqkRx z)vAD3-W>PR=<)JH`;b+Bk5Stxo&cGHP;+8`T+Bu8DW+H*6l?(MpopJT=d#^X%9sq-))^_hlOf#tYuxdch<36HkNHISR- zg#O!KZ(eJZ$|GI-hY$XpK5XLo0v$*STDR0pt5d5@%LRjB$}srC#V2H7khZ%#C?fzm zbInz-$yf$D-dE;r{cJ$kF>f#Ok)xSJjdeXzJf25_Fw3R~)PAWr%!eZ24|hyd*&70d z64mFA1^JoOpxi`gcuNDdYrZdCra+$dvjzODTvu%?wT0=ti*{SPjM;r^Gcm}Yk+;W+ zfY4L@j`Nnz@cz~wHMiusXr&r9OMBz!vBT+LF_tOKC}1xn4L@T%s+P|V%yU-fTfP}i z;ds(Xbjg-3*Tsd+H;}hvyJ7eEx5=DW%B?-B$Q$kZUhQoDD0p_cPS=g_d!nVWU6sk31?=sO{bLL+jQL3Y3WsJ<8S_)R&NG`Mxr^@cD*KQg%yKQ`1{5 z!&7x^GLZUFldTReSmbt^(s*bZpLe|NETL3+?yk%*$eco^S9Og=G|ppvf4c;AK%_BlJg%Qxt~#BAn$%2V9+B!LUVq+;&n}i z<0*eh@Z5JB!Mo}0^;1qy1fJSR!Wk5FNlW(}JuaJNlR1y@GneP-&Q2t&m@kM6K`<2M&2;7ftQhuxM!uno%h*R5_RCUr!9cJNqhKPYQabe=o zlJ}`(ynn_>!rw76Fay)Zh$9j|a{Jag-%qEAS`GbzPZN{uvcoKh2;ZQ3_5pP)%INyL zqdNxo6SOwJ7>$13d{f}@^C+6yvgH~0$~SdiBX-_%2zE`-cNnh?mdDoDy~8}Iyjig> zhJj~vrKl^fbbpG~`%aFUqHg@ij~}A%*P_Mwb2~XBY8bNiWu;t^lVkoW$6QHa#4KL< z23fzJLq3c5DGNo3_-9rJkpS8=;x}1p8wU14EiH}tuleOr)tH4yb=~Xbn5wJ!kl1S4 z&~lF)CU&lkSC$joB{cIg{3F+QI?CjFI-b$@2Y*A?6LjU zVPi@sH>KdyI)CvvD5}h5XC_Ho>|l?r7cy4P#m>ZEIVf^cC2KR%nrf@RqU-YXi3N|o z;DD}i?N*E`bCR0+5aMRNh9&L{w{^IiYS<$~JCny7tY@NLBQ9gevek;Nr*&(GYOa=J z@;X(IV#X^2`LutX;Z5IuKfx5uib(#VIY``BP+R7~mpm5a?EZXN9@*@~d<<35EF4~* zkudSpOSIt0AoYL7k|O`#M3&z7Xx-!Xanf6XEokzpVr8{kUyc1~aq{(4b&1sxieBq; zgv7ne?xIx;HbjlK9Oj)J8^d8{a?->{Z{JoidaigCFk{b?zIYoP80xFwP0v*@aZW*_ z(A&vwp~NUk{+8ZGcPwXu068B--$EaIj^vf~=R9snT{o{}p=8}He4bTfd`gc@OSUy- z5`Bz^dvV(3;$x0~eod6uJQ14)iVi**88gF=7YNl+R7U|cX2RqXA4vgQ7lpk8X;~Ub zz+{HbmMb23WRFzEL+-56fmF6)5YA4TRCtT-oQv9nUr?Beg3e=_pX~sL&Y;Q_l!PL3 zCV;$b7}_e9JlSwP9vuZ*FTy!TgX*Q(AhZP|<}_@gSacYGNcDE3M8Ned#&T%!iGIbc zb<5GBxG>h0Q`;lt!8`V8mD4`uHOtbc2bQX`!xdATawtSrLgQ_UhQaf~R%*2z_s4%V z@G#|8EWhI8r4^v}MbA!aoj5J=+`y91Dp&dZOdMIDK)6=>D5-uw!sDnv*=)FYzB^I= zX068KO6|zgIRGb=*`3{_!XF7Sx>@~n;&IdzT?cR)n$_RNy{h zxv?AE?>5ML$pKO#p@0FpI(UjM-nrocVx`+nxU41|YCq_hWE=9ruyt%=4SlE0 zWYx!6deq79t+jOj-L;$E_}z{chCb+D4JIsp9di#SkUHbo3&RW~(Q0;;n1e`_^Y&xr z29DiSoE9c)Mh&~Ah8v3Wr2z%eiHsq+I+L7c8d_~PS7b2NX1-e+&(C`08vd-l8a$t# zaiB}zU_ErsPHVni#_p!UtCPI{>aX}STJk*&OF`Kmxi!>TEXlYqR=8zxA;CY9vAwiV zjZ@osF^+)Uefp88>kBYnswcrtfB0ND*25^DxblUyN<`FK0$MY!q0hGZs3!7rB<*6& z8K^R(!2$_Qr2_4$Ie>J-L8p~hJrraDB;EE`vl&&eA-EE8n9IWC!R5tHCdJZ)kyq?f zIEbucwNFVy`C9R=D;axrdoe5N$pYTFIjUt{0<*P~!S6$fGEOpZ8|FIVb;nd$>4q(3 zx_Zu$5n^IuJaL~jZ?_LJahZz`hOVA7J98{&rf#o|o%0+iqP#uiG{MAH1D83-GFCst z&xBUH6d7_v#o5iof5X>vK#kxIhtDz`dE1mqhG zf!r7-cwQGP=MW^z{j|z1y`n5~S+lF&ezxUGp^hQ!+1ZB0+phTybE|as&`BNj%r3-{ zJ0(Xib%ZQM#o5&_1{#)hWDU)y2~`}+JRR*hNN^XbSmn2dXz5*qWq>pOlHClq6wCE? z(1^vww%Uo$pLb1NysL7xuCr}#9jUNe`)vg{Yf4mjs}}niO_g}|JZ0}WC0|opYS1OZ zS9Vk%iOTH>M@}&bjBTCavb%J9m9LCkoaUw*`2%Xl{mlcs-*s{Nvd(709Bb(0d}0mG zw5nJ2Ylqvqt%`yLhA}OLmaI#O0(9df-UH5&q=)mY$Dd|7^xo!ecfY(DtnbX*Au!1- zBRI9Ty<3B*_)z<}QAU0chC~2wHFLR0$e@INd+}Ou9P?s+TD)UEU-Mmmy#xZAb#83?s%9xlM~jrBbNNNCsSfZe#8G`eST@LkNv zDA_n(pGZQ~vp~<)|k^p^_f@?K!5O==Wy`j(drxuCZnQ_q6Xg_F zq6i?u73SmB!xb0D%M+rLmHjFzKZ}VYSVLBh4%}vv|L`C_-Z-fGeWDW%-_Os3} z`)TddR1XiG=15I)&N~|JzbedR*n_1Eu( zyRk&~W3$#+7DkOds$WcCnN~^9X7O;dVamHa-C1KDi^~UJ>zv}%4`l|#1PZw z#XFn#|IW0}aiGU0llvs!0GxtP*D$u`biRq?~Z%5jz#VVR+bC#z*&%%lzfv#Y|}ZCA)mO+{@$Ra{1?H$O~M-N zbt@_@-U}{??9+piw2m9A+kwp%G8{U5WEs2%s+ob?+CA;n?2gx-YyEZ9bsKui#3g>; z&rc_&;57-5)yg}adNj>f=KsGiHYlGOA$t5kNx_27MF86q3D(h=AFr6;Ox zB&c{VA@;AK@1bjptB=RbN6nCFgIa@S^SMvDCn*Kx$LG2ADlJ`2EqRID-xbS+jF+~r zj(lSYkr9ZKIO?`o-kzAISvTIb9laYYg28P&ZG-dgrxCpI=KcE!py7Q#LGD~}J_nV9 zcF+Ya&+x*w07>5RJ#oRWAxk4bD*?0vGiAQ6-xp1u+8Q!4xp&Zy(&&D+;oUO#$ z);VaeIPw8U;QtHr-X!;hZUaiN-VjvK{NtU7nm}XV-A$)Uxc%qfVb{I3rckDcA5L|> zKOQ+t;v>f}m_t}@uXD6HIkbhV2XM9u1_p*0e|YRT?BXzN^g%b$eOdn}7=?Llvl{BC z!tiC@hm=0ER<3l8^KU1k+mma$SFBRjpeMD0EU9Kc_RYN}o!z=4olGpZs^(CLOKTOm zSJC*krfc#tXX`<7^j2bYwRr}k`h(3fvZtaVD};lQt_jm#VF;So zN|#w>?;DYxq)m}m#ViQlN&$dN?R1e=zvX=iEb+@$YTmotaNmPUjrj4RTrIK zV)+CHXv4@Pa)INt{XVYjr)?gC#)Jj@YccIVjP`%*mDtbQidNO#rSkkB`*f!SGvjIz zk!j%;ma{|TIj^FOVEL++8ct;Q%yL=k>cZYdje{<94Nm)z)Xw_;BKya#`y8{|TFy@Q#PqV@^D&%QT54>0QEQyhiU zDw~;?u&qOGfGFDHkLZKSUsF)qdgow#mSaK_*0#-oIzwog=|<0XF2fq&-6);li!)jF z3}yWVI=toPV@`ndzy(U=b#^WhwlwqeQRd04WFa2eB4 z$>+-+c3#)^3l9`b(AvJ)Md2%qZnr1$`NW<@_Ns+I;>Y_T_R0I67~D>85A~dZD1j=J zfK8>Qj)Z<|G{}2BYKN7Y8FCGiz=>Ugb3%neBU$kNNF&5!`9c-(pFYYL6QF#l z`x;HR52ev)pF7K~VWW7S5B8vu9C&2-F_+m1O=1wW8kI@=v!Zz^1RV7)x*-IkT;00rte!fJ5`*4ExEhswN54{o*~>2v0;yyk z8eYy3uJ*JrSQC#F*J*yg7C`Rx0gwsa>N|fs;1S!^<(<0OwEkcm#O}F6vdY`@Rj-K^ zwrpjl-1CY1&Vi`g^q~>DsPiz3CEy^jZVmVXeTBxJj%@Bm{UzhyF(02E1c%I)fUH8H zMQdFOjh81c&ad5b-GKQa)SL;^==l-#e@W8>=g)Go3t`T&|G)4!B9AHay7>og# z?H#O*(-Ja1aTtvf`SU%ZWBw#iEG-a#b-~Kj4oinQW{WirOBA3*+Pjb1bE4ELEG(>v zX8irby_EX9!F7KA{_Oy3QAu1q4VyqglTa9#4pv%CGN|P~37Q-*Zv}896fkS|e8I)w z0c9;fpPg9x_GuN8^17UIuWEbNhfFpmH*+m(T%7)TM=2QPM0+q*4;LU~-Oek)8&LlA zWY1af_w18T6~=O@8j7byLD4jU>zaK48=vqSx5Cm39Yp~szJBi?&whqDKTY1Qg7KxA-gHuk@;0o~r1fnv%r$fLI$u2Ju^kqg ziUsG6(szP$2^wt`i(bL~h@nCKPApe)MBZscT1UpY@GDcIgQD4fcjxwAW)jl!<9+hG z1TC%=s|BgodA(5gf9^TOKVC`B=KG@(c}sq`-4DR_l!;|GoP#u?@1yWvl?@+q)pDaO z#>%9oyw5!?Es=+XVpslsHP&&NG|MEp%w?eAU)B=~1zn9E{m|6rOtT@3%Ln(ty_A8J z4B8|Qz~w9rWQU*r*vfe+06A^H(M!i0akV?BgaycU`8w41?<=OHrq(%qQxHIkfogxG z%dtxGv6_o1gk+W#&3hiHciy7~cg&<;L%kkGc=YV2rNIx$*(MjGoHW^;-mK~rKRvjN zY2!fpn-H!`^oFe7l*6ccj&6DMeY$P~F&CMY&O`Ml3dcgc@d7GFmm0j}+zwV)!v$_F zW?+3gWBT1&_}`2Hmn}_K}Mr1RP2m%e3`O z{Pv((8xogjKAAuw4bdpP{UxTi&8h{fiwIJ>61M-25+odAmpUx<+3o&P;&EP2nCprk z?wy|g@=6&b`=ilG_i%YR9LvYx*3goB*swldHd*}=d=&WtfYow6^r38()>k+GMM;B! zLLo7+*EbVlp>H@73flg(pxpEU$URW(rbi@1D=7;n0xLuYu)E8SYQ8&ph24az7Z<_( zh4H&PExssR=S7&uJv0^byt+S>ArO$;Gb=TjccWhECZu69Gm}qhJ$a2LFYTJSod7Rp0^{sfJ^k?uXANH4&)WP*Z1jXVuV$**J!s#*m;3LW z3hmh!i~ocL_{%6@Bs~I*!aPX33pQ`wVFAw<3iM%~M^7xP9ak2(_Z^HO-P5$m1a@gk z#s%Ylg%F@qu(7fAHF$fYC=@ea)GneHp!mnyykONzznw$wm_=-<&HOms%i_g(!iq;I zXw*vAx$PyqtF7MPQ&E7sKM%;2?us7smpxeKLtQ1P(9FfNlNniy?4v@uy`(HL~0KC5*vMf9TnfN{J%zpWUv18yFlKL>^4#qkpC~ z=d0@r#H178_Ft$_JixU1N!|$?blPAs5E&ta>}8R;sxL z*U}qeNifyvA%_Yr?O|xag>|X5-h!AmwbnT+p=iOuuU>IOX8P542a(P1zAtHFVsb*L zGeD=76G6&tBlPmsE1d*Ky}1*^w4A-|4%QCH)7I_cZ}rW@{Lx5UO*nQWKKGhD zqTUnLX)Vr`MkRtkin)*JZ~^a59+tJL%Y2XEc?4>I!;c{?EHk4xNSyUnSYT;{9bjM9 zj?C~CBH%T`Y3KS|-?)sPK-Iwi3*dStrsngnpjG5O5HS0a99$HOs z-;*;KF3=fU<)W2Ouqo5ONs5j2X9G_tkkF>QHlj&U@C;o0EAR*ErB$BC6{?^P?6fgu zS)}Znh;rP#h4MM+$qcGlADKn>U|-g)W%tr&oiS`FO#)^eF>I;NFN~&X=c0VsWkIPW z(ek}_n_U9qom{O1oI632erUluFHyZGA=c@Q8Irw+m^Qom%d8S0{xW>#oS^9z(KUtv zUDGfiiD@3+V?K0vauJdB9K!q;F5^523LgU8uj2u5s?27SXMn?SR+v@Mmv;_;SOTB< zvs{j6jXq+2P7{8fV?ghPKKIVyk?Oxnl%k|Y_;76&r92UC6loj?Ehc#RUISa8J@xrY zRhExDIOX|Pa_<{z&M*y@A`lW+o=xmJ(8*_}B4Yr2(@FDax2BIIuVR}0{o-)7KlsP4}W#A!Tcz4fCacximXZ`5J;4>8P; zq)VVJeyI%z+sOeV9s1wU@GSCK4rVn@Bd`EE)`((qxb_S)kA4=yQj;X-Gd;Pzm9Jor z9bj-*Ec?@>C~=8c1~M*lC8Yh?@eyj=#!ymHvfG}MQYy{gU!NS`tX1oCva$M};=2u#e0 z$mtIkt2`OMre8uQjb^$*;Uk1|b2DJGD?~rwdp+U1awQzgAx)e?>jk^77pFfPY>kR6 zZpulHIVcx(iiUC4@tkXQ8eeDf($5SzVHsx8v*DvgC&l*DTYXCJk=l4^`taL0ixig> z8m*Ma78i{VLBn;9b%1oF4ta%7r8i)CF)Cysfqp{8$ESUap(Hn|1JpB19AUyJsm=wf zeG+%Q&X@lOD+MxZ8In?+X=ucsk+ABFA*2Tq3>yZVFFIt!g=J7^Q8wHV&(V+`jfo=D?f8Iu>$N&8JU9A*C-wOXAo*u!v9Uyd4MbSYwFgPn>> zEFNnSh?K=dTc~2ja@CGEad?_K}SC~tj zv^GkQwN^c(v6PI^u8oLA>ps0_gon!7=%1Bu2DwRsB?OEu;#@);PJD1V^-pN#irtxu zE@F(PrulglAQGAQ{!fI>T+)GP!8{v8ddrazrBa3e@u>Ys+`-T5(w?r__4f_`6>*E| z8$tZx+nuyaSFS`tVI9bSpMZ=k-&0@}@=tUTKO3(zq;a-pdCrWs-3KZxokq;M#-gIXbpFKm?a ziUD-0sOabw$F0pfK0xt@26hl~lp~p7?KlSx1o~>He8pz-nPh z7^Rpk{FTuH3&YX?QM2lvVgyZy5>OJN?S9lvTgNe2VV}JE@ANrI2%IizEB06r{2(Kr zEWm8$`f~&{`%h`qa#Y{yCW~44K8otEfDE>+=E*a z(vT8=JE_x$pe7sVBx^dvlTkVCO#+{5pVxQP-S|h9BZPB3>+g!OZL7>oik4$s4(dr# z!){(+qGia&vVW_R90!8n!8{5bi*U~s>gr1c#2K=nviVN~A#%0lsG1xX0dNwXlupL$ z%^(a4pYXKGOF@vyy~Lo00?p+G{P08}>=m3d3uL4~rO*hZTJ5LjtH_CG8K27Wytu=SN1D@?v3 zqEi%taaw9KshpAcBO-p(xKJP=V>`H(@_yKz`~i@LmV)JS{k>)aj-4)`GE;GLKc%3c zs2!?|+gga$^9lv7J9TzX1b)4eB^~az>E`{>(l=UjeHf1nVFffTOOcqgCu%iBL6x0 zjT>p^w}^@9qgnNahEkFrnueW#oTf5tngw|3ZI&J_jRU1mxFXx~pLR8LgBwJ6vKr-9 znL+yomOs$8!6&S$DCcW(C_R{wjpvjDz>*nO^05zWJ^9j`Dp4M5J;1Kv>+1^)o3;D` zYKWO7u-)DD*QbE60b}^ibaWWpQf@UrKtP6x>O)u)ml?E754+=|H-k3b`)N4;G=&=o zE>R=(!=cwHrN>TeUecNOm}pet6Pfn1HI`mBwzpm;0B>gO#QUQzCBy$NI z(1zec`aq3Oqxgki8lW!1L~u{;!orPz+(uyKvwk!RQhJb;QzVD#6ZJfR$yHa_=;Ua) zEY#&wYB9?0x?0>yx;PLb$!_rdE=n^9R=z$iF=z{$?nw*o{yB=8(B<6enrRN0&5qsd zUnYi}iWa5T+(g1#E@=u*@)xE}!W7ynq&R_usQpDuw1l}iG67GbPxj184hB>M>5?xNIQTcH^ z_8AT~&}A%sN$n)3qJ&d-o^kgN3GU>b>VQ z?Gpn4bngt7z?n2WlKl?NQ7W-_)qi*n=-Q%SB+W{zwf%*`yc}?6C~<=Cz~)E?vnw&} zr>Wdqqa9HG4j^F!bQ;Fr)gHO6jd55mkZ|neR&o(?gKkqK3U8BI9+RGl*LE$CjQcyXW=I@CuP994;b()m^i>2M83y-O zgTzVQ1@Pz+&>{I>+|KqI%=GGwhGVfjb>;AM23(-5d~NV(e>p_+g|sJnwpSIm6Z0aTFSGJpcnTxS30F9+b|j>nFoN0qyxDvhc?VJ@25t6UjFLLLLFcoaRoi$ zaO&PAUT=s5uQ@(eAaJrqD@RVW?!x~Z_ z```fm(SnZ;0@S)uZiecgZU*XB>Atc_05&48Q;L7}zL$9$F8uwG$A6R&Of(<88kGPR zdi&Bidwt4q7)PRB0|-KZCacWBv{tJ2B7D)mm6WEu`g^ zW73<_{Y`h$dLS#5Q#44O_q4DS!uk`0u{GI@tNz5Qhi#I!%wlgfQ$g*6pe8h z06N=tOB!`$Rt%}6??MG7hrx}vz%O^W@Z~e@qFOjO-2BWMa}qNzQ{%#dfkxAfpJp(8P#i~7;esrQOCI%yWCGPl(G0eli1nL z|H`6!`!;Z(`v$$b(w#Lnp%ncW+5@th*CD$_B1O$nv&DUg%!2j-P^kc(1dZO?^;4aX zW~E_$&!1X)dtX-B(DSUysyC4BeDYBUod?!J8+`vzgy#v7E>(`?&-W>aX*Q5`kHI7y z1`CwVf70kwI|P%ccPK)mKu&AH1-v|Xw%~9)8;R3*OMbXSX3p2HUAxPsd!p?L~8sn$#q3oKqNE+A-T24TdPxyK#(cvm0f+0)`XR+g_ z5-$TXq%qyQ$zX&0z?ci?^5r5d8{N%h>}h#2472?*D4}_RJw0g^mh6=G28A;wXwXSj zo=!SRAGRUQd)NaMjv(=H2hJ>}r( zntvrCcgT@h2ht+kZO_&UqqCmoeyDx4MekjAYEZMm+Hk`D<-tf+yvj^GDmUI+9whK6 zEWqIQzQcRnT2R=xzZ9!k_lJP6rR1QKLF$ibaEstmUyIkW@g_&Hx~vu}_-I;+|3- zOMTR9?|womG?vSw%c}kPE}VlCDQ&AfFbE7_@#9$fK%Ip6)UjU%R{_80k%KF&hz=Ww zgme1vOORT>vyDoJu{fv@D=PB4&r4g*193mB@eSQQpIJS9lLjr0QeoJAQPvRsvOhgqBFXArtVL-nvd_tFL!PJF z@YQUTH2JAdNg=nxrM)d>7CjBjZaO?UiAeUN#BURmte z?f6lq-_Kmk%1gmpdcJ+q~0{*V>!Qk@d8I_KVs)fYc5fd;I3d?++Ucuy}LOP%~TY z?QOELzHw)d+(=;^p+4@u?Hu4H?tB3AakED?&Ed!1itxjREC&s$`R!APJ5k0g{7FFT zk+oTDHe|d~Fh4Z6(Qtl~5bffXD~<&zYq=HB0E-0H^|DbHo9gZhVQ2;#z(NPjkma4C zqt%uC{}4?ORE~?LhZ$l>S>*zUjNiA!d83BGI5?nnbV3VaHPk1z%B`+pn{o+!QQS+U z^-{^4PfOB5LQA6o7Mh*T*_4A;VEKlT+F{1&98XxouBgBsofc77zR$Z!6kFor)4&Yw&Y;>#%>Kfxt=RGn!7Wr~|_|5VB?8h0h z+AqzTau`Nz*Ada<&hd2$PUL42FH$B8$8QgxX1?A}Vx}9CzGF&dM8hhMUOw9t#8hqh1Z-;o@X>u_@qv`!r=iw zn8BnJlB-tztn@6Ln@n_I!C@$*07_-D#RO+n?vJ39krFiy5!!EuUS;1MIG!q*@`FcD zIt;SWK2%mfYTN;{yy0o<7ZINqprjh3u2*j2+PZ{1M~=+IzZ_L*Tl-#Pw=9DBVES-$ z^HG4c-G~u~iGW9mLV)$Qx`(Qj|Kx{U+H+v#7;lu1RLUIERJ_>>t|O~g5`o0*!1E_* zJ^lXo**>dn?c}S78-C~hyYW3b-X!$5plRV%{>`sk4CE| zd4XQ_Q(P_2vi>FJur^LnF&`DVQ>*zD4V^RG)uM4FyTc8Vigcj~Y&2Dcvk3u}xB+EO zy$jJDimuxy^%G~SgX4A!%lX{V*Waz2oqqDHXEIHHR`HOfwdc1zd5@fxI`0{!Wu-Sx zSlUi{OPlCDvKDWPVkuvH^+DQWgFTTIcA?<&a%5DA$$W6I{ zHFM>UPb1PU*`B|`ZEkK=0ateCE>Y$s#Al)6r=j;e!kHsqr(OMEUYP<0HTskn&TFBI zmRUj}I^kRADKFb6vF-5<94(DOaSlh;f^46U`RQF%2K*ia!cwOVhl1v~Sf7IQUm zojow?Mo*Zoolonu*QdJcs9D*eeb^IjoB7{*LFgx@ZgCe~M%1pkZq3Kqd847SuY0nL zsF-E%3)pNsfbLB2vi532-^HQEQ31-Ae)=?KX7xWasShJUNVw!xZPG#EwZs}B(Clh` zGb`3qJeV}wG23X-)-m~Q-4u{^=)qsfTiE9(sx@(4=Q<1Rs1b;y)qd}+>;qw4He^$- zsrIC}q6Wasn*iN&q!c%E<+sR2lRowo^q>rDzu8C( z^!IhUAwikHHf>J4BUrP-gq@N#qf^Wf%-BJ)1%5|CQ6n|bR6OD zJ+*+z4K1Y+uPk?n1v#7q!ESXfTPZjFQT6&02|sJqi>-NbSk|jDqQGd80use~xlA3b zQiSC?$yC{bxv#BXq*%4j_?=oHL@_1TxPnUWQDXt5v*`BPny+$uIL;Oj#|MD>B!})T zLQxI5x*&KDXX(GaM;8>a%oyAY4aO&s?ixU;dVVHJuYT8O2Ue?J>;CJjw@@^6TJD@d zwjKsku?K{;HVa@W(AoCG+!I5i71mZ2|6SpLfTl;uOho75jKbuDVbnxoC3E3_wDB6< zF;JagU|w=Rg1P2$4RMDIjeg2_mZBeHtjmOExB9tWB%CK$)DsX8fr zTu%ib%F^wUDap)}9+jjVU)jvXTDKe4nJg$M#bpL|DkSv&HMt&@H&ZOLhUEh;Xdv{B zQ}hO1LQutZTirO~b>0q~ef^%8 zbxX=JUWYaN!C>e3Nwnf0sDrV5tGXN^gK1Fk`W}j3S#tuy5jGQICi2|Ul`tr(Gt3wz!UltK6?xEdtfnGyj zt~zUeJY2mFXqktNrKfs=Zg-i+D^jetBPhgnD%Wm7%q2k~vx%!}TRW1#oalRRvNx3v zL1vUI?IlEv@d_iqJE}~C4yn3$=cy<3%xTI_&Bqo+7c(h*X7gsqk6&A#=qH5PMYmmt z-;+S2rBA)#tmTb|$jYSjAvm~YKV%O)>m;q%C*jwEP0IxO*=FJo1AYRt0SF8Ghm16z zExT_ll}qZ+D!B_;gTMhdh6oDD+Dge#KmR!C%lS zg6lVdlkmt<`ZlKpO01D%V5v7XAS*q4VEda{Jg;*>>w^Ip&lU%yAglZsUQ8Oa4eWk? zy|gxhB!^B^e-k6TPdk?V{>n2cJeHUB8iy zjg2F6bxwTNQ+!K5KD`=B20MkNQ_%pIQ7!4_->O%-i-L74BpvjdxPIf6mo6c)0^sV@ zh?=MW?U!m$eo6dqzZCw!BXt)LsdIjV$lsPZdwL)ty$0k1ydb`Nq~y0Rvrgj7#J?84 z!(%4~^D|VSjXnlgZl8%>Oisyb3$x`-AX=DsLrzA$9P&v1*S5-X9M~*{f)3`1#Iy7C zm5OxJfw70#b2HitEZ&QP44@WzMty&vVz)nO_Pl4x6-`{J*7D?D-GMX%H73UEn{Jmr zUK~Mtta?NB8txmcnvrjTfoFRJgsL~((TiV6S}TieP~SuS_Ms8y)cn5YI*U4V`g`@A zk2)XNN7qau>a8y|{l$O%*X#vB1tJ$$?%9>{rP~C=y{s75h1auk>fZFliQkAE{8UkY zsX;u)P8+WlJ(Ult|v2t>9?puyMJb`w=Z4RE-%{tsw zH8r!)-}x5AHI>EG+;CopT!?o8#5Te-hqkJ!>dl)sigG1mNMKGBk}^8?Xe%i_uc+tY zD+A36r}E4->!gYcHT%1w$|;uhdYQyCPJvqWN|+cnH>96#NNxu0l~t%Iv@~&fBw$XD zn3eAym|JgNNoGdpJ{s0$sKP`@8d5WHT{Um!@}R+-j&bInM@R5|V?vxT$!bT>llU=U zPSZtv)ORPmiB1We0gcz#(d$GU zjt6O&6Ax%~BaEy=jk;NX;)~uI_1-NuweFDFxrb$tDkLiUYWhW>R)G>8M58ajLw^O# z5>n_-DE71fJmrTPqf29bT7-tuG83;(CxF816=?h8PTH6kwmfySG`FCqr+>LeuC6{@ z5xCr0X?*Cf5Qj#ZC}SOZ`K2`zMQ++{4y^hag1cxE${loa=z4XV`ORP>JQx^z+aQ;e40%&DBNtCQO+1W(j^~#S*Q#5ZKpwebg-n^T4}EVPL>h zrTV#(Spr?x6h-d-JVjm6h11y+wiK=V+KF$QiYqxXkRLGYlzeIe zzaj$ajy27PZkUK$g|QQ6F*t}#S9~AJ{J{$KL;qY^wBWM+xFeH`^-Ahr&wf_CwEi3h z_sUpsl+vR)@*Y|%-|;KW=UzlHNSztvV|-CfoNKQs^Y`u>J%rCojdE;a2$;MBATL+_VoJj^{ zV?u5?CZ#_5mwoyjw(xI{cJy~;ceSl?tGsmGc!!>FTqyIEEcL~BUTz`Ux!;p-+6G9s zTZ{fGTJatNa-9Z20p{a7y-)PC#u7X5o}Cv{$Vvx&qa>(l?C8?aVw0x)ZNv;X54pHz z!N;~hNtjyR09nqxd-sIRr+_Q-zGkCdD?(jW^)=`UDaEBzkcv-7xhyX)Pp_>7Et|0k zjU{>2IIj3Z^+^dbqjN^2==C!{uK`+nlP!k=?oJzZN7I_G_2KJFjiKEo;}77*(V$5@ za+mX@!bD^-zVNoyYU0wC!>}1^$Xq3?pJ~75(|>j<%v=WAOu?_6F@(ACbxFxYDG$X1 z?ix3zr%lCsToBl_mMY(8#Y-dFJhPPVon$>=65>}%5-nk;y{TIw?6M|7C|#TSkA zRXVJy_n9MfF+U(CWu=34RKrdoE#*3tmsu3B;HnDU#?h{Ep)D!-HuTpRhRuF*VWT>4 ziOsTzUr9l71Mef}-N(v#tP5!^l#Mb3{>TGu`gJ5ixA!Y~Lfo5i@i*uR?bYvGT)XHo zkE(xC{PluDV|@98ypkHFz{H1ON(-hXjYuG*y^N2?ee~_{#Wnk6j)M}HD{qXP-RQk0 zqeIY)B0~h#m7Yw#Zlk~ci)1#W&{?-}VfLFOuO{7l*8AW8Y7Q6K`mUxkvysh1)Jrw? z240T8P=p-L2MkW7X`qOF0S@@XqlG7y5E1PZtv)rSz3BKrdfRab$^$Hi0J#u{V@V@VHn3gUHX$9$!5H1~(64Kp`g5nVhVX;D<}{8go1g z4MlgdOq+S%>~*yC6v-`5?zi8p281PdBshq1wK)&ZTjqvkN)*VPJ^hLFFE>cM9z?Xm z1Mq&c4wqz~dIT8rzhPC$*L$}n05a0_H(|9vqVEMrRX_ew^YxGV;jvB^&PXnf|!Dk1lrV!hpVoqk0uSh=UL#OMjJh_vJK2n?e90Y@G5+`R*a!y z^=Do$NPOMI(*~5Y+v`ayl|O0}9*r{fWP0`@jL}Vfh7Nz%ibg)EQXXLJsP}zRM))|uBI+oNM0?DwGvl#&{`+#s2ou%fPdAFvC9&FADR@c@hY?zVZbbW2vwSRtBhh*J~DjHxa9 zi6>pHfXr^w{Qoa|NkZrGQO+Ock6GH6nk?f@EQX{Ap~-(9fc54e;4B zME=4fismlJ3ZtUL6~-Kyh%OQ|CMAYtS0xaElB!#dJ?%MVNrl{j7kc~qneItzpq%VC zj~B6Wf#~Y$0(W}8()K)L{*IjCo;B-pRn4`?UX=hvg(#WKsv=c#HB&WlOw4~S45S^I zgCsax3)4oC7Y=@y-b-O-|GfSMe_xYEeT-H#?Htp@p8qBeV$7sgrwYPOw1ckBpG}Mj ziwAFKqVD_UPFrZ! zAP9bD_eopLsM)MW%Pci+JnuEwvaPl3y=-i3`(d&Vswq2+=S6Nk<xa+R6!aXc`oCEB*J)sI78gI1t-a=8!eR>_{m`uiQen9DrHnF~RnTsp$M z>4Jo$EtPzbY0gs9{DMHK$!qWP?ljinqEY5VE!gSW7o(HQe})PaUm%&8|9kjKz6gJ9 ztsI{f>Ct7qhu@sWy3hRvWlGQfOqq1npCVG?<6^*JOA1ud(@U?Rd{qnZt(PyKJ?1wu z1WsZ6%Pk>r3`^epH1)G32C3W}rlea@$o#jAFprb|+r?ghz-V;;eiNpz?{nnVS9N+# z&ik;?_^SP?7jk4FqbW4}@lV4n$v+62$|<5BA3m+(jVJtH-g|}w`^|Nw_B3aSmK-|n zC~@s_jG($0ZXV`!ZC*{BS@NaNbe(r4)MXJNbHGu)dsH$P%FsdH_@iEbPs?^81UZ3_ z=DF=-TgTMd-bn?Cqu2IlpIcM6D}2jlGKDGVZ;NW~vGw#E8fx0!#vG0=zsE-9v?6}p z$3HeGJlg8QNwcp_57jA%b%!=*=LWh5R&>cA+u%u>Pv_RapQIxyKNAn=;I>Z09gntv zfNfw#+n9ZSA8?TRLhwYH-NN2NUQ}1H+1RX@CFz zjh^C!OCxH3xh)XcyTS`BW2S#MP=O*Nm;e+g4HLQvFp8|nd8P2?bqWqp{WdI6{|R&w z?OA(l)WK&eG`@pTtfIp|w%czb^v$b`yzeVOTZ4vy^L5M-ApBne*mN&Z;10H2#5p>= zOq0Zqb4v+>Q5;lB=ZN}2cU7XJ!+-y__y@$}yNmU#VDCB^U`(LH=ZA22b5oP$7)S&Z zXl95(w~w}reFNmFG1PS|fm2;8PpaF(H=?ULx_)s;$Y0^fKv>o>DaJ`Rs$6fFDl4ai zhMon`Sm7{YiUjkHHXc;SrR4|45_wq;FlVxss9aJXZ+`qDd!^Aoqug$q0(}t3D9UE* zwdO{!CPH>*`h=7p_?nm#rSrx;fI9o$z!&-N@mq{0YsDWnYB$6esi)=7ruP<^5yXT! zRhWuKQHg<(?iFs&bfd?&y8Nw^y~!KqXWh&CB@wzbCj$@W70~D7#&>Eg-M%YH()GIQ zsybB*eaqG>cdJI0y8hfvPW+-jM0At*d=?P%so04M{2qHbUrKpJPh!V{7gDUI5eM?a zNJS^uV*8?#Z*g(!0~}X_&Av@|1k#ChKvLG0l9t8YI9*EyG|B<6A{y={j5Exii+L28 zl$3;iItpNb#fhlPQVtFdokmBh{ur*6nlw64iD)80>rU9!)j_h<6u6nLMe*&iRz`@s zxC#XHEdxs=XnDunw9m``OO^!f>nu+L&99AIU;i&zuHS{o?`wnbdw(m({pC63(krYk zNP}(&sO!;Zt-VhEm2?472?jDV3(FfD8>S}I%#jhrrq;%mI5}lyS&%rwT!2^-(Wxi( zD<-T-n&I1BlJ@%V{f`}_u`-d$!--q{b&NAL`ZZCheHlo((!}h~vCX$5bmEx?`6Y;kfyh98$ z0%_szM;#R#5xV;C9J^gFgM)nMoX5vp?Gas7PsA0GS85bBsr0UJWzVwd&hTt>`a@#t z`c<8cuc_l!jaQAF|-k>Bt5x~L#TFckE|)-eoWTUKOt1W{*G@B%;%v9c2| z+q)`OcCo;`uLr*HA{Yu+sR0DlIFJ1Cey}2c6|A9cI%-%_^f3Q6@m=qYyL&y%!xrey zYz4MIf^8EyNXzE7c9$q?p|UC6D-}O&m_eM@L%P9C&03|E-5{*Ww11fsw zdwsgMDbLXdJmA6lsBVW;9k61abXj;wOPA4OiRJ=U4Z1RiC?GBc&rtL+@o;nh0y3Bv zx8VP0zCDr_#TF8Gi3_tgBXMdM^FYKQeYHQ+v+xsxG$W%v1>^FvbNX2I*|U-xi;h{$ zBst7^@gSdv`S`-^SwB&JK@`{9{zie%pIc;v8*i9wDf&qNBz7ZxH&L16J5Wc27nJQt z+HLK~0?jkIasP)sB)wl`>n?8fS0g&Uf~`fVZ>b_~*w%{YvHe}cc;fNk>xdHk;EGW& zSY>D5|4a5!RVr5S;qNrm4fnjeJ%)SvChi%6w~ejm2qgiX?a7w0^7=r)SoCDOpDz<3 zouAbEa2bD7lF&&ky9vk`X-_L!k2LBt?m8S6Sx_Y82UcUk_uG9BUes#ScWNVsD>Ko% z;hOxj-Mn~~GM70Gg%mc`es*`4g!{2{PE(}WDr2Vvj;82sfM;YZH>`9*#zxWOIdMSe z2oKC8gqq+vzKk%GafuqLc0Um?bQ7kzug;xavfCFS_`k@E zy#}qv=zQ-pF2M3%WG*_om!QX12T!-h?Xv}QFnH)}C~G>#t~1olLM4Efg84Q!HZ~Wl zbQzV{Q@XDQD0UOl)1zu?xZ&#&<;w)X%4Iw_>pF?+FO3fhl!YSwdv*{+e*u`lNmLQ} z(S|@R=b$J)O`Ae!`-eYCT7Rlk2uC8~K(m_N+sJJ`72F8# zjmv#)nDF-xIdIcWmASOAy5HO9FtZ~g4`T`f52U=ZGgP~gPR!VT;wa1K?gel4jC&>@ ztH3ZdWn|Jd!h{z^Dr#nzEeX^sD7Gp_BJc}V!~bPg4OxAQepg2!5}20?{yvAO09(lyqknlUKx+EMb+!=dV?nW^xye7 zmbAdvo?#t91J_aBYoMTIn;Zq-7Y#-Q6TcfU+TSOSeMT4y!+K$3Yrhgv(S}5`niJfW zb+jo#66~a*Ju5oSj{TXlB(ALQbGneP4S|KNcV5W_(y`u9XgHr%O+8wG43 zqDiuA0)6GP%H)>{grVkbmM^aRz4Z?EKN|m1y{>-*5)zbOGO8)YZdAYwmA3Tadfq&K z9h4Ar=|!v)*$9~TwxbT7O>+uzXxNF;e@1Fhf%Q2se$v&V-}m;e;*W`i_~tw$XUEgTTYX%FB`}6x ziO-2U#k$GE!`%`yr{e@45%EkE8W_l1^-sR06wqa3Ij64u%=4yC9(SCr#Ie^B3-WR3 z1D68dk})-VzJsZQaOa{L4o|8=VRAs0rV`7x7L~$jIiJJvpyp z-h>8}2`SA8U!1p%AdOM-V)4f-Ds;2=fR^dJ?48*t30Gk4b{fH9iKX%d1M|E8o~i|L z;IkMASU?+Kskv$)^E(i^Lck&@{C6xWbdO3+UT0>9i}hH5JEuid zKd3rmhDRe=iyNI==++LhZWtLEbLu~dXN_0UJI)p7o*?WJEANnXXZ7(ZX&lFXqK)IBf>zri=dl1fR4NV zJPkF!k$!pI|A(An5gD@925>?kGN%DheP~8ThDtIrJpfLC7t6#fbqAA>-7K4fuHe)m zVyA$H4&t%xzKT)F*asGFLdkp7(?ady9NM>=^V7Z1xBLCYHWa zM7At`b5r};hUx47`l$8WszD zL7eBTLNYgAj+*=|sG1kO^S5hDq$lZp)q@B5TGhBp|IJU<+Rt2E0tQJQm0!{3I%*7) zW?8wOv7Q{g%6AY{4UG`BZ{{y&>Xpb?yV}_#<%Q7;FJpCx@G1VTe7`T$>dcpCpsLC5 z4>iUN_uxHzf4#C-&~&%bmV1lkxEn;)lPCRt{GS(6hr?6J(EdQt+2KM5rzhsUFregRo%2hPHABO-rh7M49 zq93tfrQd|Mb^%N3s!**DYs>%XEf4%=%{~pSGCKFBgsA zuAROBphtfg_gCg%Cv5z;+tR<0)(p(VeLwVLIBuf=DX(NawTMOKkDG8Yn_tfl7w9~k z9ouI|*FMw3C`9Fvpd%exaf`Hw{2n!bP}X%EUx1<^v!Srg7l_p07QV$puYR;&Z$uAS z!Bt666B+%}iwj~{=BH0uS5Fs*N{W7xbuMJ;hK{E7jr@@5GKlDV7?OT%)agwZc5J2f%K^~OjUTCdC&Cec9}#YDVn{$jjt82|H=^+>c5f`VJ$`~ zHW6@_Yu{Wv z8Q3Z_z&b28+L^jG)0sMq=GmJ8xzb3P@T}QX#Mo|oiGAluN_|H~pOu)KKDZty2+NdC+z4Q%)`1G7AGy6GqDP>9N!?>Wwog~W$h z^jhojey}i@#cgYSJ*Y*Hi)b;M>&N++5R$!xEk$@Yq+U1US0*c(iqg^4y!Y7IQy2lC zxD&5yH{=JMD>8q0CuBKyHR|S2NHWy@vcO0}X#~7!sdWpD(ezWCFJTCj!w$H|9#LY` zgB8^R%}rm2JJ(YVMtV~eTwi@<%A5JT`^$$$*2`>|*W_u&wC*T5!q~)G`@r5s2c|jf zc_r4=3ITE#I#d^?X-%iU0R8!B6p-eIPec0T-bVN(!_K(o@) z<&BBN>N#rbgA{6>FA1(C7{(}HHKsOeu=^;>Yv)VJ4cpi5U+-oTL0_Vxi52e6?k%LX zaTWv|ct$V(5j412)=FSAO!FzGc_y4ko_&4HKYMJCsttae(*ajH{1M0Wv+siJq_6y6 zpt%u|*lXF3_O^;;X*j&&*RB_?6>5vo{XXH_y;~+5LCY+Ei1t}~jIA;(BRX+XdS*LO z+6!7Tj}$NXyXRok`uhYQ8dV9}jB|0}f0L$9NDW#rAjd=PcwWis3v_0|^pqFAe)zax zu>x2Kh=QVXdAIoE!})2~6B=~M^S^&l8aK=Bv3%+ zPrLJY?y#k1`tt2hKj>c=BC?ESfHZo0bqB9zP6CVXCJjLt?rOO1xu(;=q_g{V;bS1; zZZ=cJxP*e;*D^oAqg{5;p*xZu;!;2pP4j*r)2MYTn}Jzn=RyFL)Tml0 zyaf*OVD5ZD?zm-j=W#!)4TQqzv~jwGodjKw5thZ8Hvq1ud4io3 zHOGW6nht2C0c_n50KLd1$5x#FmUy+giR?V|&X2o6y>Fvo`&$w9uL@~<2ZT@MefkF~ zoS_hP>uAr1%yOmif&EPZ8(R{6D%ID7G{2)WQuRwKgZ}W= zR-|H46_j;G^`y;vw2PYuV#zYp4=*O>c3F9t@1%_mBp7Sv$q~jO3!-hVK4eL~Cwc)= z>H!NhA>jox)~ubIppy$^SwQd|-TjRwW3`n+A$L~DE1t^8^YU2Z|K|k|(NV3VOPe%GTPI?i3<*QbEJqVs98q9I5ek?y^Q9WN1<|A4WvejE4Af6;x zuWSa*cqrqQtQ%H%nQIw?V5tiCf4v(TGu%`W?i0u~yn+tQp-A-`qu5iJ$!`IO=G=n= zVagq%3n(@RJS-jHjq|CW<`7nyp%Gxsf|aoss$cj4#Hp~^>!uk)>-r)J+)Mb@7Y2yw zt5X~f-sjvcgvX9b40hkjas?15gPq(;6!u)ypGP!PthF@u;e0BJpfC#&>g<_uIn6B< zMS&HUPCU2*aWX$G;ata`AaLu7+e1EayK>C3H5sP<0Cc2aC%sGdF33^9qkJ1`uv32f z8;5vh;&w8jbB>tQdy}Q)a-BC+?QffpL^Xa}txvb`)}TN^6x`TOkkbb9M~fFDBG|!D zMeQUQ#Z*0ytde8y(y&6SP(I+FP=WS6{!ehZz^z>wjwV9Hmn{X^h4Qxhi}r$C(=>T$^%+50F7b)RQ_ppJ1d_CKUG3v+af%+yc;ZMja|4=u zm0}MJG(K8DN$rhkM60;cGkp5EJng=b?-eponjc(WawyGlPw9%8kIu)JZ033A2j;P; zEd7cxjla+1@-sxhebpq?M&$J9K?3Gqw$qy!FGl1?h8zECAn}xjX*qTTHU{ulriX@= zA5I5RCBLr~U5&pV=q1@FY(?2vx?vvTUd|m!zi;+RY%VV?anvX*%kJg;qJdTUwsZHG zoy6N~^-K9<eNd#dJ*nwtlCM**$$1l zs4+NM!wdELq%$}e$)E{}2>2%mk5mot_U`juyWbt0+5_JLlV@spTx@G=i$dDl=5y5# z_EK1=UT=e)QJug={Z&k?zEMT7&D}bB?8jX>SVzDY4#QHq#v==#Ag6uSXxPpN+ysnt zPKPCyI>X#H1l%r&gPkJ%?{9(Z0LHf7{b`yqo;4$Z0>AFi7$lu5(G*(+ zKACl~7zGa0N0i)=-Dilcu1GQ`|bq5ZV^OIqr4dIZL*7V3jE&3Fe8#>~XzE>IsRZ-33J z#F)aA7z2*P6WedM2bTuLBQ+UoRF{hHG5UIcA&l%2hoC!oy1Fs$@%^#eKf{{}sWR;8 zi*BNQK{!R&SE=$+1ThW!Sn)lt(Go{H!B~W7W*h0T9N%N#t!9zS=@Xw4G;M2ZVBi0A z-N>=@ryIN@*V6dETq(*?nXnYFxqj1+2F8qvmLw-2ML zr(yz1I*@`13~>eF{n)n;0RaI?U%q5iusWiqNXiwW-32*eI&Xim=7KKbpdZXmX$btC zwZjXPJdHJa4>;49^W^R8Y5)Pu#-Y=`MjL6Xpf?OCE^WP8k!Dg7`{<~x_+~Qs$n#O+ zR4KXzphL&pcfyR4B!R)NW^F4Ig z2u8tJWJPHtfEO!mZTeRGWmNP{P!?grZRZr)fg+p%qAKx`^*JC(DM$fE2P7&Jut9tT z{`WBTgPj&1ACkSXz{B(lTcpmRgk@CGbdY{v)HkSbZB$?W6HCj~UOW6hw8tgx19+r} zvsuqG8%WdsYh>I%T3MZ0-d!HS_s-R&!>IY8&w*KWG%%>_9vB#~@2RH`tYxfHL~wdX z`qAmwF2mr9iC9b&M*r!qiNgY)@=}Us%s8H9ps~pu37T{S`YiMiRc0MFYP|EunP0h8 z=xG?5sc3dno-!pN(rBYKv4ha!*_7l?HC?UBYX@8}5#E|7xqiY@d)qM+Lwy2Kb-kkZ*tBKp(}@Ww%3#P`?vfy6+3pMv-l zyM2Au$*XCvFyj`FkL7qVue zfwydi?FrdBcKm>q0eCtuj@zz`OwoZ1oQc)$rafPjL49L+avW?>R4iecuBN!|ZzlU@ zDy?(ZThaX^9}R}@3-IxRC_;5{mjAlj%u5Gcfo{mZZQBUk?uwww?jxs|Y{Y}v5i$c(>ob&gqCe^Du56_oA=hE7T6C05_{p?C{- zC4bsX)zffkU26F|RuLL8>QOZ}R>~|v{`KbRmr}a;4+QQu{c_$PaBzuJHsvJfCly$L z#9l$!GQtgB_3-AaWz*%)eJLookF`8O{lA|Dk=4WCmx#c3Jk#EzE(of#{M^`Kn^;|)MJQyvfQlRLrnZ?@I_`>WeX-) z{h~Izc}5fPkARvwrPhCty#{#4817DiNEQ*x?`C299dg|d=6|*jGh)(n9A^o@EGrR8 z+JCErSkeVCph1EvF412it(`9X7l{fjs|bC~7k#we)uXp3OxeDtDQg3bkw?_Yp_&K$ z?_T=tMwXz!_~%QXhEBD>KnY@Nif3J4Umu)y3}i*R2W~)W^br_{(sFRTvum%E(nKf< zX~i@1!2v$Y0U_TEgJJvj)R@-DwO+L;y1(EPdS2`oB7?)od7ETjPf5`r)=MG@`JSK9 ztgN(VH->w3`HRd9CF^Z-BA<_#Ri^zgDs_P8pn|}$K-70pahlcqlsb@q<|Go3gwx4*wAM%$jbus z|F|r6CZz}>&O{`@LVG6U!3I3<8R`aCBv#z#4AJTz0MpiNxyhLvPZNr64V2z;@7~SY zM6~*Cd>;pT4^H5z3idRUXJ==VZ;d2(R(v-KxW9Pg>hJGgTx?TMG`}j^bfJYyQPQ%` zS*YX_>U90D!ktdbnX7{xVZh{i`}kp(l+}2+lG1+o=lh${#VQ}{mg)n1qC*8lW-y{P z1$D}rH5mS$F6bY)2AsD>tEBrAu2iOm=Cc-&(+hV&*j)gVd%7XP(lpq~qS-!IV(F=G z4`U&y4L}P3qnNmKy#|a9+$L1?ZbZ;XRK<=fWt=k-0QZzi-$}J4Y|t@90P>LC@MK!y z|Np!`zHH1p+`@i{t-A$~Fp5iO^o994NzI@A;NtH8Q|a~>w-+f*j8j|5E^U~>A*eOK zC8XI(9`kG_g*~mV=2qs%04(FYAer3!kGp5j3`PR>4-De1qd|`TA;~nGA6}|SV|0|W z%^_W~BEbbBPO(8t&m}Sr7)4|LZ>m%lZzEEB{FlA znzbL(p5B;3CL63Qo)wJENZTTEKRvB*amw41#cj>T_0B ztUTFx5`zmCneTpg9@rFoiUc$KU@2A=yog6V-~-OB+S@t89|)I;)d7c^Tge&j4D^jg zdRcEE;Nj-UQ^t2v=H_(1zP_CS(dn%4HE4lONJxsc95&;C6F0B-Uj%kX9B!ih-o~&yQv9Gf0Z=TY3Wy@!-_6 zHiTNI;h9zMiaM*FMI7N>840fEb|gM%82_wpD~%`(0VD1+unQAtK#66P!o>=j0N8Pg zmD!I1aM)H?g|mS@UxVUb0bP7)&BiS?3QbCEUeEGk1%^{*AnUb~JG=%M%(u_Tp9U}Z zZ4j%zr4;ZzA3L66vaF1l?t$&%cO@rzw|M_EJE!*@d7kMf(6_Jq##hIl$%>w0hfm2) z(j)cy=%anP7+phl@3;C0G>_^%dmh$<(~WI9a&xcGx?6i@mSw{6PQsIgc0w0HF5j(Q z*3Ku5bf#Nat%nOOZX%37@p)H9Y6)4+IztG74(cU_zfJ-)fj2>PhkM&J@mn^&C+O#A zQm;b}%)tfyj?Z z|Ci0iqYP zrR8KLodo;M5!b`mbnGFIp)v{)i)t;P$60&@nWl83c-r@cDk%nJl;S$e`v!WGAXyvS#gpINh zndqXAOnou*_;`a>oPUM#+Eqc42u%O&%f-!IdD>0agc|a9C|-XC8|l8Pe|_a0c4PJ$ zS?u0T$C0O)iv?aN;TClQQ%C1MVr`pxot_t&KoXn_6wva9z*#OxA_R@ukiYG;8_Nrf zFOqMf694{n>mrQfL*D`KpdSqGF&=I#e|B~~cf2VqE=H%OrY;a_j2}j z8G;6e^@WzkguYXkck0Jr=ALkexmdKsJfo@VYyAZiem(a0e>Jy&zNnaWBhXnk5QOW5 zxqe40NZfVbSWdtL*>Yb}Lv-b>6(Hz^`W!bu0h}*MFRwcT(t6U)n{xwEcp0Kzdz`Tf zAB-kQP`rK7ep|T3`N3x)_Tg13ZzehK+#3S~JdfG{2G@hvOx(Y$ymv#KD&=FklS1VZ z`}^5n`Z=Ep@23_pUUWKfC|Yxr^mBf(APS7Xv^G)pNRW%t*xr609=k035v`k6X{2Vt zoC4RbNwc+0nK333L+h1e_4VE)i~Sf|cO_f3)}o*y`q==Eh+r;HZTL6V!y)FbKXtC; z3)z(%sbb$*(Yq%;g%iplma%^4X+;s^!ZNk2PoG`DrW!G^az7@&Y-H;mUiroHACr;N z01%E|>y`X^O_CHa?!6oBR^Aua7AFi&JL%>wio3Otd&pJb?{gE`P69#=O{Y$s)9u?r7Q{QA0LSjkKk5f)|&2B&h0imwXTtF)+rup{M6>~8_-PT^9+`{jpwY#1u(9Xq_S?Dv}yh+ef?+^Jq5b z7T=v;Ss28jNAa4ox~`od+B5r&gl2_IEc4rmrqbH?+ndC(&P@@m8$(PJ?M~r5!ziBo zO$w!n^qM+9HbdWVukRjj#LNv`hR27N^VyrhhQCB`OKrxSU3IzAwMI{}5v>0jy~LvD z*Ur7a&s(&nto7zf@WU;TLMdiA5MJ~D_AG}=Zf=kfT~?A1yw37cam2<3Fn+q+Nl7g* z#`QNEewa1N>!VH475pj#S2i9KF>!G81IH_rc^N+!%I+Ib>u`ac81(sY2fAgzQrws3 z-B_j~_S7!8_8VN!0QOEVUQfH2-0n>k0S(7;TMCbB^M|wC;|S*0Xv;EhfB^vKgD7yO zQ&sb6paU%mqTNcQroo6dyc4up3rJ!SLv>l;O|I}MIP#F!1hiF+8T_1Kymqod7;s_( zbx%M15K;a+L_9)YI{#OT<}m>7sw({l%lHs^4C%F5Cth1{zySwo{&!Nq0u>2L>9SC- zyh!~5B-OgA`Xu${VP-}~#*hepi$VNlU=Y-F+;RZhH20rVDn#J#$Qtb#A9%H!iQIt^ z;9&OhHtgnrO_GfL|It?Jh7t&gV_I+fdp@qbtdnUPEKmQ@4Jul_uPm;ekWyEj53jK@ z+?#OM?{++_P?^Rg4AuPpBc(^OwcPOK5Xf6FCrTKxS z(oTvwMN=9!Gu1S>*MUWGN;TP_B{#dxIU#no}_+qOYAbX%;hRqAI16iCX} zj22qcw6*0a&4pzW=k!NgnoF<%*TT!lH_A1WMJ!lZiJ%F>MJ+8Wa|T|o=0}V5g7S4Q z0|1i|4)gp?Q62s5Sb2MS6b+QTrocfeGSY_TZ{=dc?FTKb6qB26ut8{F_bATC$HyFi zcEMO2>f~@5v7JQ)MKyrfC_CS_T;OPE?|MEeI2I``bZHDMVh#e<<1Kz*p5GUKOu$Tb zsu;g-_^$@K1nRlPwZzLLpb+_|t-gP%WcmI@`-guR+y7R!@^pxkFef%^E3%gwE$2Diu$%*I;Z|;E(F|;u3Ki; z7x@Q!=eSgvoFzW821?3_6!oHy7T;gJmmRaKczU!GvT(miu(|n-cP;ay!ewUP#6PuI zhEbd~Cc*jcWi&rOeuc6-ZpMZ$g;#NXHXf2Q32&q&pOTadJx{OULB14isp()+Vj(zw zchu8nE!Fe(BW9P#{f6}WqmTcF%MI;^S-Q@GxkJ*)x($Y7OjD9tQ1(4|E#)NPRQIx; z^b>`+o>7|R(ZiHBTvDyC2@=pk1j+D`0ZL1jg$H3nz1Sc7f<)8Pd8xX8SgZyx(H3o7 z*^3sfo8rG9NP)JQ2{S+N8zwZ`L=0-@BUoN|=FwksLJ8rKQ>D^u>-{r1T-L>YnPpYg zqxaBW61R!D{n?h>wYC`j@My4`ewO1-xy@Png&@2+mSj=U){X#=+Z?!k>FspbOwj(f zfF|2^1L(L2h>1~2w}Vrj9J{ax3X+3OQ)=w9+c$vd9}HaZVGGtd4z+BJH9XE6Quzf1 z^}4h3NREzb!f$Y06+d@#*l)ARJShT+O_K_U4vXdl*@>*KraUelQ zB2bRT(&Alj^K5(AR&!n#w-@TRtBx$|<=ox=cVo0dU=)3ob!#BF{4v&-1xgfK=Jwhp zOgQcC;e^a?3BK-|I%lV4C6h6=@)v z74?fo!J$=y_o)f#mXmo36peiMjci-{i?ga!{rK3OKd+;VdK_imnL+5;iECI6z6T$% zI%s)%<PKz*uo6x?4mdjtq1Mi{?~tWa1OqDuR=AzXci9`)?gH*(PyTZGId=K(=b zx#_18e+@{>DEXr|dKGGG{7<-ZimHdKoHx7;X<1*aaeA1HVs6_?VWQu`Ptept@vgju zlC4-=&xjd!>q}luyM&EkQ1kI7M{WK_OFXj5lXKQjs#+B@yjgGXB;z0KD`a@kcm6b~ zcyZ6!63HPtV7}&7fUI$yT0O1x&0~dLxlGMp;YzZrCC@-i&8=R{W{+9ItZQej%#oiV ztUz#8vAqoe)oL${cb8@-o?s<-eP59%PHTcGfe5OCnx38>8bPmBX;7jW1WLW&$A&3l zc?E^86-=N!qXzH_Sc{=Hvjm8>V$J}f-1x|t-3dGoO0z3sfD9KXTCV3usG9V}9EoiJ z4#U8ER16e>!=MSf>H8OTYa{hHE8jB~kl|VJEajzwNUpajo5J2J8*7wEG)O5@PhPKj&j;RVLOHJ;gQFix4(GGMs> zN%p^+qd3lagDO7*UGuv#1tzTk1kzG!7;0t->=BBIkC*lKZYe$ydzM-qg-E^_T-8cZ zNH1+}qw%T1UY_R-qT{^>S%+Lx+?=ze87fXBSHH)5$ zE&p_k6hvCS;1AJ_nlVX%3|v^Myd6%QC}g#7PIo#I&8xOHrktXnYKx6H^Vmu;wn%K0m_L}9IDJa@{jAfM#tIqW#gk&f&1!;+c$o%3bW!5QGDI@S6!|d1|-wwz@Cr%1LbNn=)}9a$f%8c&!mOVM|jA$u$6Q={DJ6by@Pel z=R_p7^y1qWi7QXtmJbt zu}XxK*)!iw=BHqaBaQIxAlz9BbmOZaS}guAztD6+Do!MQM1ZvVf%PB~WD{Qf|JSZX z!&3>?jOAnzCA@a9sA>L-UHk1D;_>k@lD#Vc*f;wroI>N{N=YzTec#P7}K&ovQ6b<@pT7lB?0dR~5n=vz0BOb)tc#O2<6o+lT_L?%Dpv(CJ^ zyTpwO5jUp!*(=SSf&p+XXNn9@pXGC?9i3nIzeOR%=$W;iz?k^yWdR(EgMXKaR~ZKbImw&9=b zlvEWj{Be`8{Sjh1vNEGIav%Gp>@wq=7u!mpGccDfESY}@mSHRME4Bgg3Ky?8zc)@R z&5of~u0A^mDwO8K|M0q`{*8+ie&sGv)Nxn)?EdH5gs(^ohqW+9tBY;?TFe60zotH0 z;rUEbsa=cIkB7I}U452<<@TBu2Hgv;U>vZkhb_+t$R!d%R+nuTK~Jdh%jazpEkIu+ zr=&z|$qw8efKq~B66`gP1s)Lfh8<5D!8+{y&C1r}ZZLCyxu4jY1%R6lU^Nj1HXPxl zf(0*cM+F3Zd!%doW9PeR#Wb|{A6LN$@2!3+i>@wWGa%1%AVKx`V)H_+nps)Ux*I2 zB$@}tY9>kNdK4!kY~3TKDl)}I8MD6Tglkr_3ey#_Qa9e4&8jQw`Bo)AQ$3W}Gjw&M ziJ$N!=xUYJe`Fq6oYc&stJ~gFSRRALjpOET%50C>Qo7pF_kDF>r>0Jiq$Z3Y)Zzr1 zO_?CMNuMVkeSxP4s_C?9T5FNWHb+R8u6BJE#E&UKx!bg_f%{ z0GV4M^%!-jjI=5pBL9B3N+tk*UK7E7?bF2z2ZIJupDv!USTACoBNr|t{6-n!s7%al5ye~gbt zpai5cqHxA1=l}&~J|w!M4B1E36_q>=-k%eBa>nc$mOo04>M7uE=TbhFad27k*}=-a zyqGYDdgRxwn`p22sX~x>v zWQE-0gJm@}M}aPA=gHODAN)clj$;58%N5z&NYTZ%`VwVvOfA*S#ah1X%ydzp;^eI~ znR*2-Q8jX{e%mKJOJ zYfEV*j}2+n`3qFxDqA`+C1aupPwQJvF-D?nA{I+lv?Li|4?I_cfi86bC~scKt4r}0 ztEsDp!2LVq$bl1tNkTtmiVA$b0lIf-?IF5G`OT4b1wR13y-6=CV z6|fr5t|$sUW&R zK#HT8Y;n{7OG$o93KKt&?sEuj3(+TTczCJQ%yV;P`ict+l^uZX7nIfUt%R*;GEuj^hThAwzWHmgvHWEDIIr2Hi_ESwgbsxXGgh7-s1sA)ZFgCCltVNZpo|=@9GGD{r-}h%B;UjqzOkUD}#Vq71I-Pzh=Ei zo>}173vj@cKS{4hQ4fJPM7j`nU=MqrbF}laOJ-{Xqu}KsmZ!(2vi!G~2f~I2VJ0H8k$Y?5nikABouYmmCq5u|wwfMf&YAbU3`ri9;B;$*HjN@KK%s z)T4#>2lDK@+Tv85XBhF_vBLqg#jn};h-yD?zMf?662$cFXY00~GbPyO_6WJP^2l3E z{fd(*_rFOt`BY5bu!|gw#|l+0gO@?l;B)?$IoMXkKwaE`TBbHw(VLi)+u_g$smLs`OJs&OPHswb-xn3uYg>Dnaf(hm{QeG#l7Y&;h4AfAztFuorOzRMU;lrE{RLE%@Af_pGb5lN z9Rd>4Atlm{G)POgv=T#iDcypkluAl>GYs7#B1-8XDIL-X{O`ffIp1^6?_KL%Yu3W$ zBJOA3JFb20c;ur{RqLKRvg_T6L@2-U#VaNtR-F{FHoqN$2z^0*KES?v+x=0*6~~#H zQgolr2nIUF?ET%Fwb9k<>7FqU1_>WE6`6_6;ndx!vFlf|O4g2MJ{b74Ju(DleepC4 zaT(-BEcz7Ad0&}+mQF9lFTl?{$5qmd-2L1pe8y8tQ+NK-DNWD|?^i5c;-hs{Lw?hN zmE$GJ2-yH-!f+y74W@mvTJ3{8yvK6)d+Tyqs<=K1k)Z6`>YhlIqpRbaSBAXtlSZ@dV8<*Q|S<1-M)%LxvB<^wX zbnVKMA)XCQty{AITtNnD`Q*r(RC>k-?Gf%c$;)t^k0M3(=exi2QdCvmWiz-xi_|xSkO^BlQMv5a`T3 z(8C=Z9PE0M{piuk#kLRFpW?ptoI3Kdc{QgSB)63!oFQYlVX&I33#j#Z5MPst+Z~*H z{A6@W#0LV;)PNRQZBtf*;fi~6-|+`|R;s)5^&Z@|cABZf5*8Mg-neM#e{0m{UY2QS zH-z`COdQ}_LTW;UriW-Rzq6;u;*Sz0QZAFWNShEGYv za4_8GsP&%+osU$cn$8W6yw%@Yk(riu^YZw8Ml%%vEglh5W5OsZS zt6f*}iX6sPx;-R8494lVTT9I@1}qpHFq{{r#aq%iK98M>8&zMGCWJNQT6Aog+H~xJ zT?>V%_II`tVQ*?SDS*9&z`DwX104ue;{YS0S|G+pCsRcl3bdemf^%P4@NP_vx?q3S zFgG)$(0vf|V8*ynmS^Lx*U?TWxfyro@ zZG=AyucB;ZcrTMoFwWyyd%Ts+Sr{@os}+ZQ{aFW1N_(Qr=aS_{X`t4PQl~ZQ2%eFW zC}U|)9qP}+C5f7vAz9HPU;)AX@;g2c?e7O}JMG#^-HMQgihn2QGku36uVk?sCmuRe z7$c;q753alDWs$S{e>9e;wpxE+7)Y`Cs^j(dAn3?X{Bd>TV|or~xI`*XifYi6%AJ}A+8TD_iYo6FcGTl& zMzu55!@Mr5pg|qnm*)cOovReV6TS3{e5wDbeQ-Ohd$t z!2@1%C&RiP>M)UN&17QY%`5m^k9XI`xXoiub?t71uZUM-gS#6ho~@p_GE&j_Yj*jE z+KY-0XMe6ItXDMOMu~fXDv$f-Y$HC{Rnj>1di4+H6DzBHAI$Q+l=JOYeDGR^oOt7l zK@cFn^&1OX;J$#}EqUzXJ33*2Hc?e127MOm$?@xSpn((!$|4r)F!=$c6q4pX=EPGphuI ziK6J|`c_D(sS`w>qZ&IE-B}y-Ida2}jvrlh-(1N;R{iX*4ww~i6Hszgk^(Kuj8(T> zsb6x^0=8(W#b`;?$pq~qGDe=Er(Xw7T>CpwP{6D!;(TKI_1PQ24{_Nd9nb#!Dcw!dKwfBu|-bm0l@?#w#f>WDmK38(KPOwLf_{PAF%|DnsBKLJ5Ls~R@^_osU9a2Tnkoi{b#ApRsd zCsH*h=Q)0rLS4j%*4$w8@u`ASB74dUp=w`_r25HtlKtNl2%q>)fwhtMqo*}@jm^0V z)@Pk9Z3dcdfL8FVM`oankHKr|)2mZ03V@lMjWO0YC~(X)&@Ov&3#65luwI669v}OI zHJ!?jCHg*gf+p*?kVMTCXRnE!p$Yu}Zyz@_)U+xYCHbydJ%sx1%+i}<^BmtIA@Qj1EODFZWDDpz!o6c6u;N_eZ1=Yi=N zaJL*tcN*S1KRQ$WJ{4BO@2q7uzOAS`+=(VZaeR!20<{C?pv^6^OxIBxTrrLC-Ph@I z8FqV{hN7l%G94L8qwLUxo}}Ntug49NxCHAzsm=BVLClRN zA=$idc`+4~k!NvdjLjQ`{0^6@&vl)?46`i=9z~OuapW(jEry7{Q4eSl6248Krq13X zHh^ZG9KFbydURKpDYv#o~faIyKnCV@Y zjW$T0)+Cm7gqnT9)VzEg=l3t+vC{qlOKs!dWvepZJ!$dk364a|+fXi$2HiLf573@| z3$p+lGB&8bPH_>Y|6nl8=wPYDxwj>r7t5|@Jf*sDp3anIx`|oM-*tZe@n`TG(!Acq zGul@fGlf#vdfqt=6L($fd=D$}x+n@}!NC=No zSC#8q8SR3Dybh!uN-!A%9aj<%_oLfy2!WN`h(K|&ERp-*-LGGFRX_Jc2_3EGcG<>r zq9)(04y$3G%|Roal7Ny<5iAoqOOID+bbg*tEA zi#rNXK9&Z4V#>kbgJmI@6F;iP1!d9si5qJphL7^TVx9Ul(M=8CApGI9Sy)Wgg6TWF zZ`1a5@FLB-u9%2L`Myg_)7?`Y{t;U-f=;J1yfyMj9+!7_b-Y%R=U;g`Z!F1dEV*aaBX$-k!4W`_jRV8fR^cOPh)YxM&jFn@i62#X5MAT-XfZsa+7} zk(GUyV4i5i;#WphGJ0h0h`gs9b^P<{)I5n;XUzOqYo|0W%LnoGGMH{Ap6{EWw#p?K zjasB0Ta8YOW5!ByS2t&SYAvbG&xzL8Y_>jV23?QC2-QJHNABkHy752#_#pAS$~hQ) zQF;CuI9KD6{=~{1g(sRK`M;uNqjyz{#`Aur%~9UGI?k!`8iAm?AU@A(=%!Es#^Sc+ z7+O4-Vu1^|qB}d_B5|_$DSbvTbk5c%jislqE2OWG6<610#SS(pmvSpyUm3}{s)6e| zNwnt1{4_U30U=!Lc3OFOG~cx%3CroWe8z`$9gpVti0>}+Z@V~KO045hNs zv~jbc^Ryw&3pb$sOx8sn$(sWa|4>bL7G2Mta6_;^=03UmlQ4HomalvbV_Tt>ezy^W zoHOngUz0_u84Na_ebe1L(*id@hsc0@rwLH8F$z24(n2s;5pxskfYpnwBZ?klxjc zVcDWsi0Yn9WqL=j#yK&pD(z`HG0M@IdWN;FzQddUC*@jtsr+MDIZsd;V)RJJ>|RGO zuI+DGh5!q1{7#WX)duxQ_wMdX9=k2S@ER-2g7Et5G;^ zoKS@(Hex(MK`fBX-J`pbv+n<_;K%dvK#BBpg7D77N4~=pNf~An!IojmLLY-OpNxD~ zO~H$?3$I)5<6!GS_h!g>B#<4Jme6g`@XUs6Z0c(Bz1V!d>(d_u7sWW&6TM$`5yQi` z!63rcwkPQE1U)7ZN?TLJ{=_tz(fhF>N$zs=pv@LW<%X)=r5^|+>lBEsV0&!9Ywc_b z?Zwk?uS}Vv6tUU%;u6K)S@>6@5Lvmyr@-|)qK531H4Y=RB5 z&>^tj88onXFrY=0nsZLRL2OT zlt;ow*G}oh@5HT*8m~9Ud{&9e;wtajzd^xT;pC&NRG)nf5Y5RZ8S_3)>Oh?OW0@mAfm>7}z#+IV1pZuOK2yF{g9@9x6Zi;piP0PyD@AOlUJzWp1w zGAb_u??!xPcb3c5m=j~XyIpY3*Ni;Rm+`nWF54|2fK+Y8mHZ& z1vo^{OUU|G*T~TD)n|>LJS(o0@i6$H#bN{kP%!LkTLZz(D+ianZ*jK1WRv!KZCdlu`F$;BE(Nm ziY&A{=+zI&CU)PjlML0D#w#T&8F3METe$Ifomud`_k7X7b)oIToUl^2L|Kw7A%67F;5C?VT_KB9(kC9TBr|pzw$M43L^ylCX^Fjk3UycpIvI2Wpg?W?-mqO+>$S& z0(*Cj{2*Cita;%JTXm-C4=#*zZA2mml2!Lp4jPpoU>(mCx7^ICZM74$LO}P0!&B7! z@ubPqlV;!tS5_c`__GR~aNd9I0+6B)j}^K=a3wEW-Y{Jka1A_r@x{U;_LVWIlQ-X!arn7Ss>GzmhTo3M{4FLT>}qs8V4ec7!v|Ms24AZGss>EVFt8Bc*~iQUX<+f(!tR9+XOlC{16zCnybH%im{imu%?2go~cqhUAV@TFopCC@d@6nemL4`$$w%#;Z!!` zrl?cl`tZG_Kn3-TsxbeiM;?L8%AYo~GW|vPWQyx+a=HtTA;sRNkB(H8F`{1eHSCk`SVJQVjt>z{CSNH;<7ry60Z;}6AwKq;TNQ?UR1mq5i| zFty?@)=#ca3NR+)RLgzg%=620^L70cn_~bc&BQBanKw%pAz|AyeoAN8#DPdfr!hPr z_DoLxFeBhLgk_iZrZ{@Sb^o;CBE8*5aJ{GUg;*GGFE-!mF;Pbq_EUY%hQc$44G9Oy z_fD@h8#l8u;^B@)@60^e56G^1`}@ds+`lBtKvr-f)9hqwb{ zsw76a3g0?jY|+k7X~Gj>XtiR;;_Vcp_mKlF;ZOcocB!x=SCRMrNKd{m+6uCWY9O-y zhzty>+9AOtN(?HcPWTIGe8BlvKF$gHpBiu;Rj+D#E_BxUCbXYySht`*7_+kKtmc>* zvl`gWST0DbJS^B^HYCi-XG98Z)tI;Met)dgrAI^yA%mKcZ1+b{dX`uyc#d=)ygMxs zg0b|k->q`itCnf|Q1L{)ip^)Chp4@SdXAJOY7*8(3jZGXiEbg8%6^7j?9+LJnyR#9 zwQ3HD6K370lstW7GInx7QUWwy`eh}f6jYb?Q>zz@goK3LbP|kTV>bTqEj4QPOoLg4 zj6NW=zjJDHT4pc>w|i$v<(|ohl@W5YH4cmE<@JxlZ)qStJj&8f+)sKOxOV$BTjey+ z(W=qix#KTuHmNYHfNrLF4fr0P$e(^q_}-Wz47+w%uo^3h^}7K9A*8=zKaPsQhSYh4 z1F7hQ+QD>=i7j-rW%Q(eBrR0tv`^clcc_WrEqIq^Xc41x7UCs!ueYs9B4vUa#aff4 z3U@ve`qAU|lyl|X{pj)%*Rh>%Shhz4PkQ%4(G}l@A;#B5<^TOzi z)9oo>Y?}aQmKhU?c`7d;@R_(;HyOq#h%J-^4UvSBIG3@_PZ_`yEd@T01*q>(0DkEo77S_gB0OxPd`+epJ3@xT4fW zA@+g2BH&DWVlsu49ugMZ8a#mu#v4PXT(e)Gzt2I;y}xl{et{>5_kGrCUai_f)fjEI zr48;R3P-wV=&W22-;BmOm~U**A{`_p(juroRD{jZ*iV0yq1nhu%ZbhrUL$AKZ4rJ{=K7j7 zkbjs!1U#&Ce=5^!G%Rv;^PWh;sg58?i{9r>SXfw!%F5Ep%F&BLJUl$VzHL;re$-sE zON3cjG6)me>zvBF<^?mbJvd>Ig7o`Bw2Q^a+ zuEL9sV}Y~`b~J7aCBwwx@UC2vVSji(XLjA+k8{v#!k}s$7EJmujZVcr@ZScS%;}a2 z#GYOgqt8YL{RmZ4(GqFFp$ch4p0o5F*oA}&ZCz=2u%#9;no~k^qp_~kdwV+Ue|_V+ z-IzT!!9TNe>i9dTN3&?lrlz++S6zkXm*73(S7=yh3EXUmuQCd_k9e8_D2?YT^ZF;< zaGD$hBwTA08*gFV?b6pH4W@(YtXcpPdvaKp>AY2MNEn&c~=s!k80ZogaR1`m+J*1gG z(yfm6XJDsMhD7Yg&3^hs^5|5anAs$%j1f5y9`*!L{l=pk9lnHjUd>tIXL ze*``ysDY@4A>TAuYjqhM_39csFS1U2O(bOi%2gZudI~OimUBgJL9F#)CsAoYNnImp zF9rSm8^pQfR$m&%HajeqXclSA%V@@%nVX+-rS9q;$bs8p=4If%p;q z{Ev?hB$~ZMjO7!7C~G5spXbNE$Tkk#4;hSxSjN9+49kA#$GWk2_BlTBqvhwRa=e+B za&J}@%4p6F{rU=qXQ{4PpuSt}BJD6L8k^tao4dButEke0*Sd$x*W-C$Ajk_$YJtSr z-}4?f4GYj95orA3Ql_TGawesFxqn_855wM^8?-f%#k9Le;n^n@&K*WZ+$8%W z+H~V~Soa*KL&kc8KK?A!Y^Rxo1rJpyejIkvddUh4$_;<@EQTIgz88 z?hN~wxm#}e87A<=l%n9p+S@*RLJ(}BuLRCzbjUWkhHT#Z>zjmlQXX;4JRyKEk2J}z!-JD2ic=ewSbcB0eHWLJ02cg{aT3CD6o`B08=Q03v zWTGihQ9V|#S2Wi_+&I3!1Gz~R_HL`zrF++@L?{Os`u}~T^08!V{TZes?CFmXow~&w z>W9p8+KaLpKW`1b@N_!UC>O*tGj_F75SM1ypTmIg{O`EamE6ijS`uB^xSU z%1#AQEmK~_9u!v9_%qDjRlfe2LB1qtyv{P^U>r0)-y8{48Xhp5nh5-=6acvp0s~oX zLLuie%ml8v(C9aYI;}UC8~R2W{E8Q{)FqG&_wG5)tx<&y-(0nPIYkul;vXUZ74?WT z?F>)={GaKO;`&)HqH9QUzdJF3$Q25WAKPB)T?8&BT@MkZdn%7N>MVA=9AJ!*m0yR$ z;d98QokI0U#aOIwvjsSxupSr zMt^TTO5br`m8s>ZQc6qNWFWkI-=MZCU|d?^^gFYv^vZnaqwg_LHI0+^%)A&>ZrDQO z9LNDdv*O(IA<8)e1cmEf%G96b{?rthRc0(IRZTp#13atL|9$9~rA`YmoLN~cw(cVpeMy`R`v?-+h{11_fUtnO7B-YQ zo%0G56uK=GwN|e2#MEXm1(qy;!H)8RitBy_{&@*$sb4%nI5vvAGEaDsqdS8xM)zjbHs15~zSQ`$Qxr>)+GHmEkA!lX4K%S@W7@+W`I@ zQ5c-}YQB^kc&rhodBxL}Sl*9P*(bezx|t3tP3!Vjbvv7-x4Q!!7hiH$KR*In*S5sm zNy1G6Lr$``uV628qQlplcMNaZLKIAE7aE>?bi|fNB>^g0=RC`lTV-{Hb+5sdJLCs1 zf>PE!K6J~9laQZdX5|-4oZpYHe5q$sxjl`yMGyTCvd?bAly1c1HwF_EQ?fU3I8@d7 zGdz8Q!15k2pl86KdhAZjt^{QyU_-$Ve@{L4T-O`n>glm*m3Lo`B%dhi#2hn09uo-Z z>LuJHbCPzEODTct;cbP#7HJsZ$Mtu>4Iki@dINED!5f5-b+p{9>7c2{~{-%!2;w_I})wJVZgu zd{+VZ6d&}gg#`=u%_%~De*VjrQIc;m;2ZnG7Mgdk3!0&L5i2C6q^7&1v2QvQRG^Ng^B{?D)XPybS*4j`09Yy zDG}~3#3sY6tmASbC+U%VUsB%%By=mPmEciSrtJK=(VEKXk&JZw%xHy2WC7qE^=dV>bOR<92PEV3vuC&e|VgJ(lyqQ_FX;Ib! z+Xp(AcOcPXx_c*>s>BBR{p|wbTIs*)% z_nHW$;lb_?#}cHsxKw>eAS@qrFbl>1Bo&JJ5|>}?bX0p>+QvI5QDmgMf6G?{_B0;8>NQ{b1-Ax{2E-JiGmZjU60v=Doce#|sL7rZ5&Mkk_u@d?B_ zVvz<8Vc%OLe*$keP;)stIcxb-nZ6PE;&QoiMy;>y{`T~ZSd)#nSL}17JZV45>w(X2 zR2{0I><%JhQ@Vda``N?Ib0$m2DZ2x`p+&LFOzQin-Dq^eg5pSlE;11IKDCV z`6=`5$pWSyNq1>-UnRYC>S#hZpUUedL*svbw=RJKzh5G%PXQjk7KITSXr2a?DbD9{ z`t3HKj0ua0ETda7_gePN)fd|r!{A@;vq8qPpKo%jX5LrA*nqn3>Ct z)~@z(%pMH{51IuD$snDOZcx z{_v{<$0`u(#$UgB(|ND>bUiD2|DpChBr}(0q#f4a3bMo=8Gg^%9m&;GU`wZ2wq(&T ze;?^i@c^B=OK)=YvmTS%=DT_N1`D3qgkPBf6q>o{p8+XmXgV537QqdhJ>~a8=tVgXI^xq*>uZ8vCmV+xZ6%QZu#~?gWVn>s7j9{nU60}7LK@!q zh|M|Tq^8w;+jyA-tGStccleV^j~3!t-^h)7;8rvcdpu%uTm~ix%|SsImjN&S1{JoDFJ^8E235U3al&5XkC$_h z8;5*mUNaYz0_Ffsy$5KjIx5PJU>_5M>N~k=VrR*IT&S%s0M39c%|!ub2axfgLN&E0 z4U4H;eRax_#teStsPuSOSUkJS+FCI;_e~5c{I}!oj~Jnp89nc!S|h<&jp%XyseIib#+2n{^BqREO7Nv z5o7?qN=v;htbll3+7rV~#%s#g%E=D9tt~~v=AG8*1F(cb`fTWVm~^x0Mr`|s)~j7I zRtu&^S?BFiVQ1K<%)(;(s=7#tNHVC}-u^O)bC+14kEj>GHGoY_z~14}C3U9fL^4`g z(H1-lgyXeL182Bpq6mWt(X1P`JjOJd@TKM<)G>Pf=&uv!Y*SvQZ zAmlUrb-DN0=8LOD)u1N8%j~O~E#(G^Bs0x7W2E>6@iMnvo6I=xLK*A4tTB9WNV>81 zW7khkBdP@^Jp}lF`rNM|bzrm;09gCqcl$sK5mo2^TGWPbCRYfX5*Y-pytd}XuuR9N?arzbcLdW4c zcWH8_#wM8hKz0Q@YI-b!zp}h{J+4>C%ffa}p#G*7aqk@t9MnA%&_jnCs5^6ezCJlW zE^XvWX%zKIo{KKIw_qW2ym$*+Xq%ccGT0IWRhqoCZLju6(p9^G#^mFXT<;y_&r+A3s3N#T> zeWtdVK*RU|vd^O+B~A*~gD%&5r1N}h4F0|G$b_fB-l)=g7y36!_}ubu@x6zQPt*OX zqWnRFt-wO_{kJ|M5&U$JOv2)_5B(+<8y~_-k9-}cN68L4Nf%qa+i5m2z(b%PUek|O zx7p^Kj(IKVWrCr27*yg6W6IF@3~&wlKHE>OZzt_57wUHI{7qT^THXU`1P=hqYd|wR zV`VK->Q?=2+6JiGD3FDnd~Yb@e2SEuqqtK}>&%8nMc^VSE;kDD|NTg56Q7(5%AL$^ zLUVCM>eRbK(hm9~|8V54LE9A}{n=SGkbZ2CO}=|bILui*cb>`flSv8^0gcZgv?Yb~ zJM70JJNS3 zr7u5`n#xF%sjt7q6#Fa-8ZRnc4$^l(>PcJErvgp*FI}gdPX{%J*pyWXlu)_;Jlg{F z%gaQNcL9?4A2)A~PQ?qV3qb6a{fd04@<76V*^a>deo_Hg-9}qQ5o(HcGV`*;enYnj z=5Vjl$LBwjeA=^H$vTt54LN6lqY|TW9Y5QCH2G@jjjq)*gB(UpIVRW=B>W8;8Ic9S zi$9RDSloa|B5^*56{@{01ZqW$mdk%N^ES*-6r97H5x5pWNdMJLIt@sF+5cb7Jj9Jl zzwAh%sWcOO&l0{GX48t6AZW$-uZu<{d23jIJOT+#FDiG+i;O7~Gc(txqMvIYf2~M+ zDFO(t__5qzOB6Hr|Kpsz;GBRd|Mxk~3|mp>1eL8JLDj`HX#C#Jq7-_T;(*|=?P%AL z+-+(!*Zx@fb7BRbFo1a2@0xy61d^23Pyx9tK{ilLS=)}<$v)zypD~lg6{UKlb48BK z+vJmv|BY6G3Ihc3i@9pP$U^Mk(uPXHT}3bwt9y2F@9`NO6OWpgDU1U6>DPNq^ZMY1 zIklNBP!=R;+4cAz3;I|Fjh_aj!M`l1>-E=Ow?7DQ4Md!p@Mz+l(JQgKaO+_4h-d5Ylg3;E-dksbGeb zNyW&RZtk1zeLY;lL)P%5YxkfZiCA>QuBxaaDZ+J%F^k&{%@5VTJ(;7!1oB_r7i24> z3x~o+Ate@Sv)W?LE|RfZlg!1g$s;7rBt)E*Ie^y%^py3GEC)tbYT$~d6^LK&g7a*b zGE@;L3Y~&|EC7HHd1Jc?dBE{t{VfGb*nnH)#S)M&z2?pLL9(-1Y#xX$M0Eq@73M<# zQ_k>ud380fs_K&ho+&*5N%H2)a3X&lcY-wh^_NG_lzt@fM=_N?<~$m znK+-<(J1memy*2}%$@`k^DVj;Fac_J2XP(O{QJLJv-tSb9ponOl_!NDqoaWz@oK^r z@>rA6G)P^@`6SF-c-Q1Cm7cBnqwv>Hi=1w&7F&`?x8#h;M(%xeNfWnI)Pquu4x~Sj z{U;37jWAvl;Qw|$?$7e%;ECveOLtApOd~kv@X3q!V_wB>{*Oe*>lc zyMURC#}{go{TKB_kb*KC>&Dt~MglEp?{Yl|DY*K3dA`G+&7FKlr`w$`22VRlehxf_ z^i#j94d(Uln=OWoxT!BuS-OIpNaxxC&AEuhqyOW8L~Cye>4F&eZ^Krdu}gw6b^^9K z8P=AdgDv!98r`?|uVZipSMkfvTp|pd5OA&_G%6x)Kwwa{JjK~5)~jz`k#SLb>9k^} zmINE8N1r@{h*!yQ?cD3S7=A1!O02_P{NW+ES}nig`+^)frCdTgm8@gG4I{+2_lq-6PrO2LzdJ0IjA&&&h1Xg#}&K(pj^G)eWiv1fi=24QF!?m5%*0r0>M3Do`dBvy1d`?``f}%X{M!n6XSt(tXyus^ z-BqNM0r@vkN-URc;z7f8*vg+P!kz4{5b*x^hf2v@PukB)g7}ssVfudVu(W6){5#pH zM-dON9{-NfFxc|jKr=f|2>i`EJD{^eFKbejW?HJFxR`#_$;sf3C(KtWWnW1d$<7?|q6%rr9yDY2}V*!u@^&V3GL2uk>)(k2i<{_x3Mhr?IbAl}uW z(+&EzJvqAP_HB>R;OnrkKOO0Fq>ZW@KQ-q+Yk_a@axkISRkPcr(>O&*G}mVtOUPPE zGy$4=Ezl-EvbXQs`nH-^sD5r-j=w_A)|x&1{5i08<=cLvOvAX*Mfoe_HzXeCp`cqJ zXOO7>B=Sk1+1PX8JAd8(y%!e+lTGJll-0hL)gAc|vyT0doTj}mPLNep+;!?7^RSED z`W4tI%uLUYL}x}0JZDEmf-KR*{zTfpc*})M3DQ6GA9$;;AP$rah;UL+kzf|=AkT|? zoumDa)7?U$3$(&RS>Qof?#BXONBd$Cy$wr9a*MP7buQ_=e*F%qvnl*}qymJQ>eR16 zy+7ObP})!{%P8o1b4SMSAOL11OyM^t>woAW_H=^SmvRO8@X2z2`Cu@h9`mwD0vYWg zr=V%J6TnVyb_f)W_v7Y^pC+|p6~TE07w<+SFAnQjOAk2jowWdw9v^L{;ahTU3EHCs zWJTFNiNrn)xY+uH5{;(B66^FeUy1h}pngAu-P?>*u>VH=Y2!viV zOVS{^uYN3fS+^s0J|(&Jy!G_nOuD4eV{uekK8=K`-6jKIswV7joV@&xI4LKMpzxgb zm^wiQ85sTthCQhp=K>fOaAnD`gSf}oLa3tZ7RS6hwK$g1YS7BSSC38aEbq}t!{}T0 zNB>ocp=h?0&%21qdwE~orZAY8udA3FRDQnTL!hWwBL_5vTci!Zvwxrc`X6Uln-W@K zewXcp_Ja35=L#dJ(qgtuV8ZRK+jAt&Z(dCUG5v*JzXD?(gmnHB`ts@N<{9gUq(IxD zwH{pal0L(tn*{i04;Jn<74yx#2;RRZxFp9TL@BUrsf zC6(#_B#bLy_*Js;YCG}Ewi@eg<7)~;tLE%T?sBatYB8PmvExt$%46}Mv)sn|$N7h= zGon)&NR~Q@E|2J6cs!~5r3xaP&ergL zXjJiY>ZAN<&uex?m^?X3A6w`R@~#RwJ@}=pAkQ)c(#lK^b<4>rU@5Jr3quBl)bDg` z4}khd#9rg~Xu#fhq`VW{yTsk7-fdp}q^}ndTBhPI`r9FY#cG4I&)yf6YxJ|zcXNSi zR34u+sJ!IalpL0|96X4po?BFuaQ~$N`gqmtbsODLFC*Y;`9;rIn7>eSOx9!~DATjh zAs#jACL!f?MMwVod{$bwprBGRB49)J5w?&?Uu^v*DCh*U&I?V;^;?t|C*zYJl~nT{POaWu4);J%%Q%%R|A6k5<_kv zwU!p=t4xN?HDjWRb}qIhOnnCM!ROyGi?V&O7Zw-mtq#+}p=!jb)a)JoC0?eUSv@R8 zv`j^D3a0Y%G@}0K9w{mD^lpDsAPR%FJPvH3aE7=RKu61(q}6r;Bl87lcw8pt+5gBx zk=7ep>2DO8Cdu~6&kVV$`ot-cq`e8J zS|Fw9%Xw z=FdCi4NxU0oxd|7O#u~_s39lYJn%eqfb+~tA({9~@%$g#5X=Lv#BSBQtc->-EyZ`_ zRhD5`+gxFar5N)r(FZyBvtmv;%e8NjA4u8hLs>WV;Ur99oUZDZKC7V8oAzo>H6s$Y zAoxk!GX~E9;W5oCpWiD#lb@)KPo|Qx>zadosJ}inkoMtjzh&npHj4NQA$xk?oiDK|4u9OsX6WU5;GIRFZDC)maN9R)Fts$PF%LTs)EsB(-xUyabmaHgC`>IA$=(i znV84}J}c?hcvmM*+8Qu}fZvavjkpiwmYxP4;`b4*{r|XSb9LYi>W)jnh}WG{Odg$I zpBr(M20dojOL&+6Azn+2zxUj~m0<$9;YeUVVolsuMP?>SgM$18gCzF%_qDfvdr71G ztDkXEunb_u6!B7m^HO08JWhR_1C%6p3FV)`@^jAL5jlHu7>0JU>xsM(T(6s`Iygb1 z6}0~_1-+c0o#Jb&>fQ@fuHesm=*h3WAJ=BacU$NqU{$~Q$98P#GTK`CZiK&GEbY;) zyPX?whe=MZq^690p3ma+1w`~cs`AE?YYKX27C)xr)UeT?0Rp~npSj9_ z@0#HbcV`9k#IT@a1a5DqPAN5c*WMg{STJ$1KLe$s2db0n%B#v0^);w4M=Mkdo_HJs zC~iRMHk>qezFWK!r~*~*R2YrFJM;EcN2@sQ(>{YNa62(xw595R(=Y^wmmW?l0KCEf zDLjgGVF#&Jg=||cB@>E>T6+*EHiJj~vOdVC6GBTxTrCfKWS#u?w3iZ96QqBMA=^9* z)M=?%RHQz>>UYf&UuX<|d z;Bae0whRb45p7KO!wuSpcVp47oHdZ(?Ln^$g4sZ z_0_ZRBU?8ea^PGpGuRUIl)2T5o9cUY_j}ZtR*#?YQ9VIKg`3(?0&f8YMJ5(=_YuYa zy=n+3*yT|hRiV-YN~O+{>v|&{>)dsd(qQz4+!|#ohl)rPgfy4BWoSFi*~j95^zP0~mwBkG%>cZSVYv$;SXq zSX1ap<_wzW6}P_<0{IMFMy~)Zc;lDr2=Lx6An@YNWL5s#@_~fHQGtcJ$P}`Q=v2{8 zWjTjGQXy?Q;FQsF&E9c;WPI_n-hkDx>64~(#NOh#)6|26f-oR04G7B@P_qKm{vtuO z3FF_AS3UiF4-?bkCX4B0)+FFp9i*Ca&tF{MF1S6EcS{r}_1c~pq$m(Kk|Bn)fqpAng9{`WevHur}CkCC$Yu!4Qb)bc+ z2?2f|G<@fqU;WMUG%IciRYxfatqvNzsgak4y991~Wj%m6M&KP9egoPCdJ#Zdh9avC z84#K`b;}!WKv5;b`0}1G#e!}pb_+d7{|I2;odU0woCOnPLkib*>=RU2xk-hh%l^yw z0ft5$utXQq9}P%mg6$~%cBop@|8p)q1W)TfhGq(3Nk%Cb=*b7l74Z@u^wvmcihbEc zMuo3qD|DJ*;yj9Q5)bK6LSv%((RkBH*MDaqBl%7E-xMF`ZT=@);H?;p>=YpVo2b(| zU7waAoEa#(5YaVddJ|Zl#QZMNe|u9x9l-|Eq?s;?Q_h zi#N(54{r&f`Z&%Dp9ehq8|B-_vSlE) zftRv{%0Uz+URC>pUVA_o;8@5Zq8=;vO{=%9^OvIPDZxN|_1Ho`U!lYY>g~WJER8kL zsd{>E9IEEFH|@s>z->Sqo8uNBIsvmeH;QVqObqCL3w*l5XoxM!p}wV`S3<0L97<}K zYL+Um`tJX&|9A4=Ep52hOAWh-wA6ujOx3wwnwmV^?SiRGg{Sv;;Tp~WzN?aZD!#E} zI{wYw9qfo}N{qYDs|%OKOGeou%l`P$+4#)hG=T1!M7i|ja zYKzRq4y$EMC1^6TY;QA%L&} z3K?`*#;@OAO^%EE|FQMeVNrf-*EG^4B_-V{-GY>qbhm(X_Yk6VNh2vBA>GXY0@B?% zLw5`)9p8h$bKdiw_xi32{$XYwVDEe1xz^gN$mIWYbSg#Ri!eWgA>puk+dMrbu6@U# zW6bgC;{i^ABAbYczy_q73_-9LWSyRVXc8z=H!Y!l?JxGqGUqR}Q1aVTX2H0l*aHNeB(W+9XNjG8+A1zc5r)ds8C+M~kv z*#eQziQ~y-oCQEjMF2-}tVHs+^)m7_?wJ2g?oR4LRMEEOcxR==7{~gViFC=5&Ug7| zk#<>|%lAAK@$E+n8DNp5Ky3O&4B;27y!yuVbwCf6wTH-jYsO=JC@6)$new`%gYc|~ zzL!>vd31y5&EEzrFvoePp>tCE2%3?2aW-`6XfDMj+UB48*Ur8viTd4(g8qGIzl<^e ze+|ufr(>fXYhKrxWJl$2U2E~bZO*V0Ar=|vG*d4VR0Ajvd7uZ4{KR^C`1m*Z%3n_X zi?VJITORW_0X#K;Ee6_Cpoi<7Q`k(t64BW^1C38DH-%I$e?^ohm~X7;2;=zB+XsBY z7Q1!XBE#~xmj#NprG3Cb0;91N(Wk^`6(Tx)qD5EbfbC# z>P);EY)5-?+3%OS@0Txu@w^mxV(KzisnvZ?-F~TI#3f2a?B<(B$LriSiXrS*@Qxyu zn9i&ie?KzzRT?-47Q?_fC;$i)UXL{%fMa=${|-&?=r;f4I*yv3y7z#e`1NY+!he#d z&fiE6&F%sXl*OIJ$9ieYmF0a72TG7<+FyXV#q^U^o=~nJ#D@H9t%1%d5DWg#S_9k- zOQ7NRwAQLm3pFUj< z!h6sEiMC64#U&1sS@VC zSiS!ngO34z0g#3|;9R;vw15Qx3V<=c@wYb25RxSWZJ>7Ifb>&FmjQ*ruX(TdcE$W4 zi<1Y-17OdB>44-)K4@6wDaBS(FedEN5*@u!tPr3)Xqo{)2*yCl>Q_hW<5@0-FK7!tHU*yRed`l1d<19 z_&%kx7$gOF#@)5|5eWb6{ktsWOf-R&IQmNQkdg%2@QA3sCep^2PUDhdy?ZJLcgrV& zW(Yu8RMLt$hY4hkK%$l8!~|)Im21t^0CR&Gfo$5HTpXoz)n@^o=0B+K7*w~mo|4IY z-K)b|CT14b9`|fdlp4QF^qYYAr?eYs#YasWfUPkdIP<3hbO|b8Q*OMu`JN)?n^zwb zN?6JkYf890N6)R@2P z;f#0s8#Lp3;zX4ZJ^b9_an<-{@~u6aVA3xR>i>EZb=W%n6IIebi8;BX9n0F|4SZ((GT|7_sk`+ zLvL`zg$XVnAuGA0x@^-soRvx;{u?^C`wlSI>2?Z^{G4%vmwKmYWm8cSWukZrv;Mc$>FJ3J!(ae&h) z<5&kW9&~dfJ1zWRC+T5?h;MH3$@s_ik&FmzIV=N+Wp;+vq98L9EppX=e8TUiVl6JU za#|b6wOWBn2|&{=1Cpb5$A+l0$NslwFaZ-WkZ%`4jYy$S*0@3g07--m2L+67lBu}|^p{kG z8pVM_?NV-#|8Qk3`U;>s0ss6?ycxs-U2yxkb3&~?EkD?1N$*t*_-5atn1j_rbATGM zOw*9{;zK)txc(Y?+f0?QijK8q8O!nxOuD&DDB2(h53IwHq)cbL1f1f4Bk^JevaWB8 zcf*X9mayy6Yj8Xk8i0#WO%Az9z(HwX8uTqRKZXnzXQ}9NHBLRJ z*fJUxWuhkGH>=lj##L>N5O_ByJ8aOhbS{HcP5M#r`)Eg8H3me!TLnVt6EC%i{p1ZZ?pLt2YSpLkPk*1F zSSXFnmRw1yJT;4zvx-^{;XDKG1#J~Qe{hm`Ya8fAgr>ici#Y0wlRK_5LrGcH)C7u8 zi-g1prUpVjpyIUwa1S8wuQif?*HTGHHA35%Ke8*~%4?h> zPOkR@rZ(_7h9L{Qy76xs1_u;Imgn zDju=xE^tW4ga#7j57%6-21VaId}(;p*W=U4!!EapT9Wx4KTw`6(&gUiip6Tq<~4ms z?<+ar+8Iq;p4^W}YkYuv5VR|28A`Uk=!q%v)aYF}+AO%1nXjsSo_MnZZ8P(UW$!$k zm2C(^%FB{m>w0^)KG8cu;)@Qy^C?44c=Y7vl400r-Dp1zn1!Z!N;$f%N@4?WhPw-= z(kjK%FS#{!d&FlS>l9S87Z+b>l0Oy{WP{jk$g2O;qQ3L`;HRkhEKc9!B$m=Thay4b zvmK4+(p}}dmH@=>K~wDp0&F*ns9HSw%xtP9`+!hG=RFRcElm8%3kX01n!L)y-~I%4csTCi@y{Wrqg z55sfKajwA*OTuT%;?~#!^K}#Kk4d@Rr$vdXo>A6sPLWjn-{VC_WdtPuNV-_Z>gI0H zA={d+nnRW#wD>hts5-3&&<1JPanYQZz;>D}7#` z>`}^nU4}cgONXj=-^}^Y0_|&D^|WVAU}+%!G2Yx>_w`2B$p~nH(OZ@OPI4-nG10fZ zZH3%p1ALW2TAKuK;=~H|el3U5LFZA6TI#|E< zJ|Pg32D5s4E^{0BWS6H84m}4FK2-QzT@SKmZ<7igXj5 z7zVr1nJx$-7&PWqT>x5|icdrWSwj!LmI(Iy;pZ1l^FbkFVo|?ZTDEQVuA4cxGDd18 zWVF=c^TmADQF(>T5qOi#fa{Ck#V%ti2)4-bBhpJn2L-nGacFIyK;8Hd>e%Kr6xv9> zvgm)OT0#$^$;f?$g=?SfD)=lQ3cHR)99rrJb{)K zi(L1r6BL;EuCf9gLCh9m`_O-K4i72W@#pVrnXbrf*el&2n5Qt!PMxxNphS}V$P za2yEW-lkg?^(-?GrA1(b+5iYn1QjEHTHD@0=7{P5R@nV)chj0oeURG}=MB`0AUK1~ z!5(R_mq@QX;g9NQv$lRiQAIA^0NTUSM*7^65Hh*bdlFTI3u>;d+z>(6CiK8o8zfl| zr=t(^A8TG@20#!RWsO<2AJWBzAb5{MfQVXAP8_tP)^`o3h__dWWA`rS0|3j|%3!O$ z8SE!>;;jcIPLvYA#Xu()vzv*~O$O1j)uw&_{sq8?lOU64;e2LNRDoyoMIzU^w%VN0 zp$*LR*~<7Ftu!4upiNqKv+M=1?j{R#T{xzx$9KT-fAT;Ubjs(+GS|OA{`mGWz;Bu$ zHVz-P&Z4l758VddtsfCcmIQqF&=r}U{)UkGa_;<;VupS;00c~0cCsJ4fvX_)m)}q> zeU{Y35d5nG`fGRMqy6Bl=L=Mdt*ttS659pSPMCf!sK_> zxB!`xk;t$z**}lujE!8*YITiYn z>pwahjL=23{PZy&T=I`@+4{j*twUNNK;v86iLjX0;=i8_<6paN$8c z8`bhWlHJ(WcK=HnNt|Pr!P=W@|Jgr`JFN=5Ll|+;4%SOrRR!a~RE16yq)~z;B?scM zyq!w2$O!-Rh9RGu^Kx&m3SYkQ={h9PITVTRmw-aRSU@$_2?+K|g=z|*m``$=;!iL@ zbydK7D`YDw5?FR7-V+mj+L_@VDNg1a<}he6y>kC1;)24$-AV`vuR6n`m8-FP|(Wl1xqhq zhcUMgdVm1P`&c8=~kk zXDul}GZTZpkQ&~OplOTh0Cp7FPQw3!1kZ0r)pgR|7gARSAUedvP}6TYWU`7VA*-9W-@R zR{LeLknbN)a@-0-x`Ukfl06L12No~FmQC7!ywURfHs-HI4WA8+F>o_wYSh5h@^X8{ zg@juf!*`%V{hFQ{gjhiHyxfln{BSF{X~}r7%jcjF_}Gc#y)$(b+jF#3U~%%%6=>o7 z8jbvsr`@^W0{{hmKExa3{OKR-345jD-ZNy98&LlMm(X)|KCnJ#sIcDA)I`z~C6>F< zYc~v29=GT<-aU)*xPGm2s0r0wZwKeX^LZ#gYR&L}({U6=@fvV$HK~)kYbwRmi88?& zGP!CA{peo<8}%@R?@PuQ>jvgQD&9Wlj!%V(DG>tBNKV{!sm_m*S9PjXqJbAeC4%jY zx2!DA?O&XMZ0kMd&fS!%7*+?R=)6#5A3W|j3$%aiq=P7Nz_s)_{qMbr7fwo4+w%eY z8Oo?G2aq|YRPxHp2dkGHBokmEM;SG=3Ot%-x2F5`ho;}(V@K3D1GK{D#FzF3Q_n`& zsB6JiLQ{o%Oh=cQkU#{JZeCEH8tp_zL}4ldVFd+g!|(jNLE&|^o{QE$ zB5xbps$-Z#JIVZ7g@24Nab(a_^J(g!HO8*PA!2;e^j#uAtWcrTCA%}l$K<-(IXQ__ z2P$-w8&Z<&IGQz%j1#V9|Ne{AWAW0CNNnj&jT#qygZqSkN>WoMQ}PPs`vA;k(k=wBjdc58Vw*}o%uD_G&I|bqVQ)*E z&ub+_R`G%00gT;$N0^s`0AV)PzwbPuVg0+wqJr&YHIwF_fC23J?>rCzrr7yT0m$M( ze9}Pr313$ZvBGxaIJ)h(Ls~piYkyY*tczi9pL&CI zNt(k( z76A7{?}%&X!39vUsgkADRs5$9I)a29PH0;Jx};)aW!KsgvYdBb7O;$D;YdpiHirqF z=i{guYj0~0Q^aI~TK@%EPGlh1 zwZ6jVGFCd%kVCN3)C<0EAAlZcmn!$js)P4tsYzM+Q;@^}2hZ4v8rfT;)>&QjgfRUT zId%{9{fnaQE&AOg#`}o3G9(A|XsNcy?0zR^>+3%?f$P(Q2o$bm&+?w8P$F;2gJ@g- z00n;9A4u>vWl9H<|HgLwE`)mpPrz?RT=dj)3SIC_U*A`hr-yjqhXU-%M^5iNb#DY2 zxDhSH8)V2f7&nurBrl#!SRXq?5Zc(6!?}SjI9ir8@HsQ{IfyxBQUaV$yx%)1XmaNb zch=fs!$<<$MCV4~t%UIK4A2_6xSzPZ>%-0X5)7zQt zYn^9iHeBsSvTC}>W|l!Za2f%0VM$zbC5rcnPegi=Xw0 z=UQzSsoEC%_qKp6QzIMb<-^F!Pets---Fz4zIisCek}m9_`&$&EiyUNy7|>XKEvxl zTR`5ZEHeA{^i7>z@;v#D4I!oFpY#Ir+p>cmbiz@y=`V(NN09`X`OY(?c2%~Ye3xo3 zPlVBc>8<8oUH09}hE?I0bcM$bQ{x6nc*At9vwl2T{?7nsRil;UJiO8vW4^VRgQID> zQlWk*su>bMG0DZ&QNIt7;)zMZZlox~wPEG{rXkF5VS|T;Xp;-fumHAUjcPd^^s^%P zYlpo=fXfuk^fbSeqX@kY7=USDK6fT3xsrGRR7%wV(*hL`f-zzhyQF1@$Q#RwURnzI zB5skj_lOo%mj56;4^(#Z%hq_qaIu?vKM%8*igR91?6Hm>ZUDOKaY~kV%k{Z69(TJkA?DH}P^J&gw#U7SximUd~NR;aPl0kZXy zJX-7@+newXS|*-zGXmyw@ho*?Z>7}RZg9E*q9%}A&6t=Eojv&PDD19)x1#KuM<%;! zY~v*=e17V~0( zEarUuGE;<2m2jt}OQ8VbX?xUiSXg6iCH`0a(t3_aUeSeLz99=E1^p(#_XrIW31MbFkHj!9zRDGYv0 z+K9#f1bw>V)FwFx)E?9=ghPT#gJ?GbX&dr|xjD6-6a<5e0O_-S0oQPSOPX0s0LEb1 z^M*~QGoJ1Un0U=Ac2)zxB!~}yAI<<;v2D@b$3w2ak$?fx2Om||t&B<6%bCdboo8do zk47RK;*c1JTfbdOp=pNMaw0pGIy^&KKB%VoD!@P0@EkCwwE-(TO6lVX72mm?>_#@^J~>Cd(Jvx zc;BWE*Ru5!+ypYT*7Ava@WK$!>@Xs{tQ6_{rg~eLETKgV2%S+g0GNXK#_yjA%uioG z50o!Eyd8)XV-oeoT*A>_Hyz+sB3p$Q$eC5vvh4z+_gzvC?l+V~39B9gI|C?^t=NP_ z=+*+$zEr#?o&}x4EdXD-z;iwXM)+RYgxR+MsDX}?Hv6`Qy!_)?jJ7&>s(DZV#-L|Z zSat>H>0o=)rE71F|H2?*hN0I>wh*(AWn6c*E~cT(PFCBl`c`HrE}F(@=PY0Doxx0< zzDuU5_W*tBo9}Nu0dkcj>odW>&;NV$5CN{st=G-LK@}+LR(ux#dcpgjZseQ}1XGMe zSR2lxc2M*U6j;3!<-!7nSA~1%+JEN`QnJvanNrx|UFGs1)hp+hlsUp9?BdVyOq`ZN zQ6JCa4JKd_5#DD%F}T~L{+8|_58@VEXz@&G`(DBSW2cF5P=#qwbZh*FU-2;J}2?^G}y$=fBr77 zGqiDkFc`9|-qz>B&R5Ha5}h61gmhjusZr&MhJCcMVt5JYYCXy3ynCYX0=xQ;BmKLZ zmnmKX&?Tz$hcAM}c+o)`tPO383>Vs*LfTPkEA4@L9`8VU9X6_@Z)IBA%HF&8D|xm> z5<(HNUB@nRE>fb{8(F9iCfFIVR(dLJjT%?a+!3z}mQ|_?G}T;?2YXW;jbv6SX`F2H zE^!!lBwEXS^aAv(WUcVGArh1@m7ycQmQ;MkKyJgA7ikcV;{{=MwPjAMW>STp-?h|{ z9$3<8FB&95{R_0r^&T+4+Zle9yBJFG-x4%5{?w4iaW7maWfgfFhB08*eeBv*rp^^9 zbJ?)BJI$ascXnUXagm~FHuT`CIXf-zM`uZsjxl`eF8JBU2C;C1ba7T>@+mJo*1s6I z*LYVSx@GUS&V?K;-H*o6oE~p<9AUZ9S0F`r%E#XXjRtfD-=TWcYna1YPH~$lU+}OI zio|Q4_4f8@@*3(iHXm+j={{;qan>Y#<_yq`E3za1}FZ4d>el^BZwpOZBz9F0+B28qHJbQN`} zwL6=CSt4gHaURDhs;XlM;@s^p4nI`L1f*Jyft|=(-WPpn#+v#Pl#2vH6Fiema>neX z&@=<8z|V8ytf#u6KqMd#qi?wMQ?)-y&B%y+T;U_?0?C;%!uQ1j`JK}%)t+GPr&xh}p1ptfnA%!icZe3vjQkr;^o>>5pN(HR0rvO$M8I-jg zpso&o*9Krb+YH_<0MzDa zZ#JP_Ccj}z2foOeaXLr6kR3)fP{Zl3q@`N8yfVPJyexW!eo3 z0~Qh!wLIo&QYHc&kH>Tw11t@g84wIV-31@uO!=BFqBT>>#NJ9QM)NJjzLZ|p2z8}C zsUtiaE!DyLXej*n@lv4WUR}4ab^FjbO}x3ZkEcNXEQin!ww_teB&N@vSo$+))xmj) zRE+EHiZh~P#V|UMedSZqXTi9$Ni_f3`0UJ}^c&ykgQ;H*GUP%Eu-q@%#u+BN)fH#k z{=Rj;sK)j}%#2=Xd8nzN_qr~0Jl?Xrj|h+_3LdZC7eR;Rp!4 z3b>5r2C`m?Aq++5vDSll_V-1fuXN?W`BHU0*XgRRa!+JPUCGnNu3|$U$X~ z7&*=72?RoMcUEu=mv*I^GaCoTv|8TY7er;N-u(_WvR1on`!~>DM6No!P=g1_rDN@P zNiy#`BWkd%-R|+P0{XBur>CLQ*<$yFmI(MvgePJeO7S`9K}}OlVn1)MLanljoa}+q8wb)U`i% z^&z>Hu}|9+X}6Xs!Jj8_HOc6efrlhgH*?TiQW;;>#jRZhz@&a?9y z>p)Qj`b?9nJJ&lycg^I-%0QA_pRMq%5IL^lMr}knh4zeW$La&@F(CtEAR*9fk zUK|Ups{BiNga?5ABubz8lA7#`|5Uc?-OT{KvEmsWwEsl!7v#F0cFd%LDi*db@=@~B zlNvSv0yP;C#HcD08b3mVzxHoEqw!*>(ye(o$1z(Y@-YGklyCW;2+o$5hSIFfD z#8)N3nJRyadT-qD3SSQ_Z3n^KB>Y&Df)zhAiRE4Eg}Vu9SJ)XLWAWKwvby0x`CF*F z>xxhN>8--GH>^|&cF z6B#{>;7y&e3s}|)9m+8-VUf=6r@tZ&M@#AmH$fE%tL(i%DA(A4&4eO0ZOqhi8n93`KS8i?&$@2@te^MpIC=~X5952Z!ma3|is$ZW7h};f zJnV@G2;IR-Q8s?R1|aN76(@lQa#{zKg87V&;^i4E#}YulbIohEbUlE1a+!H@kn6G! zvFU*CkM$d7=+1aj1BhB&Q8hfC8`#i*)q>4k^Dq~L@olfJWNIe@$3M$?0=bO3qowxU-R5> zgOvS`d9nlMDJyFt`lLN6TF{UVB1oKl!AB_fWSc-cX5(ixfXw>ewi)~UMJR-4tlWz+ z<}hf7{dFgPnTocq7h2<(t-L|2Ief9q4 z9$9Ww_p1&F(mxUnBX+2}##eZ#7D>&U36XlHt}S?$qVj8~?)-sw)!~+d86wKgppw}={vdR9aDqas zR@T3v5bAnQ==IIP3vA6x3Bb8vLM!7N(-{+in;+W5{RL}2XZA`Wc+ywdj!_O12LHsT zULj|hdqjjy!f?LTsv8Yi>sKHn3#ipoUjPySDP~i^X&5Y_*$PPxdis znaNl7E$#Cl|w{a#oR^ocmXN$CXaQ(N$BNU|AS6zdi ze-J`po}qcYpbE$>b*c8I!D@VwDRl2b$U8e^r?P9&{4GgU0gx72iI~vToQ3 z=-JGGcy%)~-aJwchwp$J87ZGAYQK9mz!QB#8n%Fz!C#=%A;26iv?BN`3~&6z-0%x4 zCUkz^=zHV3x`fVC(cPIbe%7_Zm}~8rZs!VuZ3HaeFA8h5C9&_@lCAXM?{Gdk5loKG zNv*~ku&(fyi#&}_=dnvFz<8X2MxW=h=tv5jRZFi#Uut`PJ*vS3Cm1{4yQf^Ox3!gE z2i_i9H{SHS|I=V1+wG@m41VEnJ=7EG=AX<1(XT@s3!JZ89GWarl}$)va>kanZW>Y@ zy9;<$_}lBTzPV_|&oFg1Rdm$%%&)Qh$9G+~iVqq1*bzsqD$P3vTXol3j%ZbZftKgZ zu2pwmHNM~ye~M`xa@o_!PKBi0UoB~zPsrMz{Hg411yzL73aK3C#01|HUd^TMn-H*E zw#hv+B}T_nLIadF1kZD29PiH{w|)5<8Smw4vclrl$m4$r)e+5Yuf7^p3nZobu#`0v z{ma4{9<|z~|6~D`Rl6LIm6l%e$_kUtlojFN;)rlk8J>vvIkX?|Po%}_3zm=&G8Hi_ z;@>AH>}VSbotj8(LQ-6oQ?~3?l?OTuiE~jZ{S1+$TalFlrx|IWt1{ z+_sO1FZ&7@fAq4bo(%&9T<@D|`f^Nz-ktg=%3EWPPe3lqIB2u5x@V&3wGk2Mpjn_c z_$5cRNUULAIn(RGko}eT*&Y$-cfGz!YTlT1DpsdLdre3hMO2o#V)bqFVXk-Ghn*hQRjU}ItC zJp9<*;$vJ!Tm9%Df(kFtAA=0@;@Nrr9~bTW_cg%23wOW^fYTiU44bWw4`AfdJGLZd&OdF`s{B4l@X`MO%Af4l5fr&vpr&i6YAr9dAl~eY{n- z2Al3UNUyGD)nbRv6#vAm6I*$OAAL3#Rl0yYjA5m9*vFMHHP?&=qs}Y^i_)jW1&mo< zfB5>tWNg;^wq-4xI3WVl;6fXkz&K5S#RIn6(Z1Sjm^j0A6)8TaGCCAYd8Czz^I6BZ z6J#WNUGbK-qslHZe!4AP)eXf3YGdA$81xG0%f_)zv4PCdCyg3XeYNe8|HRH$3<=2# zZDYVf%t|*4li!vcyx_XIxE@siQ3gJ44#?vrQdT&4j&9yzZ1GTYXSsIVdLr_)AMC#! zO-OL_sYql9e4Z$L-m@9&=4?!_5Rr2>E=7))2>84;R+P2J1reN1rbxcnM+GO`w=dB? zK9`dE0565X{&`hRSQk!B@|{{zUhzxiH@G3z(r>yD-s0`OZ1+OQWk`DdmI;kd59(U=03-v`jxQK`lh{j_aKf6?I+BWHONJV^pH2$AJyUXL3?5s;>%6$)PoYS zu0`#E0&ZIrCs{ony>gJN!52L@ACd%}Ni|J+88Z{-zcP+{)3=D6LO#>Xo%QI5$cxTQ zd!RZy1!{ZSLBNr~NA3_j?mCiyILCG1WCJkT8_@BlI zNVRx=Le!}6_!(H-(Um7^M2b4V}Qs{vOGYQL`ejzPz~YuT^rQbWA|^X-CpPcEmy zK;HMVYc32i0zcVrvXT>=u&>BjOlX%T>i&CDT;m?W!Jl)jy!Gz5YrtG@Ju60)ld6n8 zqIk*xnPBDbMkDnsKD76*`7ccRJHHWqtdU76MQU)T?Udn@*CSIG5cvEJyL3lEMLa#0 zpj%Svom`go{Zg1I$a*XF>&ZjFi`KXTW)C&NoIez;>LH%qUGU^0ZF`k2|T*}E(>5G_ek;(6IV^Q_;)^jD{Js_3S@PcL2Yu{Vbq_tlX z^luewo>H@NPYp=rlBeNqUuTt3jp|h#GHA}E=T3XsU94PJdc9yOF~^uI-I(O^vqYdw z?3MlT?km{31Hz73jfYI+tD7xRd|#=#c(T~WQ+N^k4rspXt*g~v^uv?WM_h%V5sssF znyqZ$#-cgl^U*^NyZNu8kMLso`B?h-i{$k>&5nN)eF<63FLGoR7W!BQ`Ay9#c!Oex zAjpea&{N891`(1-Kk5GJDYra+=BcwPe6V0@4oNF^3t$h#AX{1N%c-vGe z{N^~$M*i1T_)g0b^ z5}$#+t(Ce&Wph0%LAq;Y)ncyX=TcR(&?y|*jS3vi?A@-lj(7hP zIh*f(ek!?9A&pT3*Zb4S#YMMC`3{sqKN%QW=lJQh8uA#o54nUZ^6-yN;DWL0 zn{V^U-wEI?r~1#76FVi{JXK2@Itsb(Sh+*T2Vd(-rZ|&Rkk^&;QSxkk>6NyYL+!n+ zDEgh1plAD>#4ag`I>fNtu=y70hx_ozkerr;>gQ|UT#y3sz#Ut{$5)4~>~4C4!I}n# zA`X=PXvwYbEwA;2d`R`Wb{@@q5~rwW`99tIA?R4kAtkv;7w{ZEV?N0xNo>O`Wz2b? zZL}KLw|f2IYl2bfMU>6=8?vA+i;pwTFZqzeDh+%6M$!k?H6H=t`eK%!l^$x6CU9Z( zUDV`8NgT$jIbMa()*G4KlDyrcs@Fct8DWt2pMAdPR*E{{WN8S5+` z$WE~|y5<2F_++KPmC3V6fJYS!>ej3}GM$5qomLsott)kZp8=&gX{mr4o!Imvxrrg^ zytaBHR#&Fo6jfgwN-CM)O`BL&yWCYGJ@=+?b8E{ha3Xyf(8A+{vA-6^K%2!w$<-n= zyQ^#kqyTe}%#sf8b~77lQm^+rNzC9I6djTD2=?a$CF|aOt7scHlqfy;86&rQ8!}Ik z(n2vzT4&I7)F%?M@+GS=3cEA)-i~R#VA+JwlJb^8uV+tC4fE%-@`HY|E4N3jVdKI! z0{yJn%8|J42)Dhnyc&y@eeo*~Z?T2zhbXVp*+%m@%VB-h@IZwE*BzVKAK)uZ53Pc+ z`Q#VX-5A)=`8DOnYHG$p$gjyn#_EG<=FP2bTRveOFE8G*7oiPEt92zbSOwWFE{Ic& z_OBO5$PzsGOVkh(m+Da)hpCxy;&^ir5*r6NLsB`^%m>_F`wUX$XEPe2 zYxl`1%{Wvydd`G-AtXn`SWF2r^&rPHa zsz9_lU1@;B`YE8Kd9wuVpC5FI{~s-OI~s$CL1xrqsm z{Y~-L;;Z%cA6Hf(B%Kkrg;_Kw;W98m@AblU{S^hO;I9n0({z{%bsPM?(er;M>*i=C z3Suj14q6BVPWSROBJHjR^sgL^IZlZP!iErM~hM^S8{LYb2?O zDU5+4J#!8$1zv>>kJ6#TehjXvUD+f7L})1t&Q9I;T{*KJ-suJG!m}}u;0TRVTV?`D>bJ^>Mq+^ zRfi4I0uyf2#+#!4p>Q?f0_Wu~KWn-ZSWWCL<6=~kcTOm{mW~X=lMkUd9}Wu zF53}VH}3ZN`roRg_*Y2yGvX5%W29!0okA=mp^71`1BN=+cxatMKb-Pa39j-Tl)~Q-_ zupF}-imnqo_4mxQCgowN21H}{Lclt_X{ctxhJF`QZz)(r5IkWM4{1m0E)Ff&NPn4^ zmukxk9HylKEltvorA#xy!yPw_L!;~JXZ{6rR%TYF2QR0oucQZSMnCE~K(`IA;I3Tc zc(yCGQGmPLF?|sC*`UwhGlvgF+s=;gzV6xh2zm6u-uo9y=;g+TF$!IO5LUs2Dp44c z866NwaYbExH$Q&M{p>sXe*b}%b%E@&x~evH+(9MRz!_uc!&~E`yJGB4y}Q@EG_0%! zdGWpqKd?LFYk~-j=7=RQW0UyGj|(j95d-U@*f>wJ7cH2*ta))*?{dG5&Ch5%GNMVr z^>q!Qe#B~7?~X|1s?vM8Y=kah;You^RY=Hm%FBs!esR*5E{z&>=n#RAT}-8hb@a0| zmzI6?fb4;~Q5)j061<#AKEPreYZGA>^FpBzCSMW6{aijD`KycF?8`qld}@ET{8>zA zF;;NZ3r|n-nG!?flxPk#L{zhJ|M0Nn34@Opwf_1sSLB3~)h--VoHZ!v5mZULf~e~& zq`er^%LPuZf=OaOKZpU&TE!iup{UvAnH-f_%)3xMy7cxvniPAL$r4YiYmfcT^cR5! zc3OCr>X!yh#b+Ycb-|5(xgy7TXT*#v*=uBl8A3$ntPM7w$ilGoC_vr6d3vPSP@U5f z8mNHN*bKO>Zh^x@>)4$DF1_;h*F+BGSU@}^ylfr=J_}USVNQ{ix#d8V!?S=ByugHT zDUZNIHEki3I*+$;d`?=YSO=WIKVpQE@zDJmo`wf4Q=+=*3gUo;|3;#fJER#LO3>v#6x{bgQ?>k{@%avO}b z^V5}v_jhgDq@8Nk@YZV;&q1wkeHxpRFbZ1Z+_)3>mqE~yHqwE77PxL`7STpy)L8(3 z6~A#f3zD-oRmaD%00M)~>&;~ST^YDY+a~XGyqjU%*0OzwIMRlQj@J9s;CJFw_z^1c z`(8>bzG>lU3?9#61^n8dG)ZR*@aP9VOgiGY)CJ7XRCAPu(ibRcn zhS{TyoYk4Lj4&A$m7N;Ut%`(^{eM+xAo8c_J%ct~$-Hb^vOZ-pfeemLX1Akw?)(BVlUA^Dod62U(dn zrT{5%GhtAMFT%tP8M6e=t>Bf-z3*~|PL-Xqu8(|yB(w=NnBlitQ+9xtnN{%ke5aZ7vy;(7LlwYzi9^Kqk z3}h&Y9y{0-t}O3m%!sO58bFhV%&|uD?YruzU#jjf5%jBGAsajsjYls#eBd-Eyl;M_ zBd(^3Fp~KZ%(oBC^YYW`h7x_uE1cFN#h)GWJe7%ArC}+x^_S!8j=5df<+W+Fkq3ZtHBl5HCgY_xoCc&U~0=On)Dt+)lh3)Au!2O^fmD>zH_a_(D$wm?K|Lg-a9^_N1ha?*_hbzu!yi7`eU*wzDE znrdBL6LysXvQXx2!X)y);IjG7Zv(l81RZ{LkAz(`JEzHHT=ImR0Tp+Kj5wvV%R$(4#LkyK4Go->%sZ@*L*dy(;jD(GarTn8>wG}Fd+(doU}#?4UI8xX`w=Y7YW5nx=E7= z^Ot`n^)DUDoBor!5|^c+|5ML&OI|l@y1At#@W8Y(OU-Xn??Bqx4HOjLrSvw2q-K6tT)RF#ss)hFrF=AAt&rp>ryz(AZK{3oW< zskQDaw@Z$JmPOf_zM^si#X>#5&0@Y%7ap|*S86g1IepAKCjQyQu)bRpCFD^EI7D^U zsq@Gkc0%McL+F2x#)Koa(J9GW5P0a+JHEyGB`xpJwb1GV6Zm98Lp$2Pa=0iEyNpO$XMEU)&K3{F2&Ak_m45{kM*k~SG%sO+V`-P2PiCk5;{+WzauVyD; zxf$W0IWa8cn*(jPgYML2GbfVsATmLIZl+D#6v-Uf$R zo>$)DZ-G~0SPNfqpipD<3UErZ!h|*;&UNzt$a>4DEW0gSm`(|m5)c##>FyE{knRrY zj)w;6?(XjH?uYK~?(XjTZr=UwJ-&0!FC7l?hik4muXV+|!!jU}f$fRul4(2_#?&u{ zRCm58OL7n+-Qsu=2~uYSQz`)V!2TbqFcQWRCm0(M*K(-Q`Mz?hB!ENW_;P^OYstZP zzx`$KZZjXwP)$Hga*EgmeK0D4>shJgXwfMKxueb}l?$Unx zz(Y#=)bvM;3i&u`-O`5|9KAsn?j8J}RtL}m%62jl8W5#~t8&1oXnuS&I^v1V#rVVC zhFrwsuR!&VE9bLQ2oE|xcUt6NUaBsGs`~G*qD-_RN}2aB$8d%+^7pQ^3sHd$l*qlb zWwO_)oDWG)5JQQ~|{ zV&QXSj4u=)9O}vzPl^aHeyRg(^+|uF9(5VS|q#6V1+ZHxCVFz|zZO~K{eqVnDSFAs8167WI5cY;W5TI###p^oNj zq1JWhFHax+OAmtx;e?Er11#!DwbmPh;u)K1ROD&PY}u!SXCT(AHWKKHOi{H#$}oKcZ@A#4}Ui zbF0cT-GOchT0>@e*-e@5d~KCheU#QU0i+<;X*bI5uHy(1%Ipyr!(rzs$=umVarDvP zU>B^jKY=q}0@c%^?_k1TXC!;G7KTQ|lcBlXJ_cY9(bZirdK;q21QJ2cJ9yX%*ZIE= z4_D*_JXG~%BqD6#H64+<++k{x%2K~Mtzm8_OWVeanADu1sPYY9)hlcPA`?I_5{U5d z(af3KcsEJz&n%kl9xRIo+H(w)o2VCrT<%q6w8l55v_+jbuK#NPWGklqrFLx|T27W4CdP+h)XN z4sT^;6?39rHp6$9?KJ*JCI{G)7||Ff7QcEZ`rlmus-sICbFgGF3) zQ_7U@e=<@@wmJ%d$nU|%miURwf<|@oQ_KN(22O!8JhlqTJdb3MMe@aS2$x9f>8C5D zVY%`#tuU#?n)-Aej2CUr?V}`Z0tE4|cRY+YgS42vTFaeunYQH{i77`Up#9H?AS29% z5hPMJ~o;r>n&H9zf73MwBizKJ1ae|^MJ1`c@iNLwbo)_WqHwe%Af!Er%TVxY|%$J2y z(>~WFgMD(UFF_}53*Ywz-NMO%%cHEt`2yg8qq`l|v$3#0t)aAaX8dn#RLfP-TF`ij zcK>t~!_@bL`M!uh5u%06#%eOt?@9va)tfpx=jZ!c)}|K=q4vWFH@{V$WEdCl^Q_!* z*b9W=`bZUVt;~cvR*&60RBr!nR4Jb$#ZN1N{@77*arqOLCCc$>RPj|6=PR3uQVSf< zSBT2$B!`dgU+`RW;&6lPOtA&WOZniRxE$yTV;PItopJ<+-ZTcrKuPf;XpmAFo43w` zQy~=D%gRssKMZy(+OcBgZvCilH*Anh45Ly$BPqTRVSA0ogQ}! zrPnK$6Ke>e*CrE`GZefO5@@y?2!K-4G=%8wUj95Tiv)J7dY~pxR=uV*KV3x&8>2ut zT^Kf0kAh|+Sz3}dxTEu``{r$d&&3rkdFmbVxv>VN+wVDsI~}J`9CZyxM0l{I*BlbR zHi6OD#sg7x{aD)eoLKB*s(o?=8f(8zt+A9rjPCY0lh`A_X@Nc@BoPXXyMH;D$2x3H zTgC(NmzJ|_W&K1!D&b2|D~XYh-?qGM2(cR?X|Z35sIp!}CGoc*Jh$zya4xn|($h^X zg&7u`5cQm#L@xu-Ln`)=277ubT+WP{1S$%b5q~zOru}f(n#!BG_)@Mj8eU1X#(je> zOe=K^%UNFtrlqvz^*bu9=jvPCe@7e0)ev`XOe?Q`TA+USZ4qWLC@|D-pXXiPV+JlM zYOxQ2^oz(iqv6wFEh%Mp1#$)+jbkPT3~5cL)BtsSb12x%tN%d8$f2HN9pH8Y9ovhs zj#C$8G9th_adkRnLcrtfFr{wE(#;+akd7CNYQ0kMSUT=vsi$+3zG;1=h8exLV604w zdg$PhJ1cPCSLgh;B=kuiV`qI=4U!x-RHMn49FKMF#hS3EgNsBorlV^_eJnrnZ@ohN zD%J?2wH2M|JcC+OhAB#T$gsu_V%7REUz|?dO02W##+pcZTMPUUG!?^E!?T@%7`C`< z(|#(h?=Z*@SFy#b3*UgIyTX}|*rvq|$VrwbXx7ZrwhtQ7S5|^Xw2BTBaHwe5LQ5{u z-yYRRSs=To3f&_KBtW)S*&#gcjK^o$uOFGV-SZk8`$$Er_7m9I9Pd-Ly~3wXE!73v zAo10wWJXMoAwm(rj!(ZG!vz})v9`n@LT|9rZ1#PDQtn`3`(NvCfIx+(y|lDidDSK4 zaa*_oHp2C468_5B1uF`F;T`i{2ZET+PJuL9lq9Hy4e0gn zC=cgs8>2zXCjHd)#UV`|0YQ=h2a$m|=h`^F-Efp7pT)s`8LR$Uu{o!s;QQb z^NV+Dc^@xCyDe=_5#E`W9_7g*!D++FEr)DRhz|IEI4M6+xNR@%JS1PxBop%ri%aX> zfgT8tkRgo;QtXRK921BK>nIk?oX`MuVPChT4c~m@RgoJKIi}1>u=S5lm^^ur;LLqpndtoc;Q?x9^}bXo^GiufmBX1#hTN;bu_h$cwLR+3)ZdlrVDZ<9iY;;` z?i_!bMU!u5wtm4Cp;?UgbacZqzYBb4-Hx_t`>0xw@i&L~4VT9NoXmf4xgRuJ-*@E_6YFF&ooLOojU~$ z0{)Rrj|f0-TKt?Q6@(DNDwD|v_XLamS3KEC|5Kj6_BmxswzTMiK7AwzgAO4by5~#f zK$iP}} z($(RgtF&l=7tsJlF0>SvilxeEZum~%C*cox0E(!}UO;LSl_PvsCff&FU##`64pZfx zYN!RKNDr}*F`v2VGx;%XN+@rbOAj&&(_zw)g8MeNdjU=4PJdHCnC*9}A0Ip89zlK; zMKD>1A@ij2&oLVkpnNNI#Lf7ilIj8L? zeCpShjYx9r=Uw(N-UAzoS|yerye?* z>Zj<{%a{1`Te6pPFmAIytAjAO*j$LrVCY~G{+cq7&yv5!EbMw|aG+yAHm}?xz5MEG z5trob{G6|Q}S?IrH$jgn_iXttdeuLXb<^TY3;e{xxf2@kz>^=CBfmT8T#H3GU-V}4HZ zY$8xvXW}_)m2*|;AH&%5j}3g02+Vo8N#sm(^#+8nZy{-gyE7 zj4+?1WHNuXKkF+9#+y)(_3pmM&E=CY2M^VReRC4MBiNiM5hKpw%}4>0NF@x( z!pC0z(A}1aIw(`6)Yo z-ze7EnQk&IaV(p@>hYvNr8d3wBPww&u`ud*$Wsb=PmR@1hCE|`9vTca6#3sxhd1bvGLp;Gm3Hc!xnFr(Jl)kOzjnU$_l zW7lHho#pq?(cRXc?{~oGa>`vBObE5Ti@gz^o5ts>+Q-5Yh zk7qycCNRYOAX7{#SgPW~7>7g+qsv?DE<=EME?AW4KtB+sHsRm8i&ezOh`9q1n&9oW zLiMQ5Or~PmE?TIF-w`1r@XB_BS2c+}VP1P(5Mu_Xaw{zxO>D3500;EfB79Y;atUO% zTyKk=56+kC)_1we%aI60TY&05^gEsYxPxKIUHHsWexh+cwqJUg^E?Viq*jtST}b+@zmHHQ8nQ z%(}>X2XEq2YyK6ia-wdL_~KcBnkdY|55FBoeF50U?NpbM{}~+n-|9 z>mrxndsl2lHE=Y5*V-R2?yl$Psa6`i(m7S$M<7VUEIW&xg`n}V&EUj#_3FI1C6P3} z7!N8nkB39+MsCa*ZOyCJ(HV6LE{U{~$h3K^`Ji#w3C{W(XEHg3&e`oV)#g_kFPJprR?e%;E#w(+hm* zs@O+8)~U-YZ9xu=*K0+A=P*Xkh{rBGYP|ck%N5(Tb?tksIgFH9P$ptq099NF&Z;R& zj$`CkjQoRVxkF<%@2na*6}>0xSLPuNJB6a=L|Gyqn$EKOS|F?O^S6g4NU{;|-2?3LhkSQ2aP@sHW5Qr`^GP@*VPp$%z;Sbna2yXdEOsuP9aYMk!@gr?_b=R3- z$X48w;W`p=LAOMaXDdKvJ_*ZTS zZilYqAjpCLMmvbNO`)$d?38j0)n;_^3e)06h%L&mF?WUpLg)o0GME$t@c7EnE>hWo zJJJT*!o}&`xUI|iaod9CKD#b;oN~voVlDS&*4EfDGoD0cnluU4Yz@7Q#Dk1p~~po8C?wn z(F=%+|GPFA?m7~8xzuJ1-+Jls+vty`$`==ayHi(}ikAF#WdtEbp+Qy%a!RfbOf0E9 zUX(_&)t@|pNOh$zW2kB;-@tRzT$&Z8km1+q!D-BIed-~+4Z0Q4|0Qf|mJ8IG-)*Ya z{oIyWF}_q%?En~fI?G|>h(!#R(9#fG9aFL38kBzh$EGwMR&hjhU}q6n2mXcAPOh@Q zuN*XVB!>J7lXIS~0jV!;G9G%I`R@3DwT-MqC1AtRyAmp3zwW%V-Agy~soBc2OTNW; zdaPOGd*;*gx~Q9K<-WzuH9Q*Vq6dYF^Dj)o)(2u%GNH_DtLUI4JQcYzkGV0aF7&%1 z@_esi-#U}9xPz&2Ik{aX{fLssQRK6=7Z(6%V3#e<(O2*S|Dy^~*mT)Yz|780^szk_ z`Q7Wp+tm+|ObC~>!VP#kkxqR|4Q8s*O%(2ShUt6`ZGeWyG3el`LjgQ`-hSU&eBEF{ z12|Ct^QO8%!uD1j;Fu#fG6zgc|Gxu)an~^i{#bhyVk9crd1&$PCmjyoj);4N-3%op z5JaBR#d(JsWT|@zr6xIq#8U{<6aU!o31c2f$qz#(!lPl_k!3Q;a^7ns)c0)YZX}rY z{l?*R(cjnIQ(@Md#b5D7;!j1p_mf!9rbE?@sVV8OIr;mjCyTBR5SuI*cTJxNOEp6L zs-;SBIhako(Nt^YLUv|J71lmlVb}UC`A&!Bhn~Zj-TnQGTLV9|J+-S^i*D$kUYSAz zV-T_lip^$`iKx0gYG2@o7ZB#}3t3Lj|1QlH1_9U^bIN|#mGmMHjTBC1N7u1(OchdF zf89Qnmr-XCc*;e_E`K@t#9;5r_dajGtG^pF;_KJ=m5M9`mcjH^OWNlLLas-o3)4)tx3B2(1m2u~1^OdPAC(u79J@5Gz zO}mXmNIThCir+@wj17DRZt!Pu4q$=(^Zy>vd4q+-|Bgs+s}A<>I0yLZN zs~9$RTLsLWZ-I6h1nT26uhlp?erRhz{KHH9rIk49I>x0=2V}A~QeTiYY&}$Mi90)F zvh#uwI5|BDB~S9}{epanx1F6WKSYCWgVkZKid1iG$@BIS%BKItf)Yskrgx}Q2qUzh|Tz&a)&S( zwpw8ZxAMW=Tqw2ek(h{}>F@GFD$)jUbcBa+5(}mBlJ*Syis3xcv+*p02w`k8SHQh$ z9mLhUXe0~UBX96lt{?m|22P84Nj7F&0QcVvaYM{yimLOarl_d%>6wyx`_s~eh=<3A z3~as#m#gHUe*07H`vTcH5ryMQ0$!QLP_FhmPg;Gu02c;D`FnU&#QC2m>$I zu>lDky#YLaLa1avbM6OEO;I(EF`xsh609J4$A~T;uHMeQ8Pcm6T&54VuyUSzW zGaK8fCRgB;s6QX?xp;e}iO0&L3%Y&eqLdqJWk4ZG;~wnocYKZ7J|i zObU8?hy1ZpJZItrwvKbKabyxSXd6kE(sKCv^k4jOyF+I*@;LgX?YVGKtBtY?1&P-b z83}U#;v=fN?c0Jd!&+UaDyh%hhA{(*=S*whwBPJ0!HZnBwXthIgjs1e)x;)>3{n2Q zH7t~XQ*%K$v6Y)I)Kk6p#dzo^k=;bIhM0Lj&1AFP<=HR4zTa1Q_fiq=^s?R|0ReZ$ zm!vhL8I9}Hx-+16(`hhP*Nm@gU-3EJB&-~^T?RHg?T*L3eEGqUB4n)K4jEWRqwHy- zD=m(LBX#Za3W@N|Aqrme1nhFR+vZv$6HTp%>XntW=5sJTy)(}2p&X-(=Y}LaTWUyk zAQ79#bGU#q9z(f#HJs#dc)R-Rez)Zb=^z}L3UI%=@_5u&?E?d*cC6Vo1#=BObR=?L z?h9GnniC77kh*8FP$4*2hqNf~CCNSHu}piTO=a(W&g-Q=G#ke$Vms-Xtjk1hSw*gAEA>56U5jr#*^L}Lz&P)lUshNF z7ny_d3k(Rq*%^HUm&e`q2(LyB5K@WU?Qd*Zf6 z9oksXO*ZjnU8hh)d?c|WHtuwO0N|CuF$t{{+Grplz|zar=t+T^sxA3rn566Q70?yNuqIqYFPIXwlO(nVB^_`m9O>^ zIejUIC|CA03$4}qEP{f0Tck_FATW~%CDc@j#>hLRhnL|xsE46ZwWZn zqITphU)Ry}L*h3?HWE@hex3OMsETyJ1Wq$(_CEhFzEPjKSgOPLU$4HuSi}YJ4HL6_ z=Q`f`699UYqBeT=px2auKV~Wyf*=D7Bm7|QKtNRw%xy=e_lTd$!u13F8o>D64w;0>H4_vga?5N}_eL^d;?`9*8xC@rw&`%^Zd zddTliyXmh9+mPqT7>n8Y2kJdl(oJCdgm!(v$D%xxXPeBs)PiN@Q-A$xoh=-e~R9Mz)1{gsS*vYtz z3Lc69^N&)wgpDpsh&;A~^U7SQw`nYWzgW_*RDa^B5o2qrg2?!AU_l)W4Rm}OO5FnF ziddvox^dvy_v#Eh0n7e<0v1>L?t)2x3;mx#JruQy1yn*dIe@2De~+r8uKhlgNmf#a z#259pn7ccE-=?(*c4bB8cjfX;VkN8+%^6Gik~|8$d9njouz}VuNRsLYfZB3Z*k}m+ zS6u%+dT7*SxUp$Ba=k?}GavSL);(}xmYCil{gkzueGib@#%#{l z6#8b1zN)&mKPY|)$n{R$9ItP05XBVRE>YtS9;r8h_KGWOptN93&z*nx#sjG;nf5_hJ7QO>H(Vs<98tNY zz*qpQ(fhe>>ymeW{$Voq^_M#SueA(%>Sll3YIlE17>7{OBGtNn*hJ&+$^&?(b!I^` z@`d@N2}gg&D|GH`dvAyq@y3YY027CrE)TyRTck5uUEc@6n2S_|+e;X0AsyteFLqe2 zJP|bP(K|1aW1LD)L_ZlA!>SQr*}P?&7sHcZV7POSr<)=RyiBr8)OlM50Wr#AUo!xx z2*9$K^F|8%pA~Vn3(ompMTn)XD!f%h0R&JH`Dt}Pzb^{`lQ%-J0rgZ~u}JCO+2eX@ zN#jf7-`P!kzH?49OsQi`dlDMBpKZ1V5n3y9?))~$)hPhV)qq@CL;3GrxQgg^s|wYr z(5|)zX@pyH+AxZliti?DsaqF&%QI$UU#W_fjxqA+ytEaP1F;)s#&So_($Sd^kbX_J z{g}F$eDQgmI$o@h4-x%-I-y4w`o(<*=3?*TOS;dAK$CreE%c6hBa>j{bW*7PlvCi&9NC>u_A8 z5VJk{Wl*EHOkD_H`NCgRxcxdwJFT)Zc=WZiXE97OZ59uAbULh@+lf1^RtLT|e2{_j{=a#_y`XQrdJ(OH0auX(Tht>h%bnjvcv$q1YS(`rP2Zb+yPIa0C4q3 zNeD~`U;*~$?KPE3!h1{o9<22M{KZ*i{e`Dmpn6EeA=f~6f|tp_Fwl3o5}w9ttI!3s z{l!#Be3qBuynCGcL*cFzObZDe1@pYy0#v+tuU=o1Dd4@9H84oIiv)r#R)^$=W-A&^ z={@yB6*;NKHl9vyOPcL_j;NsGeImg2^MOg>a*CxjRj^!PDdgcXTUN0&3yg{}7}31$ zcgR+2Ewr@;)VZH6Yv@eKhMp5@oZv zg=q`-u)c$kEHAGGuA9`hCFzha2)hr%Oc5CT2v~R+m?VL9SN_1B03CA3KZ!eVc+gd* zjP7dY*Q9mUXq8nJ-b=Y=U)aP`kQwjmm$|v=;~{chYHF(dFDdzc1WhT;-&-YV!YsdOdaCMR6ACK-IgzvHBhrY%hD{o1N;(0Z+4GNc`trJX#}%{}w_F z2_#zw&?10H$A5-~SlsH&TZ^c88yXngf7sn+s|6c(#^Bm2Y=ByrUjdSoeC8{R!7rOk zH$4HY z>5Gu%W3S_fyuW{!yhK}IO}44Jf~~VyE7<8SB6uib?#hFO&+b`c*?az-QMSm=lS1L= zX1Hb-Iw&hB2G5M5RiyMcsl^Lg0J(7FJmsTe*CIW2U$;cMZX=h~$V!Wn%bEL=jLp^U zb!QXI3e#6nZZ3?HHsJFX^j7y)!irj19JYeAP;ykZe@`jhOXwiuyc&3*SxOS4NyUW{%y1BO`jTUFBQs0P!z*R z#m_aW^mmSv6KBfCpA#GPiXvet^zY61(pHQ`&J5Kt*RVh~@h61(nQEu z<*1m-cKymUN)fTi;EUO;K2N@KLDxQ-39cRl_M}dTHd?$id6OhXjn$XZg7K7^l&~s+ zqYqcu{V1yJk4e*^fJ76-jhxs~mTbB7dGz_)d%}@`I3rBeR*c-1PjK2zHK@SASD{E9 zhXGiVH)T$OQPlZFmEnJc7}NbRkbV`x{n)mC7Gh@|0}yKa*`lSH5cnqU7IO|joq%Q& zwh#X!hi(jC&|g2(`>mjX5QHwtyrJ0=uh$FSMn?*zlo|wC!cxP~VjWuVNZMq+E=EHm z&O-isW4Ziv`ZW3vyT_|xF^{(eC4Y7OB=!`WVi#;&K3t@Fu@?0`3uEy?2>8HlO$eHA z=TbG~(c67TO4mx4lbrZ<5-GHjc8XBBAb891jo&m=GBr=KYR4go%K0ok32L_gptEm# z5Oh28S-M^F&rv|FJiowsEV^al5_JieEpF3Dvf#>O9&S??RoE2?#OXGNEz?dE*~wQ* zCecvB-g(iuE$K|1UO1F=Zj( z0E@=xw-oi|F>f{b7P&f_!ld>2yaJ1x=-QZ_(JA>?f8QsHh8~?C`P9C7TYn2L(N=@L z)Y8C!L%y+1Oh8+IiW8a1lQ~`f78fDkuabJ6p)NYxCH1@s5td zUF~^_sG8TCnVeTud~vko{3~pploPwB%KzW26V-7Y{dm5*uvMETJ03i;k7+qbRJS^fPfuIeWbJjB#FcEH4jFMzO zy6aE_z86Y>zB{?gI^rVED7e@&y%qG6R8_ZA^!A5$5W}BYgUWzjGCX03p+Y~Q41C`3EJ!7vEH)Ujo%+xMwsIdi%R! zYx-ana6RC|`US>1;SZM2<9`weJsa)g;FT}jZ6YGY|c1tgdE;^^UB6m4UP`!Dmfy1 zQq)lD2;lX028_GJV!LNbt(wEZmuG?W481EQYg!sT-8Dqzl)~*p%7k;W#3Hwom7HiS znF0o^aRx9s8AeHAHh<=~3nk{P_d=dGn!Ep~gz-Oi;a^ z9lP0v(_x=R@aZ(4>U5F2NoiseX3X5eG^juLYWI=y|GRnf%W3+K0%3 z(}|Go^_t@hM4tM%PXz2peh1{CC-4jkmcc+I<%P!?r4BH>>+8`rFEF8>&?LK8O+9u$ z%2z`@K(P6hYP2UGb6Rf3&Ix5UcZZ93I8ZmztH8kzW(~RO#*blG2~|D+O3tS>m3Gx= zeaSD-r}BVx}OGU&3dkE3sQv91UfPwtV% z_W0n$<10PA@iL-t%(~?PCY$RsZcjKTg}e#FySYTkpxqrCtu87VDl%+Y)&7MLQjjPQ zM=O%+o+|HvCQbDW3GtdD)NA$+4!;kmeQvR|7AhA?)b&U_MzdHRD=U%v3%__sDS3hJ z+->RUSsFnw5*iA!wD}?KnRTFewHwP({eE1`(YHj&!+VQ3XU3)P^TsMPe0zWUU+^IP ztZ&)VJ=sLx!&F;r$=TmdI1wFfZ1tU2f3eC!l6O&mZ-~aK1L*?O7Bhfzs#r-HS;y;K zZSrZ7IXf==rQF@rYUmSbE)gh*bu8Sy6az~`^(p-$!A6K*n02^S&e{AzuBE^bL3(SF z6zbadt(p6-WMC@-!YZ8yaL+H9HerMRs~=ufM*pK9YPCSo_?L!p!+$P|Zb=~>s^rUuA#Q;|?Yv6O9Mj3#)4+&r&IOoLZU!j` zC+j#g%vFTP$6`1o$6N+9x@)HTDL)sjd4)bSApo~Gx^SU8!Q|`AcsHgZt3|ABr3^^< zNO=sybvyWy)9{2a;0`3wTwF5ukVAJoOoy>c2Cxd%Nvd3NM*pRdjAGB0>PY`bAz5B5 z0?KkU6Y(2`^t?j~54xHZmnD~n=*3;fW8ncR1H2d;oHmQ41pYKfj*-QQVJ_Ev%ZB|& zYGDUjQD8FN${iaEtW3Bq+UP%V#10re?5u7tFVeJz1Mtp>WTgm7B|uhG9>sZ%4tK=Z zG+S9EE+t4DQZTfC`A&@!FH3(zdIqtVOZ;W0_R+wl$t0= z2$1;UumR~~pky8w+|(=O58ySOSQ-5&&LDn+k>99;_(^Y_iU2cr?0=)7CS0sxb`Ac$4Z`T-HhvR(^qyki5gvww^BJJMH1t zOwWImhZ^I64QgubnUiHD`@8Ub)uF(}as{)oGCOK3ukUue%q8}O)#YD;Y%(F0G`sM4 z(|#je?dk$qVv2$d3I*gGhivcwtHNdU%}gu zDDovv_Mju0uV%a?^+l5#9yCR+YSa9dj+=ms^4lHh=P)n>LXk}Hpuki`F2DW%R*Bh; z>xn9`bl_hh_3Zu_i0X>qBE9vGm&-_Kwg;2E(rolLa@i`l6MRn6!G#8ObcGSq{8FWg z4U7Mh&Whzme=o|vRGV$d7IPe9w)Ou_3?tP+MnQIdvJ$^CSCY=oXCF%po{*3upb0=d9U73NryXhJVa9oRY`l#aFfarVjxi8sO5t< zn;$US$NbyYQ@)tmv=IdP`oY2SaUGh=Ihwo*ryU~5u+nsbhwGgT4xC>K39bGJDa#<)=E-yFKR9Q}~QN-`+z*)!G`{;ac$aT>t}JYOf!i(70H*A z-d7~M<)TByZx2nK9qUyCy91IK^SNQw!5C1J8za8M|0rZxCOQ`(*_|sbn zK>;Nse!fEtR9s$~+&++RMj5TF)KxA922@I|A_Up7D;9_3LRNjvaVGScp4qAalx*Ky5nn}SWsgk0SI-}SMC*d1IU zhYuUQ?GX&fY_BIG^24D%S$JP5`c(gkGS8&DQ@G2re@B>9ETQ<&7!eX8wiSH3@HwT( zN3~OmkBLe!W5>7NH<^sU-8KSz!$2^A^2 zjnNs?MX2ZlkiZuq_0kmqwj?kRNJN_Fpph+i`?aR^EOWxrDk*zi8{cVKog&E59BLHb z0Jx&n8Q2?ejZEbSjodF28B?F~fdW_pkb(QOwDj-ea)b}q1Rx53r};WMj&RN#+SLA^ zus+fZgYPv`Te^hr;*YL>WdHSxMIe~J(%=PKibW81c-Upk(45!3L!$jHG~?mtbZ#J97`+)i7`ZCqLy%I zx{D1h^qzGG1*t~?iyZcTV6i?33U-VRP(flkoi#&cQJ$?VF#C)CMz6Uv-=*18emBSn z5ZX#2W5d3(=k?Zkd$8>nJlo?5ZAmY-#+{w>0#k$p?U?0Qup`TjKCEu9D7qtJ1%tGL ztnG%Cd-}rb3@$7}Pc<0IVT6>ngHbOtTmwULfl-ZTH0rn}D>xJ}U7JkbHNzl6;n*D_ zJupCD28<+Z1S4uJ?{a?!h^4Nxv>?~>okHT+$R=uj=7#~ai;vZmn-|<5h!(l4`NH$YQp&n`hX{&dKmj!sB4MZkJ5^ z^(m)hvHD);tQY=$+Sw0<)~`zvh@8fN0b$W$@+2zdCpkLqQ3&sfF$AkY#q`-yvw)&h8Wf!7ABnyN@ z%^JlXAB_Qrk00fL@@4qwKG^5R0XvqJvDQQE9)6W=*s7kLF$(jdSfKS8LS~G1wpxe zaK3pHD3((en$Wa8y#&s8{QHPRS-fJYxz-F!3n2 zcGd%izX?&q>|zT52l$W5XQTK7@6FHAcxYTg@}@YYFn0eu+Pr$FruIyG@#$z_$gAK- z)5EQXwXjYbYcW7I8_uNUB`W-@IDaw-+~wikvvj@2)g>VtY{Zrt|CqD1e{bO(ZbylH zOMsykWJj22`9s3-JM0W@*k>ocZBr>qSHk0zSjoG@9G}4#fHO>QNNCBAj>&;WbIFFpIEp6+?v4GS54f zYLMy}I90CPp~;kUW;C>lzAvaR%!YJJeKAoDot)KY*pg|g(`QCuK)evQ&_9)*7D|DT zE4>~om93#(b1~oENBT((8Q>POe13BUjl6A100aO7;UKE;xYu_;&RXDCcjWio{o?3X zU}s$EvWuq-!N~Xh1Gz2z&pm&*M*2HDi`8@|S_{G5kK#bT&RNWu^r^ts9)?|=LbUI- z*D?9d;=WHT@;(8O7Vz1v(N0}lgl9h1BJ5}P+81OAg%Q!yzsKy~khZJ2r$fn#m1D|XCakL0CxcFqjGqJP4_nV zw9Tj57lRJgQV%TrL-@YhH^ZWw6r#88ukBr(McJv;bnM3t*3g{hh}$*rLbI=k<|!&E z3d+w#K_1^i8R;-?Xf{zajm|hX@>Y2Lj%r|$l#MoI^5+=x}9ijn-sD4^NLHFA5(!2;jOLuQ+9|-ZZM$f>~36E+8*~~|IOywZ|P<_?S2oF_-p%i z`0#|t1s-O&)Y8xns;6X1O zIv!dQZrzk-ty;6Uo~7k)F<}{EP7cnjpYv7-SLA;F7ntZDKX?{y*Kbq${CMihMoK1T zj602>#FZ~%9{Mo30r^bwcoDDRN=rhicqoxV#40<1wc!m5{q!^*qE>*C?gqdFQ*{r& z`FV%^y6!Cvx%*!0kDjC8y}9w?&a_4syjlWYnuE^p88f=?6e1X{tR%31PUrYI8O$kj zVscuQi!|^uF?wkO6#(~;fJvA2UMaA{<)1#GEEnK{eWJOP>CoNe5y$DRDVA3lsQsU9 zHx)sWj&L_TU&!(_?Hjoy9G=X?n2Z%EaNV(D-vd!?AQ@u5+oR@>*};k$iW<+z@&U#8 z)64DZGCVsDCnf4`RA0x)<=OC_6jQMgzU)p990(_!MStZJK35D09tyDez&?gB=RYVi zd&ei2O^4@Jem$v{nljTidOhvY)R~g?PkTkxEe3zeqw9CvDY_BsRSbxcu6x8eyX>{o zc$(2?(}&Mst8I}4R4s9p_N-`Ii-(P~5N#1k2^-iqA}qXAiOkp6LdoFhbKCn4)@wY) zjwSmmzXYb`B|SV@y3^61K&lrWRHbtP?(Ukel46i+raTUKvaS*_wod<~P^`CyUwrYy zjMYuEhWjaR-%GxFx^RuL!Fq z2*%ciI#-tLby=gj!S&3zqt}wVxV%;ULu69@iy1U^q=LQH@H#Fw9&0LCY=}5(rzuV$W zX8jLL)v`#zM@!1@(|!k?xkc0@eI6RdXs95km;zjo8oI~1%9>Kr%8ne0ZMhh8uJ;V2 zud-(sl5FL59CklfRcgGYNjYE70lj!x)-Xk41(fF-a;7yHdm-AtdBp8hesZSufESB~ z&1ye|gw!#++$g-W9dUpOsM3GU90FgE@}b|3r!_ZGL?j_@g{y{yBHAVbQ`K^dBNqsP z$ztM8z7VWptiL>{wgVnFK}Tj%T$8T~2&=%JEY0iJ#0+trVTEXBJ2~-<;b7A%oEmt` zT_kKRWd$9YEDHv=z=GjRMGO6 z40$>CNIF{eMoZTF9uq9}=xBhX@ELIEkf`f95^xRh?L?_j;Y8Lkp~baz_OfeoW-El6W&T?0M^@tUk|L&K>wnR^hbq6N93A>mF}1fM$bM~oC)gO0gucYyTZW^xobdm4 zrzlvJ&WABLXRARD%4_mam(tF+h)%U*Cou_pc5^FcbNpaHgDG>F89e%JsjpJLX(3|o zPaY~o1SKUwJ=9HMTk&!eq6&L9le0eLah!)&A8eA5c+iXZOd)u+S-61qh=_s+>W}?2 zYIei*-g^ckMJ-ILgg!4OAcjH8UO;*%6tMSlMUP3=H z*!6r@73hia26iLF-~u!`7jc_g<>h9JGi=9d^RNIu2Gsw`gt9!}e{u$hCc(R4AUd#O=2EV0 z(kKS?R(*(X)ui}f-w8OGle(CebyOkWuF4CI3G&;xZ}Dx+#z6*axs)qH^vazLt9e@R zIHRt1u~3C*{vo4Mi3>d&fLRl(7!*cx?U5y!$wyvM`i!V_CEo8p>IMu8UUm#?wEs_Z!cn#=p}HN*A>Z<9F;i)OlQmd;?cZE-UA|FGcZHPsuWNf@AFL zap>c=g*)YB&r$BoO~_(4h?Mbc;@u(x!j z^$nfz!@5Lwr=IgG?w%yii9@;Mo3fI2n-aG0fEizHi)*6C5uG9|e9yGMw+exbJKb*BwAv4?MZd)5ZqV8+XaOTF-#k~mAmoh; zd)f;-I=vR>mi>Dqr2;%&YNk3i6^d zo<3(1`^tOr@ZW88;O=(nH#6_M7IYIJtrKMbbG+KlsOudk>Br8uT7Uq(1HugN-%$B( zN1}+;Kf>*ZB0ujffWVqxJPF}!5$XD^SCt?nECJ8_sTt%O3AZCz!2*HmXTfBWZ&paZ zjyD4jJgSEvSF6qCaAkdcHg?@)i?Q11v7I}2_M3qnQMS(ll^QDVL-+?ZC;L^|Tz6PR zKls3&GXL`W|M+_As4Ba63-lwElI~KvLsCExm5`JMX^=)XNO!k{bfa{4cXvoPn?{jF zy6)QeopXQZoICCxj-i8BU_UvZ`OLN6mGL^!MUk2sL4WH~s!o>Q5Aue@M}|mx81R8#q}R%dhcXX?iNms6iiSpa z+U4Vrk9c~YB=@FOPSx}mlPXH2k>v(|>{eC+j5^N~0wQd3)(}3suGK;{&i#W{qmoQN zd)Ih6$}acoXI`55I0GG{_3#A6UJr)+;)xbLk-oz0f>O)3kDRbMS1ahB;a&{?o3F?o zd1Xi^@gL033VWNY=1JHFZR+9qzSjpMy#8Z@(-=77 z+I)^W{_ED8+auLlXsga9Np;{T|O3xUKX+}lkI=-=>uX&YSfwVFT z+i0X7KYl|jwQyr&%RdpA4kyYgJjb{rvQX`)XUsegr>*|{x0!I#mnBtj`9ySu6_?3` z(M`**C>FIqy4XXp)*T<5o5^K>48xn3Y=m_*6<0h|36R;feFTY#%>y@qM7L&iNe0Qq zwQ#r>TotATr#Du<3&{ZDvKB1F*aukOBb?)|8{Z6}}QVvfr`%+Gi*DXuXLRqs9_Am@J2-+vJK^f>{( zMgO*p{-0jU!{HzA`!IAgsbS}m0*1%<2=R#;^{j`%!C;LTDy`OJf3-Wux5iG?&ojsf zniSNGpT7CJdWmxFZcB5?HlpSHSYC~O6623}U2Cp6uSanP*!d_Umgh=8Go>Qq<07rz zjNa;C_I$XR)4eaGOW#8j1sc^ww+eHki7lqA^;Aj0&N-pn*lhhyAe8k{DWj26 z_JO*=Z$^It$Bo3?CnaGe_GkneImPd~2KE?_X}T4rHmB0M1c^@F;e@jK{@l%qpxlhAs)yFZ0Cf{4V0XN7O$BeM=N&_ZgcII{~v-%|x?BJn-C#%@<#OtKwu<=r# z(xKtWe=3|hm!@Zz-M6Wqr@?1V7xnaaz0F2uiYfKl^hIXuCf=dqe3`nE9NXu1@k)7f za@idVmy9K38yluaF=GCP(nd^i^bZ=26cwLtS>|g4e((yU)$W398bzm=Vg|rt-5z8; zBQRhE@)y(u^Jl7e&qbaOA&Gn`Ev~)j@q?)6g8F-2TwdVw*NeE*SPvTe**e+NMLrrY zL&=K(GreM1#hqQ6VEcI6afsO)%I zJhnn+ZC^BA@7>-Tjuu;$ZXQAG*CNM=&u(nFFDU{%s2$#%iq~>9P0^|AAf}f#du=X6 z;m>s78grUJzo>VIx87GeQdldHc~agfBC*Vh;W0Yw24Q?Lkmfe$UQ*Ab%Sj|M49+1j z3^p@2DAoNPBNmY0=>^w54y=VV;(F2&9~5i#ZzS9KW{98u z4DOw+u&Kg^qxvQcpMywtroC;qj#Y?v8Gvg&?W=xd>|ujQCNapD@(6`L#pjF<$6B(j{EUfxzpfNKQ@fzC-qMUn z<_aG0CP5;Lf;f$8v=HN3OSY7!q}Ruc#6X;0PSUKz zMcWj7+>|cnJaSdrFK+6QUyDG5Juo1*){^Q;=IzYGb3?oV&=Wq|tPER(+vii_>{ub( z@4OJnqD>dq+g2#oY<@Z=i5j|A7kZ<}PvWm_e|i~F8c*2tYmudbY74`{I5JJ5NZ1bl zV3ZHf`iaazMzngCPiR%7g8Yocz53-i5+$pA7o{eGutZ!68ht*G* zlk3G78|0RPWAHBDP#qE7-`s_nR)sJmEMLUG>`!Q@(j!PW5eU?GiQPhAMooD3hWML=;#n6w?F=0BUf48n(OEikR{ziC<3l5G2` zLq3lY?ezveyjsoCrpKMOpRZ|Ygyekh*$V&bmR0mgx|K+`PS@dv;xex{$6@w2GT9C_ zZk@ls+rvq`JI2^%y&EpEgOfl3f3;^%Zhp&k#!fN$$?*CuRhEy4&i&RuujgpULUlsL z&CbSUSN9gHWrT#C>3QYAi)s~x{V^w6kU&(I{}UA#T_h6ab7YH2%Kdc|z0!~=nK)or z>*R2QTvED`KI`(2Ki$vqA9Y7HXV$38sV3^GH(%HqjvZ4Qyl0Gw*&eBsG*NaG5)9Q* z(+Rg5*Y$s_JdmvIkX9j%wsX1~RucGT>BZM2>eFivA@vD!Eqy8|7=N(Cn{Rr8s)-3X z|BkmhyT(~O_ARMNu0aORniO6UuD4PK->*j~P_$F0$CTGFnv;3*Q``GD!T(@Cg@4;t zjN(>hhI=QB$8Pw(LfMSP*#m3f@^WykcnNjcNbKY48EG+|khvT%EF>i}=zpf#BqGm6!Cn(5HsF7XK1CAF*= z(;$`(Y7IZ)g2lW%R4dkI6X(|H9O>1`XzED~7l=q^QTkc4*Ilij?~MzRzUipBc=E3z zo7Ot`@XQU;Ct|YjPx|@9+1IJ4v%%|YbpQE09_23t=e_yko4u>kC6O>Xd&T=lwEWI1 zlv=HyH5guUfg+!({ z!1qhTStjS}=*J1iX%8|HTF>%;O7xNsIMO;0Mj?sqYyVo>Mz-}6-SE{)!sH(;{Qj%z zb@K4x{@<#SSm+Pn=EI=|PqPot*> zo9D>}&$Qd)+>tzg1er0b{^{*GpZBRWePJGrHSGVbRm4eB=5@N2%qymqwocsdJik|d zj%70R=jd!tY)ptF2K{xiHi{6Br*KKOb~I0`bMw_jg#@NXO17Zd^XG@FSErIfj?<{sL z0htxnD0N9?FegQFg;K&(!v%VBj4X=GM22y%e^B_5B^TKZn66i^{co`dmOt>8_$Us= zUAscO%f?$R5XJ3_HTV;)?ng88om@v+8{9dc;#(6nQ081mN20RHXBykbHTg5wW_-h0BSVlbC3vYy5Kw7Wd!eeVX^;QSYYU|hk!*Ut ztc)Y&rNvGAw=Mnm2!9jN>#^kH-4-Wo$USs4D#2%^j14nWH<}LlXp2gfOvD?)cOOX^JhrDGH1|!9STPfYVLTt!NtvvMQ-?ml1#XbeXv2@wCONaFnN)g(JI!9m3b@XU zPd58zj8qz#KSI0`JS$!m4Jc$nPJa3OxHmQz1B@H1GwJ%f=Y^Uz_`Gt(1tDj^irHg z|2CI-lT=3&q+0AwK*ooe3?#Db0lt)4kZCv%nWmLMe6#1F)s*7h!9IMbVUu=oL%GDn zmy%g$Z%O>+++{}WMNQI|I&JCE9?j5*HPbcwpwYQ*!#`%^a5&aQ>)HL2xr+O1zw#SH zEEht~7c!7FNk=AY!dXR6<*=pSf0B~yPM8ab8j)@`N1K>QW?Im4Tg@+b{=l|aboq_7 zp{Z7^Z@$D?Wr*wtR_$}!vDMV!*C~HmXDCa3nH~4nYg^dD8V|O zS+7#%zr_;pM+fu%P=~#k>{D<7$*#BW`@+|N{3%cUbA8VF>!7tbxR*?*@%3`;Q+P6KmAhb>0~*j&_Icb;`(@e0o<13aVe!5%;uEkV=JHr{;Fiqw=+3 zH)&wtzWWXsnQ26a+zqjunT$w?aEYUbw|3;2Rp6o{=&#Fn5B0 zLXj!#Pfsc*%pG0goonhjWzuUORG^DEK`6x3<`HNdYX7Be=jod&-5A(QzsJFl>$-p? z<5G|&+C+=3i92z)<#>eruCZIWw?RAJ@8X>=X{Kv5)9bqX+DDO*c5mWZJc>Wp^%%Fk zGd#`Q%>8J(=m8o`Z7bsAhkEGs7*ABM@BY?jf)I_ynA2>SDa3$CR`RPH{VVwJiLVwresQRv7}nJ+5SDLdwzBjbkA?PD ziTj#of3iYE;pfft%?8bm?f-3dZ`*8Q|4*}%?sd-w7KLGyVtnfqTBtR$B3$6XM2R%)4@%qT(| z)F|dbaDMIfmEPJH5j-qPuQ}e8?x@>Sl^&5OBcQKG{U-$VxpNAoI=&}9B@4enq`1H) zzV36Tt72JXGkB>hy}_=t!y|*9s#wh@t_vl5PMt=1S>2ZD)7aTkPACfZ3l4C)tkN+Q zasJmYal%1+=wCDKbw`QxT5oZeXQhV+xDE?$@Nr5*S^(h|yB?&y{1+z8f)Z!B(@Q#W z93`wK=K~7ixr*+MB0eFNR);;#A|q+vCcN+HAk7#uDJMUmNh1Ojp#^QsX@P2fsJwR- zM7A%8tKzN~6~M7Zk5nhq@Ap;b>Eml^|BE8nrP^$=|F2{daND!cODL*ey}HhxZY0VXtMX2aNwrvx3p)ElP3kMeX{wrPB~SEU zyHl+&h_$R*cEuWqizrdv&TioK@G3={N=~Te<9KPjNy<>gUuYea9<<%&K;hqCypF0l zu?J$(YfT(#%>An>+#B~{dB?ilHhj0HKI==bm+6i^rM1GP<;12JbHW}i*e={W?3aBO z*-+B8=6F|c;-$`Yd$?|XvYpL2CuFoKfL_P;KQ@CcGFAp9+jJah42&q1=-0U(OIF^6f`T= zsPjee)}-fZVzvT$=1_*F8P&~LoPxMxy_?pnNjNci6 zp(gnudDu$`>%tdU2!;Pss44#{#(6`9TjlO%de=vJd8viRa1OtJXP@G%Tk$O z%tsf3j^*M7y^jku6*pCxGO+Nk)SXmhwuOP*fnVJj#{H}XIo+uhNycrAA!WbTwvd3q7!6y?E zoUgL{w8gs1(KEd>f?1v*yk`J&o+_)!P2jbXne!GHC%>z_)j*6nM5g4v6G{om44!F^ z&!0cDadmPgVNEcqRh?Y2mWUY!Dp56t|pp26pq==PS0p?!@{W)>VT7L&dq_WbcwM@G3? z3QOD}=uP3yXZ;UCa_IxqAeWA>-pcYkrv(PfEYcDB%t-!wmWAKwrdc7$oe%Ty#0T@5 zZNLA{xzh7S^F^acppY@$M&+v~*YP&&n2r^nzuJfpcCK~2XKOp$B$n2E2g@Jyi9{Ey zLS8@{3~68*bSGc-Ad+SOpT^9`vtKCt7fI+$p|e-`Wgj~= zVo+GTiz%zQG?2-yDS(qwdOsYQtnrNs$jk-^)*k%c8Sqr+lQ(@tJrc?mMwHN#6_*|+ z$@(wsF?hZjyOc$ETV9X#;MoAh+hB*g))@q zYH8BrSX*vGc14RwHc92${@T|ci44?`|3%&K@$MIbdE^1F%7GapX9bn!vS&X1?P)gs zWzL0rjw+l)7(lPAM-T@!6#la~h~h-$QQx(u5#d@+zfE2nT_!`*(e^oRTxwgv9w8d# z^Vw2jf}lA2flM){r>@J|ay75RL=8f$iGYd80#s9x+U=KZ_$WI_x)Tan9G2{bQz$(XyO|+}j=GtU0>=d-L5|$)TCl{3`tW zp*q&Sk?Gd&!$z5`GQ7teDS8sBbbED#;0G-hw&qv=HRF3B_}%NL4W9Sp`^Fy=SQ%1= z9k`g-o`m`M4CQ3{4$!pS$8B-x942yn8J5c*`k+)C^ZMHZ^`Yp}BYawym>7Ct%QwbZ zp;(RzXD%&E9nT`aLUx3V_Kmb%`bf7;lJ%WCJd#iJ15O-N8j+n6{%;{{h zTOvw_WspqSLx~zpZzH;+U2~JJec)8Miz-F(&OF+wk2D&>YZR`vFm+xLPltVki)#W& zft$q}Z?7t0gAaF!iK<*yNS?OS#GYmy*E`++Vt%botvE%F-TG-8bplbkAMBd0wA6 zm5ZU__A(}c;#G_r34@iUrL{8^Mup3%jzm4i9o0Di0;<1}PE);lTH`WfCAnO#9ShoS zY$Zik2;YeqoJ25Sto~;w$X@p-Hc9W!e(9>r2t9NV1V)9CUrN@SUtta5+e1TW6;?|2 zidHM2vLfSu`cKertN?r6w+om7Sy_pp(H#4Oov&pA?uDWtlVY9~E5Pr4MhtgP(0?SS=aq?fOb z!<=Z%&!aa;ug{8;5L3K98$~*wg#Ysj)RqT=i3=&^x8r9Hn-L^$&CUi<^+pfs*BvCN z*Jl@y-O=7Mn{%V@dHbK&aPqz5h#k$jV{xZ-UMBV1p#&)k1F! zGjWU1;JLU+M6!iC1vZ#*{6KJ7jgL*rfPVn0r;OQ~(_+Tppd9hL3`AEK-HbBOLpEvl zluVfj*m{Si4Jjo@1>r}dDzQCpTbQ}~>6v?z@O{}FZKmw%&yKjryDIst{7$hRKw0O{ zKYP;7s!1?MU_##qE{6S{sQXLqcfT>O&I{?6gL1!^M*b!8w&CTx(sQW*UEq&M_G{|< z62QPPzQ7(}Le5f9q;(uk!mbtJ=;Md;TAke6eFyK{T@1#?W2wYzuV^mCua{(x!)~wD z@vPl$Zhkm*k)DZolS>Iz+E80je3^;OQoRh|dj$}S2Ka1?g-`dp8(Uf-$5G0 z;Anu)|74aEwvsgv#J!# z8Y#kocs2EH6LYX-%=!^V`>9Gsvv`FIYL{4rzz4w_f;af|JHW2gf2Pq-Gg&rX2LnF5 zqyqJclZ(q*M5*DA??(8IGtd2pgZ}*KOAQk7kY;e*`HgKlla-=9y8ci`Zz{5dteJg> zk4AWDhux@O)51y6eBYDDv5sM0aVmRMl-5Fv=Ljdzslf3x$# zvO}2VgR>5U>%Y~sWZP!CjvbX>cIRRZnq~PNg9d6T>fs?Qb@Aw%l^qK_Ji^|5t#X0| zN~GI5(OrhudcydgE>k>2)qQ^P4yh8SRVT{N(U=T-pk}*5X?!5Wvr|ybjM2_jqJ?6Ds1jp6!enw2!DMoJz$os_ zFa=(+OSI1{Ogv>5n@tCyduAdXtEd)o;J0Xz6IZ${ z0Zoe1|0s@|sQlofBB^*b@2DrA{q{M61-J@V&O<;rjm&@r55vkuML%-ITo(cj6qKBR zbcp6}0Lh9sLPm1wU^F^$Vv&a3Z%gS_hRc8%aS)V=07h>l`wjjgdTuLHQE6+R%CS96 zU`nB?S_@%`bmKx>5}6PGuxfPlJBXlyX0HCS<3Qb0ccz~YlR~JCoDTg_L+}cKjJr5l zkN)qp>%xThP~HzEVea$C;NEcjB=}> z3p7yvmI(6OrEi}1ce9ly5$mJ|fn3)2o(q`6tE>8f9bfRi<66INK59KDuN-RrbN=4c znsImWguOr|fm?W+5HRKari*-mf;l6rG`{mL z@<)2=>%U?5VBhx?-h^9ZI60+zQ!U8ij)lShoH=5D0uPvmwyo>#x7VW~4Qd=FyHls< z`R4GzAI&8x@h4bgK!g+s<*U&N5Q7K#4)k5e?QdF6aK^{?R~J^tOgnRG*+z0c!sYVs zF)v{w$WQwEoOCdRZ*S5>fsNlc7SnblRi^feS%mc?P$qz<~BT`vgza(E$%xYw93REv0elu>K|rv6SyruireLN+)< zoDHIq=wy48P!1nwBT(Fa_rBKJX8vnzYT&H|WKB-IU4|7O{$<&5Xxgv8;U;s zNMJa&b<6c089`|)+vNIoHrkP8I-K$EjUeCFJ?WkeS`_inv|;0pU|udY^!9(U&HtBPs#M{V!QrG`=YjLdTB@*tCKMVwp+FCSC(F4ZI!E907E% zC)7`It!FhlIy$V+b~OT1BT)a=>W94W8V3bD^AAPF6}I;puIc?M?_#~XF2hf-t@&o_ z>yvEoFK3LURZXKB5%#q?rtEx|wTas{JYLN^N8o%OY&%z*r#muKy@od^3_msxLRzqqBqjw6lzH@BrtaXn&vyWv@zx}ftDiZeX+tc3LSIku(!E$<@)1io7QEDdAMtg_%+bw09k1DRFb8*?_n?=%hClzk_cL9*S-jSgRGe8?PRo^Ipn@ z7<6F^P8OoCy$|_WP)ZU^{%C1#hB*-0k z!ZK1C#g$Kk%>1(T9OqGU<+%HQUhk5?9Bi>8(l;eFiHJ!==5gb@t zDJZC=D7QGfzoHQ)C(h49#*2f@^RNbg3f#}IWW+2={4NJ4!36ztFo7EyS7P_#q>GuD zsKdCbzbV=9eLQg~_nYg6fXXdaTwuc_yEoFncB9;~<&EM#- z_gYd?@~hcY3_!3vrvy{6z-YO+9JDKkd?F^FghE~CcBjy}7Pj4~73N15p89hg2dbQz z#98=_89ifp(HeD9DiRe^eZ*Loe%PU&J?4&UyVW!*`QK>81!*q+93iFoYOY1Y0Vjp+3s$5Fn?$PIgJ z8re2EMSnDyWBYn=&7{u+5gS^t{wVOJD(P_NAl16g6OTDpB-ba|kDXmAX?KL(no6*0 zHboq9tUqGvt2~7^{rSlAHsDIXD?Zo1L}eXtvjco&yeRxNU+8uQ!6yC;iEOT}6#mlK zwDc)=iH73Tx-h`ZhR=rGGFzZ1)6)qXq!z)9?9IS;7LrOb6gtuhu`Dc5H*OX@ljsA3 zyB+Q+RQ{3}$me5*kWtC zi@WJkyU7Zw{_Wq@N%O(%aa7Y*%28Xj=x4-vT8Rlq<#6nR2GPZ-hd#jv?X`ROgFm0Vay5~EXRt$u zUJEzsn#gR8(SEkp8&2ZM(}*74uXTH|?7U5`ADllstG)y%gVaz$9VgLRcH}z0O809A z#7Dmus40}z=~4L2cXdd z-pV!d;IQrgc3An%R*(5|{DVA62mVI3NrLX6ZJ1QUbg2rp#kHlpg!4vy;YjmKi3B^H z%X)AF(PBwJoyBRc;A8%Zz%nMl=$aI$v?)}&QCpi#)X~$@KC4qStNN4?MmnL2`NS&H z8aMS9LP8#6;Tv?#;R=17f zE3!2e{&vQ<7M27%aFu7zXla#_lpmk`fxJ{y!j{(P>FuRvVnU5&R_no)7xFe5j4Kx) z9ExHtzSx;69IG^uH;cjA!WjYBt6gNO<*Qfb8Aa9=tf{<*sj#f_j5jwrtAyXbFOF)_ z5%)ZLLERc3_~^#%r9S^X^6a>X*bFe|rR=>W9W-Gb0<-nOU>7MRWc}6zR^rm{cQ=mb zaEC0nc1iMvFm|@cfOAYo;f5s%j zDAu`F?e-Vvesc1>jq=J2(8&-0v*gNi0BGvaU#2GfH=qF{6KpT}2xo=MRjjod1!E_s z_nX7BpF|q(9BfPTlul4E)Vg#yaysFeQD$6E`47jhOh=P$6k z+}b&15jyI5(nZ-yyK-Zy&LB`*Wa^~~zFXlY=^c5)WnUP4Ct!ePSt_S&1b7gj_s%`9 z3RZ&~IP$k}=~g98YTg+QDx4;^NT{!erpdSJB(mj1Y#Ef&i@@FPw0N^ z4*Mi~-f#oC=1M*2Wer9=$_&5OSGbbdbwa_M`m87fu&}n~*w$5GLAUs>jZ?(hbb|qf ze;(WV<9Z9~M)I>}AC9Wrqeo8W#OLo?7>ORgYZ>cfN8}oQdf9_c7E3lB;?`+X2*h9D zg?>6oH-h}S2IelU$Od@(M%#ve;Eb|xC3}GPcjASYi z2GX#>YS1k2*W3S?^d7>3|LZGNIpO&)mxDivFEQHh%BOw^6%~!GhlfulJ%s*epiOEf zq3AM~ZNaVsAob^W3G7Xf{umGGul11rLl4^0oo2du$^Hfv;14IczytMaIk>KV|xgA^RI5}17iy> zw&^Z=UZjva6BL6@OzilB)&~lfRcL%EVh#=^yA>hk?@?@ZEtx{s1+_YyukXWGOJ4@y z$W2_~bN;^U@#!;+RM5vZ8A%bnKHIbTHBRfB#H!mu*6e!D8?=or5l$wWDIWHPLP?Vb z^#0$R1?(Vt-WuC`y`NaU|6@w^t}&GSj5pQp0&1E1=#gAz9zN)!9$UwPkueQqz3$A_dIuA_@xAqZ;a9`UQB z7T=#`kJ0lYzD!1XvAZY8`T!|NfUJ(ENEuFI@Hnh36(kAz_wJHRK{S4#k98fCKd%D7?1wCT-F;l6?wOHb_nGs|4@e0H>2)-#nV9av5N&SOBv@01!{Q z&$DG^eN1YOX(5`%Bd2C2&RT``OWekIv0iU*t)hE2Jqf76L~&N-{wG9ZcU)dkrS?h{Q`Xv)|Nja4uufo%rg2>O!+vhNOX z5@%SdhG6-pOe-8T)$ljQw>ZUQiI-H`>eG`WDjDbM(obH+!bZ}W1UKq0BB&`qxRvbl zHEe^FC+x6hDi&xI>lhj1;{fxm5&W=DANe>K%>Cs?IPFopNi@b2RE{h6B+B&XS)2_# zB^|yMtb7M>Iw`h~1H*Gsj@Zu&!r}$|`p5ZgP0n`bhU$c}B7I#TEOx2Q5AU5V;@8K&9VYzPt^haV*Cff6$cqRb^TtECVHu@uiu`0^nh z!f%?5@^86&({rmu)?!U+2&So;-Rq;OZ7P4-%(F5L<6bs?gR(^~lMAa>WTyf#@3M~b z?y&e7$h2^k#d~6ieHd0|>RrA06qC@|tl`S%;fteng={JOp;SRasONq2Si_-RG9M%$ zA|k>%MVdcV(6MK=GtlVQ_E4hl_cwt9YgH9s@Kkk)nimCt=nW9NtYZ}^Gk|LGKWaY{ zZDee8guR3!hs~-&CTkwP4uS3y)1b)Xnoxdod>HWK0b`Mz+PJT}<5vjcKFtadxos7} zFDuyAC%n}sPu09;xy1U%$N~#@YzF23IAYfm> z#(Lk}-A!h5SwQJ=(VjtUZ-@~x@r_e;_DqnVkR(^@cn8Ndg=hC(HvGd4J}L95Irkei0SQcLWtRTDjh zlL&2=`a}g_kQHqILn_4-^uK{3KF-R74veW00mAFCuHOXJdaFODO_i725y>1u?F4sL zfDcXgfPczOZxmdq9I=6r%H}54oE_E}!Zre zq&O)koTX3@6R;o*k}YG}I7t{_({NW}PY=^T<2(T67tWX*SGkCmg4W$DYkSv{{5^Js zMp)_XErufZOK^Y3g(F7IngYMtT+x=bw^_NlXlsMDP>;~OJO+J-q(DlKx<0CUj!M^a ztGD9fRL`EZn_hkSf^PR~TuhQ)wvCqbPFtgamY$xPf7ZI5)r^GI?_Jy2Yj#Ca&_@4N zGsOKTyZWG+eDxji;?JC*{Bqmzty;N}ZiPzqpVQNxCluRJO3Js&)OQ^;jV`8(<+Tz_@E;r-tX;n(Jh~wFH z18Qq)*-EUz=?Kl5jY-(J3V=jMzu)cenNn&xI^=in-ZiY-?@Wps7-U#MQ(-fM5=2Q8 z$b8F^0Fkaror(TG$_4mGUSu1B!#c-Z$EP9#X_?#ld(`I#Tk2CGKgDAY?F#km@^n#z zbtqIfSyR+m;ll+7_?k+!7+2~FADT<<;rs9X?!_=9!GBj#T?^|dY+l~^K0ZO*nUhC$U;x1D+P1nzJZrx-^X#Iwpzjc@-lPjCjkqIM=#NU#% z4OTiq^U>6@BqAu(D~-cgz)LuMO{a?zS>zg`qoRDiJ-w~y26Pwy=Z(kk@bFpvcB_Ei zr)FW1sU1ad3oby#XX;y9)Cba7$Dc;#)SyQ4!ZdWob}?W7cT)J{u0Vd18;lPl*K|#~ zfIq1V=fwp!u}pAI0yzQ{p#>pQ+3v*y7Hs7t;Jbmw(ONIn#;Doz$k3SX*{QLxn_JT? z#)f@|^7d8L=J6CX9JSU|ZjtXSA{Xu}2tBc-tC_P@5}@|jmtN88ZrkC^a# z$a1SlU)?efpH#d#1!t}h-Vze7mKtwEQIx;{f;&`P-&o+@Fl-A32SNh0LSaezS!6x+E5Ml~L8GALO<_4O!eqRw)5H_ zR_Q@;XQro2rL(Mb$st|Nu##zTuCeFg&R6JphN0ZxwLSvykhPjn5V>HPz*ec0gXUi} z@TP|}8^1sWF1O4L7k475`5F0l?i;$_)THO@<_4F9!z=nw!U@^5g>i&%P#iC{IrlN0 zs;CHxWpR__kB131wzo6={)@8zF+S)sp6~TfKOfW2EUJQ^;73ZVqr&AH`MzS&@znmA z_^&oV>`#mRTCIkxe@#tg7Gz9E*}k4h z%GAhPbu{%jfXweGT~x_`EH{acO;xV2y}xsJyZV*8;)9-ky0so5A|6V>YR6c|U}*WG zz#HL_!B~b^gPjnE-Ou+!X)lv+SwCL%VzKACT^>uy%S%{VvVghk+2C(BK~Nr~<&^|s zY+eW(@dNTZtDDjS$f9 zFUnvJ6EPWdX1VxHcD>$T^~&ghS#)aLamtkTQ}7;wx%~b&T7=$x@bA7+F4h%5^a^gI z^M8XANK)tR0KEPS&)f({ycZ71g{>sV$yZD5p1r`m*;}<6j*lRj`B#O{TI-?Yag)$k zK>IHqdVCK98N7+J!iSM5ZdFz1qrZD_vppM%yfmljOe;;)VyR~%N zel>=vANW!O!?)pAE=KJ?o?qW-9X+i9>yyO+r}LnkF$o?VJJ5ma4(T)c9fS^^}2?+Af46Qaw?)t=Aw^++7#`D~Pek}Az=>8%=4 zJ6+ZXMxkjcBHx9n$mSm|yPuJfM;A?=u3GCr(IMdpA2ywT&@Lc2P=71qk4{Yuvs!A< zzc^f78GW0*Fe-BYWjoDP4%EXybYh=_mg^@iEdgAsXZuT}%&J9g04{PG4dD4U?PCFA zOz_Y1YFI5xMj^trUh84)+#9m2G#YVcMBPMiLmwxTA8Csb!Lf;-E8pVf*)CP7=3YL~ zj-P7{;M-(10}Gq`mU~nW6ANeK#6-A$7{%Y}s*H8j?bkNihc5oW2j>h0DU|LBNa8#zrUfL(CDxibG%E_Pk~*YL$%pG{o^ z--7nck1ujl7m{#a>YXbb=)8znENXmRleaajP->-Z5%R)tkZJiM8#;dGaL3rE zp(Y4_!)A&b7r_;Z{Y>cFGH+tnGlz-H+qG^xO-@HH=$O>3m|`)!qH8 zATB;WFpgDo4Ya`qe$KWDRzM52x3?R_a2RR=(EK$qG1$)!F^18Qe?5Y&JOBa6PU>v) z%|Lg@O9y$qt@j#dsOS|%c_RgGTuIJY& zVxW+F2+MjJJEYCsalv*8=O$}mtr78Kca^ZETY6e-pyl06ed4gz?b0((voqeth+6tD z=(-Qpz>|wBx37Ew7E#d2gC`#Sny_Tfg{F$#@9FJ3M$q0^_TSIOq;|+6;#d#eD1LwQ z_7xJM0d&dWPr%dky&T8_7C0w}=&9=vIMJVsgOpNL#jRYR+}}@QDY8^X?>jfd7ha$L z8;FXaw+?cA)k3;dj(ZIlKgY8}_uea~MI(~MI)3w?nu+p?9*)x$iH-`peu3oJK3TIH zGvDJb(a(1?Za-buYNf_RH{8f@Q|0F$(<$N_@ratnX{(K52%GYo$Rwt}*0AZmZ1aH-Tmb!8*Xpc4u7sOJX7o zi^L#ON{f41TL)NJ#@+{sNtExk;YV+?;HtxiN>sg)boSIv;>u4X;;=0pJ6J?$oa#!( zlpu0{lF8iG4%ebJX;Io7K9f!VV$2}%^M?L*ok zI=Pg`!WJVSDt@%MyBhW{QNhH>KaI_40Nkm;;h~jzCZbMn_7!pxLZnbpdIiC4@(_`ON$p)ZM)(qk|6!ftW2C4E?jsGra{^VFc@dvS&-E>yb<^x%UolB+3}w|ig)Z*}-1Ti6pG7NaN^^>T;mnBw{UqtVYilsM z1ueT2p7lWdQCk6f=EkGFGWux9YzA8Dnn9WVgq&cEr8D-uPMz;|>!Q*}WVY3tKgQC^ z%-gxru4fC1}f0GbpZHJ>B;qYdo@h_P0Nt`rzOTD5k?5to_`*H8P{`l~utw-am^^!GhXbe7F zxy6h`13!I4edP=srDGTV0yKI}IMtW=NN^Hp#~7^*S>Q-PuX~w|Zu45Ua!dY)dhTh+ z;_5W`(p?v4t4wymX0vB-CC_)w`D+a`7>9K8$t5y>37yBtkSopNcUHplvOtKI-f$6l@9+@ z4x22tcs2;U&v01(sa5Zgt2p_0jQ1Ri`IS4&LN!ZU&6mMIEe7pFFO|}*F{Lg1zn9&Lg?irSV>lw!f zBxc(I8n~XCLfI#O!o&^~kUIMBImZzIl{MH5 z!)!#-%8UH}eEpy*$0dn9DisM4W!_p!iUWKKT_Ak8HxT z5;D8|d7J38%SH`UymM`994?;#`}a2{?TV#FQ9{!?MO^GRhy29p#QDy9GY$0dgM&7( zGB&8~X;>j%S`}MP6t&G%TiS1pQ0p}~zDzXE*DN*InyF@$k8{|wYG?>+5CF2xXCWUY zWgy#Bz)Vhm?lNZ{gncq;Do!Us;eKBKV8g_0C5iP9K0f70ouII`da_CKF2iXY0+V-q zc9Drl4cQ9@;|s{KwuUDR9iVw7NaZ^)Ig|8+kOM_vdHU5R09B#CU# zTVB@fWr16Tzzq0rVdr!gh>ND=oZQt(7GQZ~{z(5yU+K_Fg6rX>WhZ-6=#%~ID#%a) z97yjhGVlV%K7O~BZpoEIkos~z--%Mqf}KUDNqiImH-mEmJ2KGJpl#_)r{7cL8v#9_ zCYg=YAA&A@yLMEN34LGVIR=+|i)MJa#Iqj$&6;W1&ULd#GdWwLddvh{>H5!j0q)(M zu4pn-f}PD`OT_7^BVO8ckY+e1_wV|T7Ab-syED>S@9%`tTvky0UBb9v0{W^RQ#^PK z8Y(Q%rO)y2v|MBNHXadH;O1?S>}%JMc(gD0SZu%3CqvLvURu8jF5i4DU(SLfmaR~J zeBZ!Ntm-8Xrb;^Ib2a^{tYM3E{#S^BJ_mw|R*!;Wu?Fmvl_L#$hhdt6YT@w9Jy}o@ ze+T+!S)Yw4|X)B84>`iXov1wE=JkWJ)dAL>PlRLaWWA#Go6xd zq4&^V8*RwC(GpI$YxWgZf}~lJfeDVqmEie-;^Aue8MY$jDc?v`f4qW@{_yB1CC9Nl z6_YrJ$wH$apAq8pcmVGAM&*E;9@hOdKw_qtZLTr>Gnk1%lvB;nKJ|Q9s$sHy zSHHcOStjm%51UAkkaj)ML?&X=1TwFnbtwy}Y#cCwLLZ#`#ZMjvyqM~X{ae_`3+FeI^*jeZzujrQWq~%k4;$VG}rq^enVvv?9@-P6%#QFeKqA&eA zfUWmcc)O7^h$16w0?~37|#K~Uq)<8Xb8TUB`g=lxH6~6W(dOIRtj#%fi=aZ;U9Lrp26jo~Cl65XHAW87iZXwfxucvu|Jw5DI-vK?u0 zWp^16pH2h~(ZdS`f9_o9|x9k(~et4N7tw zYfym^6wyf(aG6HdJa|SsXNKq9C@SL_LmRoAln+>9Z4tRp@(;sjg;y^(NtV88v^6~a zN>Jx<_4J2&A%hw#D3g2-_yy7^tC=d4I2QG%I=8Wm%2~?kqCi?l_w(}$&&!k(1m5U1 z;dfCF*Cs7syGzS$HZ0>WOiXAz5US9JuDyHbqW&kS zDLMJe$9+=a-n#b{sSBARORA%_{OCG6 zNQSZ7awy-t%?Th!7ecc~v zV5Z)QpRhUGe}tC~OYHU|if)wQWU-|_$Q(>)S&eyhXP=LNsgo5lT4ew$5u%w;z(YP1 z3-}!62_JUQuuBiH9~`?EG&46qS6o$sB|`uo?!%{9VEbk9&idbe#iu+UYm|rWm)9hi zw&oTOCJTXC7o7zEQ|g%O+O;y@rIs} z1$P0{gc%pE(u)_6yT7}f0fB+rGj^-p=nzE2_Wu4SU;@G6Y1Ki$X9MngEqBDx{`FP<)A!_K3>TT6bRY;v+o1@x~`1Q2yGJiKy zR`m+d%Hf4}1)ht(<4Cs#(Z4+!lU?O~7KdX^Qd8b*NmxC(NnN(pFZMEG8hHCL4cZvR z(y?+#xnt5*8@e64!tN5e>rhD4SlJoc{KyHpR%>6(i(($uI-RG0?!aIbv!fLZ&QF7l z))A=ECL{`?AQS>{a$%HM;{m6X`u^cm0q?(bi5Y({Fpgyj`S=w}@)d*bHIQ^Q0r{js z;d?w;u1j?Ew(TjoSc@(pdi!Ss6@P&EV!HnjpZ)Y}dJjJAmz_6rz!1Mm1NtV$gSN(` ztF17x>@cM6^Q7Bk+Y|dtFeV9Vn6~@R)i`S|k;t7v-6X7UxxBWvR+eyoytKK=s4=?~ zdmp(yRi5n|pjz+nwn(pDMavBlvUO z6@vI6zJjENLqsl@ zYIxaOzg|Mv@a^h|V8gxW(k6yKsMVSa-W=pI8DA9)_LMFcQ)2XexHY&Ba(UYDgTv;& zUf0DwNDunYX@{q{_Y-$$#*yHoW;)KX-Ie(e>F7H(ea_J$krcmAo8%L5eUHI_4uY|P zn-jJT9tpX*OEx~zMB&v{^~1Mb)4r^iE~9Ub%DU2r9WgpCDXQ6(Y}u$$1iHV!CIcaK z4jN-4t?9tF03M?2O)x|c6BP2fh^_Zn-$0q!VAX5XWviff#kPPByH7n#c@h!Qm3l}c ziXm~S!_yBN(@Ft0hNoHv`UW_*YSwB!`x2YzB<8xNM8CL{RNvjDxxgx?Ez`kkte?7= zmMaf$#iu10|B#7#5E*)&;cpD3vZkwwFGy*Tm4ZODN0>CU#TvCGLxG+m?c%?=9r|vfkB2*OYx~U` zwttr(GL&gsU3ODCSCQN%aEM^a<+sm&jSl0kypJQ_6w0)k{!yD~q}twtn_es&3JeDQ zV}}iYuB!amhGqZ-FQS*(h822(K%sA9WGr9(Ax~@Z4kN{(?2hqK)rypd3qBv>vq~8>! zkp9R*ao{$0_O7?im-(h&l8!S+b(QiZblrOXA(6RdN=Mi%P|9?vwIHWX<%W~>klIlD zsegKHQfi}JFl}2S4u(@`Um4m8e|EJz<(WJ5|7B-G`;}#xKB9s}5k6AAjtOR3)xZJF zLEh+|UNZ@nLR;UyWBG@0ssUBlrJ#2^6>QBjkSyJQt5AE`nxeXYTT@3D_ia)8VQY51 z0hO>~$9~AWuRVsn>SeW*yk?%fI<)Kf`4?4(_;1*J;q{{T#g5-MkIIyJ|C6(GUZ!=u z8Ie;{oS_U3Vs=gs|$ zh6cXz(}7H`d>q>G>ldRSVwjV#a{*0&M!>8%|1nvBY-Z_Rl&*b^W_xD^*QiabV)UPR zYGXfn;yMg@2P1v5{ie8~pIunS7S{)HgmOUGuXzh$b}9e1N~GJ7(>$(i|rz^D}th)ieox1=#@z$wS&K*l)h_Ua{U#cR$o>;EwXkkj6C z=OPR2b1WXRhC;}0hhynsKLKPAYh_PbHmsPBqu4T0Gf5O4994{VXQo`}bSbAl`1YlxC@cbn0^_ z@D?`%vnyZ{?zz9a5X;6HD%P##vR`>oq*V?Nu&(3dut@OxUwN5U+EYfD}as%HxN$Dqe0mn4)>E6&f6j!(|i z&(Hk53!nYBKK^aLN;6{VF?lglT#SwsEWS>h@?j%ew99c3`6Nrf zQ)!bCD(VpGz{@vy{4zLydz1U^+RW8pS0Bj|!=S7F$)^C9?Qp@00IPgjT`&2R5)I*V zV576r(ZaMRY&}qtksLz@93ceQDuwQ$HV>XD?Z53fm|}G@aO^nhEgGJSqSH;=)hYUv-w zucmQ4>J||`>$5S|ur!$1e@~v#scSeae1hh6d#0%d>^mT(k<3?0jZRDq85X@p1CAB` zciidB7HxhAGW2Brop^8903E=4LirXX|Khu_%*OUL-HxazfZ_mn z+Og)%6J+Jp{ktF%kX2o_8M*B%`T4^n<~O@v+WUoAS|O6?XWhf!eE!>jIh%FktsoiN zQ|WL#YCd4NQlg&T+KT%*w}w9zFKpO|L}~ZO26!k; zKe?*;DXft`)sE&dk>s$BYJRocFZaxHLNVb4&fS!Qi3u6V6rg@OlCMlDF~MC!7MB<# z`WdJ{DJwiVIACQ*xWL`QJ6Au>3u0p~4eFnwX0~T+xpw?sm@e6{zy6R3n<2EEJu&$h z02c?u!6BSrY1t4}6x+6J+U_~Ah|-rD?5*cc`BpR920#B3=^Ef824i@Vn~8DB8Pav) z#C+bVze6N5=-pr@f6WIag&EHdZ85ffKEvM{YakJQtDyRlUsQUZ_P{ny24xvrc_Oej zKVPDWH%s&62h-kWp#P?=>DFoUn3PL$YCfh=y5sdbR~j%9LV^V0&B_<)v42?_^@Aoy z3tVR~{?)3Tq~JjW9PqiFmK}&+q=iA z%eY3ubR~O(d*INvuvUcH2YJv=ERi&}@||8ku5%HT3Lo=yK(RPVX2&*Q7ALfLPsL7) zq`xprL+AaFz|{ohYJW}zLup0ZzQ4&{S~YdUk969dSOyi$uFsq;ArCdqA#lr3)6qe0 zt~QR>```9lVx$X#TF&a`X0ZFke%syoQe93Pa4}Ma_zI6+BH1Ai5;CD^I(2~vQ&v_VD+^^>1 zoD8=}-U(cg6}*O(+72`F=6%aZwsV6L`JZZg$BsA;gcy5J>}R!zX|=S+ti>mjw5sl^ zc;%7rxv~&+y>&P*?G6ghW|ITAt#U&rJ;#Su&ay8miR}#7cpndKScYS<&R^J(14jYE^%JaQGY)X)+OED}eOkmAN zGQ&OC|DpohQQt6+7KT?Tv!x&^TnPyth5%N}4gc&~I>1~xt)Dgdx?d@Pqr}$8nAo?E zew?tL=G`j@KNO0~_`2206OH^iUZusbxq_kV)(j1LI4M5{Fq(D*p_3kh9wY@!=CFa4-w-;>?rTMTPn=e(=lQdnzRXf2*}AJN6?LFm?&9!MNn5X@0l#c3 zj)~glpC8@8Ips5-<%()qMf9OcuKXj=0qrb5j?Hqcj5i4tuUd4p!-$FUK$)OwM z+9}PS9EM&=?02<>6YMS_T=3l$_65KJRvnH4Tm(TX%d>3pX{~&m|?a`=H4jSb|$a zI$(1me=q|mYM#O!1+M7?9**hrYSiw{;b$Yc+=Nq3JBS9!^oH>LQ@Vny-hz>5jU0Vp ze@|A=zpKq?63G7B;#}Ak*QD76`uwVPdSA4tf5?vyqjAZ(|HYxaV(NCv19JX-4wT|y z8I~oqZFQ6r4Lw{8&<1B=b`UMF5$j`WTk(@=I1LuWCEKdt6wFD(U>GVmM7Ca1|&&?fLm;%-3*_!CT;0y8IGPezKNs z{ao(XiJ-K-e7ZA~Duj)To2?)VcMW?;QSb%}5Tm@X#;FKrwr8I~jMg&P-A^g>wtC4A zL1#(5M#UOzxeCv)2fZmnx=xv01%45a7GXCe-xsY%V|VsQC_UsXDQ~YGX~T zd(E*G!ZS6n=mp2)t^AdMF(8*`7`#I5^Po}XFx6lTw{`deRvqYd_LwGpA>m6OApCC> z?lG|os)DHS@~$G^Oj{1^HbZeR@4}c}l=6KWc@4#Rfauw1iH-F1fM|TY#P$O-%7c|} z!osgyG?4{NBIH`IUkdE2K3sjPM68)+7BE9X;sL0dpLzg#MWk>XA=l2G{vbM-UN$tS zxx*M>T?r#7uv8KvklAul@nb5bU&$E8`n^_Kc--{--tdo@3Dfc+UUz&3r=AQbSGjrL zVXCN14NQ?s9W9tTp)%U{-hoQf;fNF_@mF$u{6K#s%$4o@bj0-E-97nBEoRFBp`oD- zxjA)pC!mpkHwO6JvlYKR{jQpi5fc*=K>s~YIXx2eiR+V~PDKIkdT#oX9#l0lB*4A* zu1vMyB`opf_Vt)kHaZ?eztx4%pe?%5E~^&=*X>>o-(2^KKBI7DKAu*+3>CRi;6~XL z3T6vDyZ@t)?w?F)c z@0cc(`)*GL{%S0C7{UcFnLkGk>Cj?W+Va7b&N9NbOZ14ne}(%Jk|MCS$(e-L?ulJ&w$o<$m@%l*DA%0$$0N8f`bomuiXYilItj0FqL82}~a-JS9b3C z{S-PS9}q6Wykgzmx(O~n{z94ey`I-6Osf+_P<&VVJhkPWKV16VW1)+*FHIXa=O1*L z$SpJq@m~tEvOZ~W+=ge>U@|1hX$ujkblTP6TJ29x8v|xhH9g7_^xCWg^gK?_t*&8Dwx4fWYvA}b(XRboVcgOxVg4l*`^J%DWSJ@A{V$cv=^As9MxNa8Q!tPUcUF(T|@smF{ zh-Esv>X}e<0vDe*Zep_zSD_gS;(4e5CXKbc|7+{eM9XR=GFwqGF`?zTVR zN*5FIwsz7!O+Yhg3GpgQgKGT#zHF(VSLba~F#?2^h0PQ~U!ED; zW8>K64TwDA@e-jYp5ALoUM{Tv{KTBA_V@{$JyAb|tkvkVz`79@*xJ=uYwS0W6dDGD zpBJ|b5g*!Yy^BnaBW!Em_*QqO4MS4krHCfbpC~|$k6&#iB%larPA>Iv>l*bNu)4`0 zUS9Q3N-DKr$B)_u3};O4{JuO+GLSERgZS4p@k*CeBi?J5_O|uuQ2Xms8g|Lqe(%;_ zyV*=;f`WqL#yLQ;EZn|pzF1JjvKmK)$zTJC+#T#C2F=f-6Ou`7>fqA6?_3jkEHM5| zSIW|?)Wuz9$zd76D}90fOnnL;E?z}N#kl0t2hZ$8+MZNxNnNhUMue{8Y*jUoyxE4# z1%5(}da25QVKJp%z6$GvN4=iFWamy9Pbxpc4jNrEc}fK(c;K^!~2S0 zim`8@tF473_a!xbha0zN`1+17l!e#$G}97&Xl4CNiQ#0Z=3tN7rtt#HZp8$B3nf## z?Rj7RZ@+3rl#{j7u-?KaZs+4>K_Td`q#t0zdwB1ZNBS$W@lT;vhTpf z`NvrZ_{>NqN+*Mg@3*p}G7MY28aB{K`OvzJ7Y9+N@5^sNSVEEUC?R?nXhOdUQ!FsvZ&>|sAdj)_{;-yb zHHG2nlV;cQ3(dO3p3!a7)qvK**8;Njy3Nna7C|}QL@ZW8o4m9lObNs2`*$e|hb5{F z=V06&HD(kiTm^~sv9x9^Z2O=)9?o{o?FeZbTXGJ<&Lqx8Cwk8hj5ECvRP*7g2}?`w z|MvT8eMb2a7v;aRzM5&ijo z{0wXxloEjKDyEL669QcRizXBTB`ddT8gb2IsVPemwctg<(oLzUN5;Df{3~4XC;}}R z`1Q}FUxMh0@V=0y!?u&}BsN|~n*7TzL0Pqa?G@X-b!ATN-f{$2vP#GqIZ3_1@j*Y0mlFnO(auI_#N6F7rOZJXZwibU|0 z^+6Hv?fL3%1`vix5`1`5l_-o4Kor=Hv_7>yid-e-{m8Fw4ae;y+=`v?9t+}YeUDs5 zX^=uapDokzp(D_FPWy5fxKgbweCaIy-T=sttMM zBy6WL<@u7)L6;B;m_Oh{uMiL2Ep5fXWmFnZJOKno5;P?89%G8#U?HLrWqiRcfYDPD z!6#ve;Of9bFPUQn2lNFBJb0LxK(?^=Q^USIpE!vW@FOfQvbccW2MHsEKhIA0vpz^j zdY>GlBcZtWg~U|=xkxA-PIf~hkU40|CB!o5geyV4H#^rzO!TppyC{-rSA)@y5sdr& zNB;DVw%=YnDUlYz1pnc)_Bk=y*G?}BV8r6r)$2a)c| zTvy$T>YPImva6QiHB#?`6zJAx*dqD1@yxj$CBPQRPFKQb1$=qlmWm`IZdEVJzG#}6n@dVc`ssB} zO2~ldkw8odhTZ+Wu*m#UZGccd@m3_PGs$1BOfcZe*lwM?O&AxmwepZeD(f;4Etl0l zmjuV2WpUN?iH0epiFT=12U7Dmw#{idJm*~qC&I>BFf?Uq-d(CB4y$b66ATNUWEtU# zR|uN26jkkQFJBUbhXspU^BJRR$$RbT48!6*`{wzd7fY09Jy7b-B=rnZf7 z`rNs=A*r7l_Qj~-(}LeZvL5;J$Q8M6C-0T*Q?BagIQpLHef)uq-l(%Wf3CoV#}>0Z zy`cGUkA1xD{jnkk4aGYi1OtsS0S|;>oXb%cp)ueUMqEVg=jNbI5l8#o-c0rD77y30 zk<7=uR#UG{OFNdMC6xvfxusMuKxwXH*0vS>=;){nG^MDBYBydFL{pQExvX1n3X zJ^rKg&Y+TvEV1z_gH*oB z^8nWt?uM{Kjxt=0tAWq|0KPRg^Qgr-)iJ&NCdCV$7y3lPE@ezX>RxNT*e;jL!Ny%- z_^6G4&-b3-GAR1s(91Key_nb@%|-%ke7e;6lFe>s89*`Ray>SaQ&I{7NR#nND_bTC zp-lpuskXLnvc}-#BTI`bLCfhT{2M-D_=o+rY;VdeZeL*650Eqvs3hNPb2a7>;MAv{ z(G&KWWSn2lLY=JlE=GTgGfImA0>SCLlp16KAwEvSTy|vFzgP*n9e%gz-M%?R8yhM# zurI3GcSk3a)nLxEQQAg}Ct1EqXAjJ*kX&eOZgbs;R)jZVGkk19s;t>dQ@kW_i= z!CW<+m!n}+a0iL`5%Xl8@Y9kQJYO*G>T7>I(pjQzTbwH~9vc`nZId(_%R);$U)|3@ zONf3Azu@wnx~fRO1-dFdE@1`i1^+I^%XkzQDHvl<@sT3cAV>6r!8erc{foWpK)R*g z3r~hc$i^MB73V_=X8Z+h`1}f%u;HfdGSvPMz_z0a^r-x}sZ_U}m+aHd8Tum4ES}R4 z1D{m`FRQGtSc8@K-N>W!z1e(ARWO6~256(vF)>-+Yp1P7z;rNuoXFRDHCEpO0+~Ki zcmQ65>oMT^0$l$gRFE}DN+Jt7^`2OE8=fjWLDMt_j(pFH5yh-YwaxmtC4okQluf?n z#qz9FCJHW+6@^tpng(iazg?W5(gw$c-Nfz+^|q9N%mSAAZS^QtVmN;I$S2X2c~9gR zXKgY!pQxJPmW_K5qs9MBiwk=b(eFm&aDP+k(9M9`S)2G-(RWN9fOqdl&HcsOXBU2g z>o#<_B7_?gyUClv_k?TKUfR2!Xp6le1=qZFfAZVDRKthLBAp41d`XJ6g;UsJeg2Hi z1SG`ZQIIVlL+ew^Z_%Wy&3_%y@PB;B>)h8d6Yelb-XN6+QZ4mj8h`UxJJ)|-d zU=68(n!vCY@5Y?-^ov&SNkoc=6oqk!M{HtjhSo7;OaLeWQQlGm&+Uyzx za81(3=k0s)2X2qLWKrY?$r5!LbqU^``irbrPF&r&OHM3A3gcfL;`juV?lI1@c}C-D zcUYvaDr#dyw~BL`C5I4X#3Ov1F0ky#7Qf@s`a%xHNGW2w{OD3djg&lkv*qmz%JwMX z&O7??em$GqLXQ6m5>z?nsVGml8j*C%frwX>aNQNwyvKF~bq*J_SLRf8#}2&a-Mn7v z^IBZ|cTvsT^Wi?q1Vwel)JI5*3rD?g;d6A^_2BD7K%>Zg)=>Qaz^$!33 zv9|mB^?VwO$z?`g6Tds_B3VmedCpcAgbdt&Ap_aLK+_X@*eBl(UNUzUw1<7tABF7` zc*o?!KK%jvwD5oSN#wtf$+b|or&iehCATC zF&@i#c?c+G``M%+=d#13{-=W9b!70ch=Lz+m4ihT8SDdv<@(R*$L9kF&@c65di4pY zws>w8-0`p4rN$v>`YPxjX=cWu!o+CY2-hkb0=J}7Q68b48QBJVJQ_bfQ>#)uHr?KB z+QF|ITmRa0f>$TPkH!o?^yHpO0xpz>rQ(&|=k2AYI?_=3ME9dpvmbL_3g7{uvUu(C%|uP1IM+p~?ZBv3z1do=cS3eRNc{o+mZg=(}V&HR+|K=UzL zLkMDzU%4VGk-{^0)o*!;{776~n~Tr(ha)Su<{8~ZN|K2W`W%e7mJLJA=v?`_FHOp? zF4{;Q4!{d)cvS)m=s0B<1D^VC7W!o;y2YyR+9e~sFu;WSA5#3+nK=fd)0hn;n2?3C z?WzpWWOTI=MDV)MIkoJYCLIY5;1RH&hVh8yPr(oQ!*VU3Z<$;a3|qyiNSj2nQhjhg z91o^@-=SPAdW-eGe0Kbs{(uh@l!6#uCCSmnyYJV_(iB8vd~wt$(JMfir?aK}x%-5W zLvF!iz?|nRhdznrludMLtEik<$iPEAy^FgBdph|)E3jNg&vdr3qI zR5r!X^~#`_D#oEea5&Lv>eK{ z_6EY3!2aZzPc-X@%vAnEpn;)`Oy|Jy-Cl(I6?H^$d==x7fu}g_1rrp@x~4<*OZa&* z2R0*v^`k_b{gbJ=bW~J0bD^i`VhP^svjeYxSa~n^< zbI-SCj3W1i_TfFjC{OHypISc{?w)nGjB(orH6TX))%&ODR8iSc5Bp|*uW9>`?4%Y1BFJi3q)2U=(B~cu9}z;szis11t{=ar6Vxq+KeiCOpu-9=hgbUE z$B%?T<}*I77Me0vZK&2*{{lIHM>0_nuhVp&Ef zhK&_PU!P0?nY{Wn<`TmgqSNukN^N2HQjgdKGQt|NcNlCWR@IwLUA}F*;yJIQYAeJG z_lNl8nFBQ!<6>B6tZ|kW+wt7lC(9g8#)6gBqXr7%x)Fd3=V2jQq&jiXkv2ciU9i88lgVrIPG zeFKkN8k?RDCzmSw)iyqZR5Ej!b%#6;IrI0S6$^NK{EEn1ZiM%NEgc%S+fi)9OL*JY5p%1 z^5>2|U7ra%(nQ?pXwdu22a^z#Mb5qonZ;^p9ix5(K`q}kH>W4y{D)|~NLy7cSiJ@4 z(#&cTS0|hFoFZ%U7Bf}vM`~>iBU15n6$%-w>=U3(tvh01jDA@Ln?IpdWFU>-C zl&OvLjP{SLiL}a1DCPLZu>eV$&qxqv26PvsrlTwPQwcsM>m^zOVALi`; zswy5OYd znFQp(FhY1r_CcS%#RH7qoI?6IKYj|UM}w+Q&gXT8LtuOT<=Z}u10Tp109c!!&HF}hb&;pqQLDBlZxQo8X-+QuzZDaX(UKG*a1FLkb|O+ z|8fO`;oJk4pno+MdsGgJ0vi5&(t+YEe7WQwbCLY#k5!k>pZP}3V`ti?YjltQet;vhS2%hPc~#? z7{n8w3Uk4fBY5~sh9!aFd-Nfz8=+QWvd!~VI7{Nw_%Te(Ih#<(rANi6t36K)mT32D z)xS0n{M04iY-TtVe*6RRu~)jMh(;P}!5@8_n5QrYCtNn8XRVmtkeKXb*T%+7_I6zv zG&-Cw!Cl}|oGGf8`X?rpnh1OyafKYe)8j5Gqr8THiTAN-@kzP8k&@S=myl*pNjcQM zO2c$6qmT$Bg?YjeDK(+=zhP>*O~p}uJPOw2O=G|fnEW1I3Q z{*i0qp#YU8EKtU2qfMRK6^OzVs?Xe6fDI3Vh1`DA;5F3u4yl*2-EWu*&xZVi)=YmybM_Y&$%zo9XUnt z8XD+5bmD$!cM#IkA)>l2V^qTZD4c$*9an&|h^7>|MvBsJbt}oEy6;y6b0%$&_I6kf zsY1)&QNi2gxV^W>VO9+N5!{;=$@CC?|m|Ij$|Rx|ph5w5JsXAd8~^DXEmUK3IjJ zB8x_y3D~A4l2+)LlMj=CjhEX459dEEN+fX1EY^YdcOXCe06C`* z_dq|FYE#u>-jSq`SD0VFxjMl=p+80s+-lfw*d70&hd~QV7-T-T<-sE3lKNjI?3oI# zaTg}1q$CP!C!Hg_sUi+V_jZ|Ls_T-&5_O#jsb0-57idthmGe(!17?etPswD5mSDlhXzgz<`F2} zoEDM3t0L!95M@y8=10w^U0YA*xIu;TiB@3bB=zLa^FO=aE!y)o4Nff&>pw81`Z$kE zsVJFpeMv}x$I1NDW6}OftBRsZNlk4aAe~ZyKO+JffVV=vdkp2@Ix#(Vw%;AKLo^3x6o;Qz=)P~MIqkwm4&|T zm(2PNu_M!7uKuVRXD*ks8%4eG!S(k^{+P21&eX;5FKZJ}8`M&%qEK^;qm|flkQ~x+ z?0R2oSWR%zbs68P&n~+h=d}58sdp|bk@$=BO35va)%j3LHTko(FLm*YRK&S4?fc?* z4ij^k%}6$vqZXy_Ba6D~5+cVEagrmA;reSPdi`0%RZ4j*_)9K6)zwl;J7C7RoDA){ z?HtW=+!PT-8~t$@`;@@CXt(tty*Umd9=aD~YhdC?)7L&@P zLFSGngM9e{iW1iB^2og1j`zj>Q8cJTtWbL`meHvTDBVG7I@0}jCF7BH--JUL6dWd5 zUu3Z&d8Jin|LFEIApqr^tZ%WIY6u|;_hgeT0eMQu4);4*DDF73X1qb<^>9EYmpQ=Q zdfOxQRNc~l!Oq}9X#7j?z80I5IO;QJEEFyS(aLW5v%|E5;54SBJ{`pUG5a0OvVG`% zSuf_VQb*+lXSOvIX4Dvw6VkH18#(S+KNqn#j#wxN*V?`FQ%^bw4OFxgAWeyXaq%l& z zrTj{gBOl9f=ugBJ_a^1(*UHBqg}=w+j)qN1NqL)SA-frO`M)4I|^Z zLnbUz0w-Ii5oM#Uybc}R3qNq3Q{T5^{(W3^`6gke=(0|bSNYdbz>adTbcT@aHuu)m zj5AZ_Dx55=T9r)mNDNsY6i|?#ehZ>oJ|VL;Z7`!&)>P0>ygrA~KoYs^7TD32A#2hU*@FQDE-l#q6-54-HpJ-m?Me3JqdtJds5rQd+iOG+Oy%{JD zwLeBWbvq$;3l`WcCzRU$Dc9tR*5@EStnmp(ZD$up&b}He?LUeiPY|9VX2y5DKZo1= z<`2@rlH~AAryXXqQLV$Z>Mp$#uQIjPzm&7D2j=6sNkr1vRnXXbeNl~lP=^$Rs1FYE zd7Hn*+IC#uyp7P~D0>?&sY}=|Z3K!sD@lXuy)>Di3aXE4ye@ptxzQ-Hf9sq0nQ95m zmWO=5{y>3Y2?DRS?+@}NJY+>fFD!SW@IWyE>?bFhvg6~#9 z6{HNlce1a%r!4SgGY0@=G?m3*wiw^bpX86F%sWuYMV<1V1t$@{lpcR;rC?? z09S=4nMeS24=u^{f6izvyN1BmdJQ;hQozq57Z{ipXxR>V62`I~A(UsuP8#C0zKd+vjc=#19V?9cEQYaI&9(n#$K{Wq`PWar54(hK)rbqFYN@+6+k!}(z4#b-7Rvj~>vvizOSUIfY%5jq8{w}^S}KVV{I4WXeA zGfPW$MBVi{+YJJflkJ)^lja7f+BUGcff#H8twd0~RKqUC4Va3DN6^5O-H70SfHzPm zApCk!i%3dR19liT@b^uG_Zs4PcZ@JDgM_E1E3Hy-jl>ARA7XGEn6g0NHw-AYC>pl5 z9J{kMNZILU_Y&2Nyf3T=P}6ZKJ}P39$0~o|?=ECa*Lj=Xo_+h{F%!AG8X8mP6Gazw z3z?TPj`g$n8YtiU_HwS}SHi_EX_)F!qdRdH#QC^hoH-eXNiQho3Y5ikJP!9y%=@PL`Y;wG*Wzf znRH@LLH=?t;o;BB_Y13L8aVR-HSi6+@y|`K<3mp1Cf$5VA|HysG=*2|3SyWAVc66M zNak;iJb6#iHSVWGkL}j}LK4UO4t}o2*M3(`sYVKL{7xTS<0gg-ZR(B~`-jZJ3PY9$ z_h*`_w})Olit}k_!7==1fMtwUOul`Mo#-07&gX{hUD(;V+rPYH^!5>?!szFRx0}nk z>Q|Mn{Xcn}wv#abC7FWW(Eiz5TyxX{>>yn9!FD_H=-<5~*fgvY1W_WEG)=z;XA3Rp zIRV6chV^fSl3PGBAI`=UHLu2y<&)KDW2dkT^ke;yVA*|O^%lUFp=b%X1lrfPB>y%w z_WYMg;7lM70u4nJs90cUtpPn|nwktt|{0>z1oeS3z)&N<&Y^KnI8SOks_7a8(im`W zxS%4AA`E>d;Y7qy6cI>+Y<+iolP{obZS{RydYExg(CM9YnXZq4RU~H+G~2enyCu{W!%j~vi7oktrqXr?4zWtS!CAY#X4)qy5xi$; zD~Y;c8*jI!!0u!+721_`0Paw@51n?!<+Z)UagxJKKDUJyDZWc-ymep>LU|l<^zl$y z_zv0eev4=;rp2m=;Pf+WYewsuu zWt&g!tjl8sG?r8cIByFia*?e%j#-qn9xkf&etDGdJ>Zg{&w>}*JH3ox7{tnG(;Z&^ z2;sXm^y3XF6Z+BC8$l^oX!}0K;*~-!IACH>v*{(v+aqnZB#DTU9f?&bKB0kgW_R@R zMIGJJlPat5v1vS(#fvZ#vs6agMJ1F$5MMU`cX;Q+>*V@4*&23+A=4xTzzeaxH#% z*2ZZshTF=YSG&*7MyCPJ0z}uRNbZ>tR-A5YemdjFhzzZS3IOvIdb4!Z_V5`L6UrLk zDNQi^iPbn#i5nB>g6I)iP&VJ|A+&-0;?kuza}{M~6?>VC+$Zw0MZ3LI0dX|bp^!&m znaJ^qVo%a&!)>7(ix9Z)iIeJjd^*;9BvOWLI$_}+4DX44n#UQwL~U7gUBclds3T1 zX%M@iNyst=u^S>0yMg~HrQA$_qGeGyVfE60M}n3(&SISB1|7xA2QW>8H4A~()7o?wbmi-i&R@dR>=;JEW2mOAHEa}SFb2CG<^_8$j@=F*>Z{xHO52^ zpDXPNoF#c&uS%H9s

xa)&o*^HcLJiKm~(eQ=^&@GFYKc*O^~?tL$#; zJ)+23!@kf)mdX^z>Jc0n_A)D;KAGpPmu?MK&z?_^RJ#B@GdF0qP2>Lu#}6eB3c!2W zS@ET|J-<`0wbjib3y1NbidL|H4gHg8JhbZ3w|>;u_NM4pH$!S({(q!uVXI#`s-3nK zOLg8y8}^VT#stzWF+E|!ocyI3I~P^GZbG16?IA51>Fve*&DQ(g_=l&4#A5giD2a6k zBCn08{Eh390QR%MDnShTAYx5aR6xtk#=On;_tOvNyZSPJ_$#>I#Id){Wd0z8wahz>sIj|PlmR3 zM~JKENKC7zZ7(!G@&!~#hh$)9js4Nk^j6*DSNT(|5)Eq4cMIJ>F0%xJ-@?Ifld8-Y z1fhsd=GCXECy3WY3WY$atsW(j(^ES9{nhXzvHR}oQR)eiW3)I&?tb?tQ@>EzM?`s@ zq)!SLa||SU2|#c@^_iU3jiRGI5L*(BFozjElTfY+rY}YT2zxskPHctWbyQV*%_h;j zysf+hEL7QtMi0{Pr_p-7F$GIa)yT)fEqPlrMqfB#rr7g_RD-S+ZO$IJ zqC>AytTjj%Eb*e~tRma1ACqJjmXx2FZ+=ukrX%~y(gC@2s4pu4?S62Y$9PhO8@rIk z9^*6_-uZ+S&FVO0s$ffc*ze&b%W!0Pi?nPTW;3(BY&GOn)LPbaKuaT?%XDUVjTnx+ z#58F8TdNZ3=`chUgk=IB;W1x^7rOxGVJ|R1d#|MpQdt7QGW||+O5-v>8ORdBKirL} zX#{;~8_4C@qFDnX!yt`!;_bj6f_X?3BwU67KBw%>)l9k)=viYHPi?)KXzCxW$3)5l zke{H|${qpwpb`ZsGcRGpW^dlfF$^lvNS0zqx}JKN^>k`G=4fQ6*M!_`ZIXLfH@_;* zqUvX5Jlep7*9@!F=7cRr1)i+5n$4ev`}dMsC4Cq4dOt;@rCY~--M%Qnlbvs6P+cT} zTpaD`HIDfmYqR^Ka))d|sF0?miT%}%8JAC?;(iRc)v{LSUQslU?H(&o)3J~??|+pY z9r7c;DnZtI%Qc(dw`p)$(AeQA)dER) z7FojOc&)deawO>@yJM0->!&J}SWHONU(&a-=%_^CQJdYs)(wcfJLpkVXKNBq9<2Zg;c|v`j(?XazH zFU9LVYhok{Dr#W4hGG2j zo(#tGDj& zHvcQ6Kn-#g^B_Ozbnx2AzmH~PvLy`eWbAIV?OS=azsg7P>)Xj=zGKj!)YsROV@}Gm z%`IiLGooQ4i#IJ3!%)2z@oy-r(f)Q{p`0j*$FaSftn^3^uPYp0mV?p*mJ47nD8C$joc8rrTk~_0M732@i1~!@Z#pLfs}EX4 zo$9zKmVJse?hNlcGMeun3%8atea$;sn`S-Bj2{t5+q|2CjCAIR(PF|{s1>!@m~=Y^ zyzp zFxMkq^<3NN%OR}4=k)_q&=w=s;Q#eOrVZk>teU)5pC~a6!F&%W%QT%Ti4kuBBeN4s zM+8^#fsWk-w#|%ir9q@=<*}>-(|B1Y;I=sR)rJU2Ze}Di$F@ULQiw%;FRBd{$pk$= z-_*=H==Lh)gG?Ddy9q9GX@3cc>)kJMKfO~Bw;DDB<(&J7T8N7RfKCFoX*|vD5CaLw zQ=euCR?FH;f$)!VE9&1^kz)BnctKd%lRcUR0cxF#qKsg3j1Y?Je)fk=?}75$9HeIB@SN@2D*3_IG6{~iwi)6`?6 zRF`Kf0UR$DqSP=aWz=RakWL5ZLy1s4o15={=ABwPb--OJ{;FaooNvvc@&EV0y9t8; z7}9~9BRE)Lt#X=MOW zA1Z~VG$eH_cKGcM?D6jbKkLvC&z%vqAT^MYJAV~r3Qrx%Fi3m*kP-Q!4IULh@*px3dk5Py_GRayNm?|cA7h~TCo3Q#jf7dPI~=HDp+Q@_c=~n@**R_%L>gg!IZLC`r>^VN0DnW7GGD6X3Ri1sOw3FYCHmh_IxjpUT@b5Q%qxm(B+CViSRDcr6n7v$A?M8O%*BZ|^ z(Ul*6p~ZGn$(h$c)Bw&7w(4`zchNg}r^4 zHX83(;jp4P4W_-1Lt=>4x!iqLTgFxCS391fx`;?2Rbm_Hq3KmJtq^*PVCA6;eDAw7 zo9CD1f2LNL-u^^(@mINAA~wO_*_K1!l-Yk3_20t!KR%$uA$hx(=~d-q>95!X0#6H- zu2e92w|m0YMCAPgs75sB+}G$|0^9vz06W)my(MGS$PR39-%%+l0F5V&L(`EWAT7Ox z7G!{^IcO=tnby`vDZi_>&0ITEClc}F>>24>(U!GAb`C_je8R)284Xq#B`h#I@E!|x z(fDf&yNSxMu7{t@y7*{DQnIH5g70OiGQN1=9XhN-WRpTZ_&shJT&(rO&To)x>6;%TzT;M9Z*duXOGj5P;iciPAQI| z2%||pGz2tPpdBKp=C3O}M5qOpzmVEv{=ZM*AUQe_5xwJmhV#Rfj|aCm*PWpIXG#VB ztnvWsDnnD4C{)6KD`ZFN zd-_Xn7+6#JerF;aG<0l6Blh^A%VFFgh@jUaA}lmHxZ?kEf6-!kbrD0Y0tBMkZmy%N zYYv7?3L<8r@Lf^-IMyl)+QXOABScIJOYU9Idf5x|Ol z@tkda*{H*3F7t>qNo@l5byWY8aM$<)l<*4}je9{ogX1+4)9T)#lmZidCSex+b}?t= z9qxkrJ)@o8?1=nSmLT>rp{{X%fwpEPQ_sN@<$_u0-I1#e3#(kL4F?t-SUprx&4c}lH2$rf z@?pVu=XL7PrjJAU-%DIGy-}lk5ra6VbrY9!M=m{FOqgk1zb}C?qUmXvNVe|$uQ>=s z2?A_0QTN{|Zq)?QN8W1x9RPIM1XJ~{tVKmdGDb#5qFH@43Ir&IwGLrG2f+Cfikbz~ zcVTKKd0HyKlDY^k0wgouB#_G@zyZL@VAJX?N1T>s8&7arv?7ESiz&^t5H29Ivc@X{>1g_`dpsskniO`v-YW?n~o zGiM#NO1So+#W0_S%_6=)mnRe#!K2H1Zzlg=p$UqFF0H4VrWwJLk80;!u+?&b2A>oHn-(R2{x$kiGh37( z$N$O(JWaZI5kU7&>lL0fa(&Z;6^=*E5msD~pewTI`z5$qE_%&4yn`PR{VR33Mud=S z^o+$8bkdRb?%*bdvbk>!%YM$?_~f)KSM>~1wgtfQ#ok9!WGjMQquP1NO=Bg zh0D!k4kzxz3$w~&Bv=;aP%T09$rZ8N{si^CHfJ3wi=R3bRBtOzIkjpBv8m`CS0M_9 zs_#t9DrXGoSLNV{7I4czHRs3#U|_tLCIFxBW;_4OcGDG9iCL`Fp+W5aZdhnetjW;KS;egHYq+Qx>;vNAZx z=7mXXn)}yLX5@jM7@t)$C#9q1VuyMi_%%2!ccAf^y>iCN(y27sYNBck!d&SFdzl%h z_Vw(25WbNVkpafI@-SG##xybX3$Z+=T!@kKjxp#O>LaTtf&v+3e4YRj9`Q}mce3NI zHFkG^QuiAEtasfk@>AHN7Ii{;b;o#&m*~}-tO2Z0i-z6}CvJk7zvKtQS`8koZK1v8 zwO<>6QsqCb-3)WLsbqMNYWl`N%of4W8|Pxy3Y@@FRfYo|6?@*?=TWLyPieE|^pVR}Q+VX(NA`Ux2gt8HA=W?%hQ4UxxO3ndqM!Jbw4?aN9A|a12!AKrO;N{Q2_5O5KD|f=*VReLWfV64e zle5__ra^0c(f8!dOOuwV&mhd^)qKM@-trGb?-9q13RzkSg4q`&3nYJllom*dYuHx1 z=!dSJ+#ft`h4GVa4x15@4`k{1$ls6NQ0`b}X`)(2g;RR-p`EP?B>JA9E!inGbW-*| zLsK2FZr8tp&BI6^qG-nl0&K;>`+*VJXF=UJuOA{Rs_ohWYEA42V8|=y6HdC2!ZcK# z^wvQn|F^)BF@QTdr+Yo)-}~KK3=*{(e0O^6qtgD#`R;U~*UqHz_HsuYjd;N2IvKf` zOA)a}aEF?a=e&EvOawk{IKI>cQcoN;C$-uzvVth<@dufRMn=WhgasFtc-&*Cqm0O_ zVHutzyufX`w?uyrv*lQsf022qtf?|xR+}m^T&!6W8bSp)dy{IUi@z8FT@=RSsAB-P z^R%)Mm}*)L11k+#{&;}GJ~oN&C5n^4eIN>9QF}{AhIZ2cE{TMnRHXP4oj9MA(vckr zF+$u>O}y7hdi(m2v7WAT6O=Xh-&`gA*ciwnDXIZ_7}GBYO;^7wM$Z);{Yc&CGX$&y zC6I({$1zq`SLZwXI*S{^^muZ7j~{P=Sty8tkvm3#nm=XNR^}0N-i{Wx?#4j8ScTmi zWuQ?98~!hlB3L?m`IIe7AJ?CJ;yy>}=Zi)9TEIuZ37QLN2;saAwRqO^`7tC*N}eA3 z+4ASftdWLg_fXu8@w-6gY1g^u`QODDA$u4=WhTF{5d^BYw%RWU75*o6>HG3(Ps8R6 z+Z!zNMrVl|mf{>Qvuat4$d)mtK=9cYK?WwO5qB}x|B7v%D818|x=4F82`91c*{1sB z_EMz-#{AVy{+U+e*lub)v|=ui90!1bqKt50E;Gi_7S9h zS=wzYp-1DG?+{onD8t}2Cu@Dl`2a+qlmrTNaQZ_uFy;`n7!aTn_87WWcQW|s{qPgw zv;;ioFP}dLVh};=E?2O9Wp`CL?0sf5?Z!*#8(cS`8$}_`ri6QAmOZhFPXN2Z(rfqA zcV8RQPvX`?IjMMe-2&-3s!*%uvl+YhVg$vZ=#mj^BUd_av$a@`3FW#tK8MLI4GWwA z9y|W~#}dMfNV$Gz6!7gaB{>V=h$quUtZ4(>bohW~sVsAU5yWygK80cG;#Uurg(r4pA^HYOrMq%RJMDI5T>^;* zIp;(;AY?^Zw0Q3qJ1mI@jDECcdrGiU`EHNr1aTApzhjw^;J}=7(oCvmWKO(;<1EfF zD~66ZiIJe!^)Bmc4EkSR5zKkazQ&>mYbZ$2TYkIs=9N1+xAgXgn zNMeKk6By%*pdvbDU{eBPBX>1tW$3xTv3#F}E5i|q+{fJ0)*r}I77d^v( zA=hPVEN{~-5U7cNI3s92H8&VR$czfUzg0rqLogH(1M4O)d)P3fI`;z0zVWN0S&uM9 zl)3$Ll4k0-7_<5F`{A9VciQPVe3QONT)$5511*!*}g_fj4X3` zYaTL_)JS^&Dtl6v^gVwAp~yNuN@JVLJyevnVmMxd3`F$`1EHRqW}>q2+IzWoz4CZr zg*wTu<1nL_2-l9a)AdZdN@pLDl%Yi;Oho7xg1J^-POSLrl_1KVE}%UHrE==8BR1lIznRg(B|L|MdiOkEJ?C%k00+kpkP(a^g}<;omglr$E>kp6h@0_~Wyshs)3!a9u8L^XsM3 z34mr7)TYL8Xe(28#7!^|vnQO(vh8m2Qv^B51)g0Pe0j;P#!zLo_U>o;lc_UejmOl- zP)QzY+p(a}CD60zVSaGoxKCiwo!nA&>@=7AZfh^Ssei;(zUY(XcNG&}Xnmeom@yMR zWeda+TRgmV?-lM=hHj0$K|odqqW80|xDwmXNMKf{@;h>uUBX zjGmjHny~97_;e-qhqyNbJIGh@Oh-zze#D3#-bNow=^P~F*|rppQ7nTtzwj_v9ty)^ z_vyqHX#+jiQa^8NC}6xI!rj1AWL-SyZ_i|nClW`Doy2#&t-!k^G>ejY>q@5x$NKCXspa z5hZKg;r>PGC747kNMUWIrma$fpe`erRBPLTbMSs5>hjU}Yq!JmDa&{pJd4eNELLhl zL|O{i=gdMM!AJ?ZMj`kL^3}eKS+5m7syZqw>+36lNVaPzc8)?4wCus@GsO2s%Y&{a zZ=#Ba60nPikQJ+CFi@*W+`z}=xYjW-G5PGL_-q`;!x!?33?DvHm48EFA$SH z>LQA+DR6>sX(NWx2}*RCWYk53=EdG88;JPJZEnjB^>-MSSdwxJ3~avW)I6gXAoV>Q zR9gxRP6qTun(4<2;ag_Uh6I8e935XUG!2^*H={L!JKgzn(}0`PQ3+b#L)oqIvgCpo z#E1bT9&AbpzK5`Vb;w!ByS+JIT&`X852>pY#YAslT`QwIZwKp-3h!>;;{2ZWMkvZ*F zkG$vVyp9Us*+rWfCcTQVaBU1hSh!ZN(xpIB?^E8ULzLkY<9Az^swR@)TD9q*Bo3Dh zitK=vVz9a-&iM0?aihTJV{@*Lo8QPSB}Q;xITUKR(Mq1rxjHy2D&7Y!jhwxX1xYPm zhOPNhqFQ!F&e!6lZ}qRFxb5?Y(EM1o8~K?TlEyq;gfiYmD&tZKKlxb|aCbXut$lF9 za<$n+P9G>j^j}AXj{(f4!c1h7Z!O9N-HgZXeDubw13cgL4xS7LcgM;cDYW@pR%?ZFs%5cNF1I zM(B48VxGalSK`AZf$F}j3XS&g>Mdo{rGmqj1z)dwteEFE;`>@o zRaCx;u)-@F0Bvy9NGrG%&EG^}M|3WCgb=*(Q&t=KN(*{?Y)OL1Vx5*3{iJV9Y8~c{ zls86t!``Hf&0%LA=KXqKQw7|GGmjE_*TtPzLVd`6W1bhv?*y)q)yDk^-X}5_pvh~f zz;dM>ri_$Q&{*yN&L9@<=p6r@ELO%@9;uo6l@zPj;jREq*z0)I2j>^#WJ%Iz{f9p+Fces699rvF}t zmSD8hX^xmOn|nShgF*oCNOrC54DnN-eiN}q>DgSDcYtk6HGYmNnLNIuwiCgGF+gr% zvO+V{8qi7}ePR*b7I1fMx_v9tkzui+jN?kbY;?Xr!EX^N=Ltv;Jg1&?S9A33dii9# zD1LW@=i+|6PgvnP?7uv>hTFrs+}yu4#+o=WNnSM-Oj6Zm^O7UW1ui`N=k^LJB{H}t zcp-&%#|EOKy40SHJ?Prp^P3N;xwDuZ84|qde=I$5V|jCsVhGAzAQkd;)PcLSr5F{h z)3k=~-bAvgD9`@z*H6^9%9S0H+L1DwpDK(+S{i7iph5NPV$Q#h2PdR)r#5O?{8TI-sY^k#AM~>**4P+nHc-&dXHS zSX8Bw)GCmp@ZZC(fr32Y5+hq9vhm`}v$t51;#N%dY+!&P6JiMxU5SkoH2htME0i?v z^T2iTw))e9Y1ma0EHN0xdlTc8A_}%_6n|4L3hIqxN=iP2P?N{No2wMP_A#Ptlk^(iT3ejxXmLY^)z@* zw#RRgn>H)s^Ldz?EuSapZ1X#9z?`HhzoWN?E4@xoZD@`pu^*%cj#K>Y*})!sH;q*? zm|5~eW zp%f~b=npQ_WpPp=Nijt2~y8XKK`crWGF#R0ZM0xb#*DlY5RZ{V5U z4}&cFe|pzE^M+CBWcugy@Tsk&sRA>~YZC(wZ?r!)W6tS9Y8ayMLiW20g49~7zc2}T zP_@hwf{k#euSsLXw(aebFES+Q%}qe0-RiEvgw+fUCAmbVG`3V`d&3cqKDyP1Zyfc2 z@gTxJg_Z+>k!$n1Z3iYa?QWfFiUXVLUsDV-(M^DiL`e;cF&&S|#uHh8?6?nC{46m5 zypqQ7n_qJ$vFcz`bBwk#Q)8G%;;PeH5ry{=&R?Vu<=8S1g}>JND(SKo`I3u)B?@Zd zj7q~$BGUZ}vvaZTbPfFuwzD?mmnUV$Le(Yvp*q4P6P;Btua4mmz(@_!0mtCLe+HN0 z{ViEty$39|H)u>BMDHY0hQ0pUTG7Y6)~+`0bDXsL+K=&dKo6hh{$;dxg)59_^dwcH zvox8e@3AjFoiQw}^qL4tUOvhAqx7^)ZAdT?E|JuC?#kd*COO}mD+b+v5>LNRMk#;W z#9$FB!EIEhWgD|hxNgzHqlmFJe*%T1vog4iNEWmVm8xBvls3=xzJ6*tlq+p&ELz%cK6pT2kH@qUQ z7Kt@W{nnNG<<>zxHyDyo>r>jluGK)vduTS70REZLplYL0`m@FTBLP;wGrlLOtGmBC zaTzuuhnUuhS>kkocE$nqLF~}pE%JJrp+n+Abo@Ta()7PPH&h~I@hw7h9Je+OJd&+I z)q}Rwg`Cs0adf*iW<}m@f~Vt5#Gln)-)kP=(S)iHoW&S96fR_)!R=E^z^&WvD$nWJ zZ>B4<`ad#STObbBcx)2%3(#*VJBh*L=16P#`dwb*8cgC32wl8+avyCInjFI#imOp> znHYYQUJsv`$VZ6VN*=L%!+1egRU%Ihi1cO2jrhxG?2vQhk3qinmqLE6g!!dY_u^m* zbw=5cLug)NfXUkA-*v{PmD;_{CfwFwl9Vf`4v}hg(PVKs;3TdYTqL%+78p1Hqd>P+ z7N?PZ8^3Xy;c*&=QezK~8Yon+l^R8j7pE zMBY2eLy0-kDQiqT;)8``$P5)Do|>0Z^5?yC^{(!$>Y=X9 zKB+Uqn~J_lBd;Go^Jnm|h*WovQI{($*+>kd9TWsT(_jd8pM zL_soyPFuLHuuj|An%9*e$-WMcMuM%`K%HlHTPAw$gRaI4*lOnQ$MNv8cQbx`H(mwj zHC}F&s6z-$6@jLZV}J?Lz>R$K6$RsYETjL=p@RW^%?OL%^;-niz@q_NhWlS^lZ2R{7ueM8sEECVMREnxtbQ9+d zYwVpp>7@k=TA)~6elm7+PK099Uu?!$_+wSgc1RD=7`1*vh8c$wSP2<=2r?4!9BriO z@EPHk+CJx?Ek3?rm&!f%%TALW!cH4zP70g4UPFCw)tV;FPIzw3FYP|X74$|t0N|tw zM172L4LK8f@5YCaF3*vcwH4>%=L)I!?ijM^PCt^B$9CLC7LnaXL<$`j`7aFLC~t$< zK=(!Y4i*NVBu^o+KBWaRQzdDXjxQttwCW%*Nn+bAtA$=iFWjh{lP0#nn^e4ac!%Ag z90m2Iec{1Qj8gX)N)|IDn2*U7VX(DVny>Xud=W7Bk+DyX80ZEr0t15sL+~eo#S888 zPgvkHkm(-vl=cu<1B*^v|2iD=f%U$u-hQi}kYA)!6#3H6=~Z3R4~Ss|no^s;ExkV} z?dgTV*W6qA-vE=9euEdFh#lv{^c9B*Il_O5K-zJ4hqDD9!n0Odhc;k(n{4{);&Wr-qX~SQyH}+?{dV7 zZ@}cXZbAWH*w;%|f-6hFCt4&DBhW@#dl$V{aqFYq)S=I{d0pyrXzFV~i=OGPoY#|d zMPyf`gkihb(p;P?=DP7}SDV(}juHe?v2kqByJ$uTz|h-3aHhvO%fbiJ8!e3-Jm?jI zRAAYMABEx!`qJL-?{~nRKQdno@uop#;$`HSq)c_qXZ!nzVAsTnO5?ef+Qpx2OjC%Q z*q-D{vyYxxpU(B(%gRLMJWSkNLk=Zu{zIRRXid6Kp053N(sCK{P)*|+fhU@Jl_30R zXA&kQ6SpV|Yho}YJ7|8K=IlZ1Mj1U4c(r&=SK^?=5zx%IUao@ktGS0?r7w zBrCo)iIJW6S2H?@GD@7+7nR$>TK+F2w}<5aHkTt&ZJ9!L#6uY^e%B4- z0lzmPsY;-IB!HY6*1|(tObQP1f48LbnpSH4VpK1k-Adhl{UWi8K4!R3p2)pG9 z$Sc4~KuDZXDej5qI->j5la!1X%mI%Dus0%&Xo^*Pp_Mfmv4ypT3eCMY^f_DJ=!E%F zd3G`teKBxr;R=c=-Bvvufj-Lo8 z4f_6%N?%O?>J&cj*hhh`R3z0sS+jDdn1ANBd0Pa%^Ip<*JlWbf!~pU6t4wbGLVW!8 zzI@x0vShiQur1lV|7EVZ|x$i;JMP=iDFqm9Sf0P?~>I?k#i?Ly6&pzmD(--o$T&!T%#?FA? z@NVPc7=Fthq!#t61O$M(bxz_f*Fm_{Ud>dnc>}C$xU0g!6s`lPz)2o*%(;!JS6g&r zg+0I&3XG6R`e~-+ucSSzrUD=d#yOC~7A+-p1J~UeD~XreD3h5Y2tN*`AzcEqm*kit zJEowIe_ zLeh1H0im0_8ZaeI@&yYjGxWkcQ_Quv(S(O=63jtFeSr-Sn96^xWJ$&xj){N=SSv7- zg2_87X^aB*vlLoDYhlwZj)ljT+$jNkNK>1aci2yEh$fS_WJ@t{BBP~tYaSmg&OLbP z8W9rw5uV>&!GZX1pM?@Ulp;3(jz`AFr?=P@Zc=$xDF>#XIbPvL6T(uH&UBfu>)nqV z^9~N+)R{z#3A`wY?L-!w|DX=ID7(n4f^{dQBOx*i`}xn~DSWDWbVvoUjt`qF>FFgUJbhc-OpeP^62fa(|IJ$3?x6s{e&3p)8CN4mP?v?QUSP0|gDC~Il`VhJxoy-l5I+SFG1mCYx2Ye*bcXPvjjACxX_4(Ms4bw&$&ZwbV5`U zfWG#{on>iUq0PPQDG^ms6VR_j^(EC7F#2MUFj7e#EvFIX57nUI?CrmwYU9T?mo9;} zA~k$6C~wyt1-h_G2APGWVZ43ktT0guLIm7DK`*g|XK{fZ07JTYtxfg7Q z)b&BL8;RUN!RR!@kKALDRYhNcX(!tI1&Kg3IbVb^KjF_n3z>vG3mJ&4!ZR6}w|b_{ zlCRy}2j(&!iTwO|^ZPucva<5xK+CnUMGD;^w_Jcc|9Lqe4NW|MZ`bS$06q13hqTsVvBwYPP?)ruQ75VllA81uB^b7Z9d0rgeL3|UtEOQu zAf@)mcqX@XypIGcU)FM3s(naC1<8`&moG|BxvU_q?5kw<3x{kzPl^irc7~SgZZ`{D zuHo$mrG|B#PV%poAr8?lm=GkJo2hVAQ4rG=y)G;DcHdK8S)Yh-P=;=`CZevfPQd@q zMVIrWdh%@X-1WKilMc}T2e&wr|d=f8?khm!sL zR7ClkeSos<%pY1^y8!N8S}LJ^sB;^dy4k=Vf+)0W)0f6?RX!TNdoEe)xbpUSvw={v zkL~<%8JeW9M;xjxL(s3>Kg@f673T-MwC}WuM#f9|d2hGV$2(qB=u}L6P<;v#8`u%m6w^dIoC>GH-brP(_J%34(xELb@On=0LIUBtKG4f7vN>h1BnS z8In?s9sWq>4e;qIC=C<&xyA@XFb|5^(HQPUuyK6-tPxkbO!aCSE~XPHmp-IFQE6pm=crzv9 z$IR8E1{{&T4&ze2*rd6XixJQ7eoEaBhW#m9&m$?0H(jWWyw_7P@kI4-m}F2|2}HMx zk_pcrE5EuhjPl|F3(agXev2zI2dR>%wl+E|mXlNP%L(O@LoJU=k{imD3y@lL>E}*E z=CUlpzV*%!b+$-xFL~z?{g$)#GuIR}OnnWI(lk<9ulF10xuQfre6ulZ5OQ!Y@P)M5 zHaPfIxM^?5tgXgNYqX0;QpNVSr|`0zh1EFt_oyZ#b+OUs(^U#!JbyT^^y@L|(C36+ zgWP}&sMm~R)0d!OY7_~hYpwO+ERD|=sQ*6S zj8)(ByzClJ3aBdkq$cV_*qhPTV5-BpCA}CSLr@3WeO#*fpEX)a=llpWZa3( z#0BXv#xRLH-Z3G894^UYmqh1_#tbgw3iD{wfE?^?%5b%=?>mlPc zv7ePQ0T+N5Bk{upM&mY$|C|Tq@7e^0B!~tS^nE!wm)}eO|WJ z2Fj5?fIgFMYHZPt;|)?re?IBOMIzN$@ZNl8A9ri?@k6&B{qIoyi*FFlp&xmI|Srn;hkuW=yRaF1U-N zf8416Ag4k=eBF(rL~;xmlCafmetDjZ+^E&Im~(Yb`F6=s-m|5BF+xg2B1V4Y@i=~a z<#jF1oc7haW8+?pmR^Biq{7X^N;8(VE6An!01Gj|uxVWQc*wgcFyG&#rH-AeO34Y)%@l+qj%ONFKgcY zu`7S+vQ+vQ9J_SNh)v>ndp+(zCiTuX;7GNsyI&9eL?97-P0ehtW8?+T)NI(b2%hH0 zo3mvnW;JGHLN;=gYNtXAs(?nAiA!RcnfPEFF>a6%;08Y-fhM zw>py0f1M(`npwy_sP5h5fm$TwHyl3wMkQw%G4<@;Z@6*Ag+*?{?1zL#UM`EB`ia*( z6S%{yToYF@qmbo>m1SV>*)xMo<(a7WJ)AqVX@<-bn+$VXu4S?vjm#+F713sN5UTQ$ z2#QyD-8s`r3pt>f_UX5*FYl|&YO*e=)@0ruWFBKUMekkiKBwvQ-G43>#@FrHxnH2`ymd$hCLMkkeh}>BpMFAE|tGeLvTGs4X*O^A`RQ zf#j70^aX(=Qr{dr01;_=rBa`iwy^F5gse#tR|rs5&^zRk^BSS#pR?3CI8m<_vPjEh zyDx{4^;Dua57I3K{aTU3sZ`d!j^W09_i5~4V*cYw7Ue9fBeu$yX_;|#iDz`CL`>)T9|EO(b+TZ^5h1cT?zXr-WOF|41 zx@kir?=#5v;6kcDtJAv?r1^hbyrNbc(_p|bjOb=0y$*O|$5VGsrmlN$@5Q}w{-+8= zvmyl*UH_ci^fKTMGor|+F@}#GC$p$W|B9D@RLaP#U_*V+wR&fPWi~NaeH}yMcN!lq z?UG0LMfMxxjuixYcX&U9wk+wjm&ainayc}-rpGhK>M7on0;Jt2iTnmR%Z|wb@><6| zG_^lc5u{P_q*iiirU-}zkF(+e%n^y?*dl{ROc#wY{O{Faf6c!ym-djaSdG5xr!;K? z$m7`=3$v7r;~pfrhndjki0Ye9y-yU$@dfuX4fOAh@IODhkMXX^U~%c^j)}uxiXpi} z0343-svi=T2r)Lti(7VVbekAD+{GP8b$Ca4{&B-xYQ(aEduL9TIN#fSr?Ddl@_)*E z>!_-`?pvIcl9o`qQ4S>%3IfuI0Vr_jLyNSuG?LOvDUyl>($Z2=0)m7z(jna)zjgF| z>i0hP-tYbUIv5NF5{J*;d+oL6nsY8;_PMUZW9r`9WGIfNt3eKvqJjL4pMaxh?R~7( zkHcKR$1@BOEZ=cC#i!nZ_(t*-VKrhovEvmQ-Y}15ADSm`)1Fgwd07W~Fm~XaqIgS) z&dhMlieXfqY7s2(`N2C)ku=PHh6&-f5xrT{;ldla7it&_Rp54ehJU#KxxQ!q@+Wnk zi0StlE5|G!x05`C%w`2CnnR`euwFnTlYi|ZNJ$0(CbF$nEkTZ6cu`?Dknd_>)!^!{_TZRm|Mo3`1CTf__kU_HY58) zFYh6y3eqI7=z9VixbbZ}`E9yKK{J;r7>3PFLs<142Qh3x+2X-4M!)OTP-YB?$!>(S z5^Z`%@#urhsA*lsUYAYD2E8~d+N%$p?lNx0YWY5L2^-%Fx41Y=z*Fd?JEc6Ue*Nrc z^&3j2^SuNrZiyblWChKB)lx!%(W*SASE;ZF+Nh34(`-}izt(1Eo)RD+xc%|;jPj11 z9&eM)IJs|NgJb(;E|aFN&~KZb3)I!Ro-~^=Zu_*VSNrvhj`OR(8BnXv6jXpk(Zf-%e%$k3SI^7bjwr=<&5l3GrdT^8wehf| z=L22!kG8&$0w5nYt#7Z48iw0*ULP_FW~i@Zj@%{}^gmYyLvn4-9V2XE3`!z@pNV_8 z6|rF0L$&AH0+c2V%!7*cr60&Pu)1HLy))roJc2TCxekKpm#;vkLD+SP)^WzTN~Bxg z7JcdX;t=}!It(#?wCaloB4jA}?dvZUA_|t{_E`1j`*NASYMDFSP&EX32!(T^Jh>pz zedA$bWjJWK8yZ03wjQ!I@40N&at8ROkv&;jw~GhN>3;U-zr18K*z=XTApxPy+PD;O z6nxpamA53;res9ZW!OQ{66im%x7ixKfJye>bMDhY}FQc6lzsB}T0$8>fXQd>?p%d^!Cn?%(d z_TIz38;{aVuBBXYo;S_z<7IkGN5ka5anL|x7(y;Iun{)OBZk)^aJT&?HjO~jR9ows` z%y8CKcfjWuoANNHrW!rE0BS58$NM0*&R7`w+TmtIUgOpG$-~wCXsfRQdB14(>k3Ow z1*qT$Bot6=qQmx&7U85C566Cq5dFbDgUwnUk{A_b3Uy{g=Hxlah3vw5zNiiFmM&?$&en4+*OGoof@lnaXlXz4 zW_jO74ZIt12G%&(cqFkbvO#i|K;Kgiu>vlR?tpO^Z-zu8@grKROP!Lib^K{*Xw;xA z`NWCGsx88zw#&_A3@ z?|O4P6?y!A*bkp>1r=UVDp%;{YNGc>TksjOAWiTho49XQlw$L zk#Q)v2x-4Mn>6OFcgbpzZ^-bo_pE(;-jC|d+iWDr%#j@YiX-f*Bv?&)2gQgJ_YbEf z-7PM^y(#ogclM+@kzY}xmbDDues!9qiqjRlUX*P7UcXs_{-V}yITOXF8sm0fOzcZx zBj>v73x;ef}P!)*Y7BGm^5ZmhpA1U31c9VBC#&!D18(wVOKRmCp-eN z*&&edoIxi%k1gU%SpRq(%?UMr*qp78Q~R1%3tbc1D{T3;E+Bm$5uUdGq3SVc+*FsF&V0BaC#o6HD5uWo_IJt93J;C3;eMteiHb1iy^DC zv#Hvf31!RyUmVYvR`9nt50jf7PX`Joff`cLvI@f@>gqPx?rFeVd?%AENkYBG)aRk+ zOheQpak$bxj;~V*mQLb7FzaJ&wlEv$IOd?^~nS zj{S6;R!g$$kMqF(jMPZac?XJC^A8xZu@5#o6?IvzBPM-ZU;>LRu2{N>MqDunel3Sf z^PQ!)p@m1&zvCdaS{I;ABYs)hUMXZ9R!{JwV4U#FZ_fGhU19^ocfG#*6P znAQ$_gJPI2j)Z=kEG~c2rCq+aGFUG_T){HlO0W3<#j7aWJfgAk;}b5wull=K>w+(w z6FzEN&@69;hxJaw{&$}A`#k>by*s67j*rWZ{9uV>U0&DsklS`HWSc2wJ(hD3 z?uW!dLtN4k~iL4>^y?|C3g)__WriKlY!Gt)7u zX#gg^%ekhwO%V9$@=Bq+R=#khhI9Plv4WdIfX5n=b2(Z%1^omlnZur95X6f372t^N zRIkN_CvV1O8x%_NhD?(7>$I=*sEfQcvPwRyd5C9}tMu*CIMBExHF*A_*?nF4<^K}_l z(wdg}o^{I6vqAp2_15?g)F$ilL8+fAoPIbvzN1OxdYM#A9}}&6{%#@YNGw6cncWBt z-TnkF+X)ETI5V-rV`2O|Dtw+x0S|0_LuMZHK;^6bU`IY|!a^ zOMAtwD4#<%mqTdZ#8s?RiN`lG{1GSq2%W!UIRsE>$}xIvV%N49cr3*gw+OY1$)a6d zJq}+zy+sjXd#TbyLh6P4%rmT*_H6CK?4&mk9e<8r7%k^}DKdDEZO9u2Y~rk-WXAKG z7%9WQkb*{#hIfT&Qj*{lR(ei-(dB>t=DdnUQq zue(Ga4}11nrzXUuq7608s8N{UI1mi14XDwj9E!OCWtuIHCRZbb_^+AX^IObu( zHD**d1S>FYv-Gkqi-|zqIsk&`m)84R8nGzW99()~i$z97wBzNCP4b^;s$fs9VJhEy zj7I=A{K}U9@t)ZNE00jfvWxvPoI*2j;I(W$VB#8|b^HTVMi0JlB+TWE)M1hI?$IixT|nQ7aYX~vkS2AKbF27n47l=` zEtj0cJDd-1e&dyYqw2u&9D;bQ8E z(-D8r`c09y{0ED9mfzkhh#c`xtq({X2yMZ4c3j#q6*_J~q<$@wx^s}JDcLPS>A7qE z4Bv2SRcaXz-*N0#3o%P)D{Nja$R-tIZO~WUr_$QK+q;A<#0dru-=Uk6wofV#*IQ%U z&FOvLP4MZL*RQA1dqx64#Zy}N0DF*5+$Ed-K{E?FqxK6-g}Bq9^YdB~3>|!c&N=@P zpZ=3RVH2P}%>3|JiF+A&<+={gimCj-Gi2znIXo(=c<_D}sth>v+A$Fx_8VVC6TmQF zz?Bn8x}h&p=ALz-3WUIy*PGcWz2py|^Y;{*5qk5zH@$&)554Q^n&(kL2h^ z(4}}wfiCU|%tg>Wm28|AiZN+7>;=J}(>%t3qAY8~iFaN13?mlaZJn(bonzZi$$@Pz zp?CXxPTZN>em6xXbKBO*3}YSkvlp_Rj&cd67tXHT++7T%%8hNvRc)2sC?T0;qA?DN z&N*pNW$d$Ia6AcYH~c@XLc;jk-I?@01CN^|F#lCf65kQD_EE_4gA8TT($}%j?a+Fs z#s4$X9It<7KfH zk%!0YiGI9iMnn2d{`&RYo>-6%AMbVev_O2Kql-QG-V6R3AHF|Bo+`vnzX7huFHQSs z$~h(X=U#S!>%+*$*DuB?M~JI1@S0ZFiOfJZZM?T!u`;}`&ffzW>j}+>e#Zmxeb-x^dJsxa8s1eNg`S-2@x=War$U&)Hm}*q&BLT|&0_$IW#et zP`eF32#0(2ufO+?kHMb;*Z>uJZsUPx@!$xJ-TGOBO?qSMv-ndevvn{Dvp?5dzrl^r zFYnR$?hdKYqETs@e{0suD9J0apRRY0$+URkJ!)Kw#MAVZp|)G~>uHW*`!J^@K3`5! zJ@rIo3X+~4S*ViY$e~JVQ7vSFD#@4~(m=r!;q7Pt7GtFe5PGHG9xEmZTfJ5u)@1h6 zGH`Er?7%`FwCgfZVD?}tM)5V(oF=L}`|+=DPm{w(7*^>qhxda_PsLP@UV#q>Y^^wh z8C((%4@OVg-}l4y$N_ZmV!r2k2}5vpKGb~e>D9I4-Nok~X_C2z!^8mENI94@$mkUk zt1(IS0u5JS36cc}*^A@y)Y>l)J4ARN25`d2F>cs(Dn*g`BrxHDL~IO0w+U*eY%RbIXP8<4c#S)eB8JDo4>9~krgG>g`$ zlfzjlqPhlYd3y}BxOXV`<@jR?L*+>x`_iZNQurpTq|2wHY4}d(^@APccqB#6xxBZ9 zUpSMdz9$2=A-2}ApCKQ%NHguO(N+hqCQb%}s0VP4N(}^l1oU}ytzYD!GW=ikV=nj5VnM$u6m6WYDVF>}<3;u1 zG{3(O*(&-PD}bA+72pU|s%0QPN!==37Ng}+EteWCQoS_C9;#qBxF4(D z;%E3`Yw^9JHAp07kKr-T-U+nMZ=iM&9Q}aP8=P0#0e7jY8xCK^;zhr(C)Tncj#+dp z1bf~AYNIMvR*YI3;GcbHO=(#asn-YUdmI>b3G|*0pnz-L5@7@VRf^3pKOANfPv|#H z!$G1ttZLyL+kYnRn)6lXZJky4JCB{^-si;GW75nKqoyniB3!AS1rlJqlb;Ucb&=hQ zbDE9@o@?^yL*HrnmhWQ2wtA0wB?-6=+>CH5oarbtzWp1l{73qgmVqCBPWbxq<{K%F z_n#9QfQNVE)d2zQ>!*Nx3~|~ObtG@3r7fVjM3e<#CemlEjNmQW~(#Tb;F*m6Y#>3 z>3BHHzWApZt`zCX)T713S6mj6(riXr>ny8~k9=_d33^X%J6pCMA8vH? zw&3N6BMtne`-ss-CQx4w+!v}1Ox<3dN4y@ zZg+*z5A(U$5F0$q3+RXW{im_TzdcMD{2G5Sr@2W1GRK~}K%x&rPwKC6VHy@rX1N5+ zKj83_uO{NJR9%e|z^a#p{J`;yU$h^S*3Ls+yLf+yFdF3arS|w&V z)ZY4ZFKZib$?y}mTY>Ac;SXQ|f=M(~24SwRsZVvf1G296+zYzpPdf&eL5pXT@+Rfs zb(sA-#TeNzo$);kG7UaG1k@tw?sb~6Tc7ot z<=Du|0&s4`bz$bJJ6nx$PI``4YAE#ERUc8I zr5k}e0G249w;NmwILk-0j}tKT1W6#`i}<$KcVnyEtC|)sZStE=R+aW{OD-BD&-h$K zhI!cQ28hlFj|<2L*J&zrlNg4L5Ti@4}HyKr%~BMa!Ckd^4`gQ^{8j^Hye>c_zCm3l3C(Y!)f*=Gi&X z0uyPEND9J+Y#V>wl~w!qMMKwE*~a*et@^+O2O%~}#Q>(8R9OWVXETtp!|xn$P=Tw! z&@AYs(ZE=i*_}zUyPz=)=!fAKH0hEo{c{EqQ25~)6M&=3mGne)(1t`Guj7UZE7Cgz zEJCI3KiXwKK948i1GI>~`jtv2R{9=HwcDKIm7}M2l+#$zHv#z>Z9KRMzMvsv)7!jw z&>8w00QLK0Gm1HAr$~oPo~mpM)_AtRwNUXz?J&Er{R#ToS+0gwP#46rxkM)IvIm(| z?_XuLb{J9}EcE4;^m-J0OmwUx;KJ9#DP_^cBwVkJlPR_-vw0PU*8D!02<2)dnJu3S zm9!}x57I7+LCaBYJim0l*PwVZifY{jMT}{ijh+|7@WqQJ%z-wln)byz&eDbZV6OO) z;N8Woh$bawCM+Ngpz5~hvjx!oQOzZ^dqOL^FRt>)ezxjhIV>~K<-+`N!zUu13!r!* z5WX{RIlZ(4UX8epikw=4>Ft_R^cdq@)F-X;pJ7Mc*S}bP^b9OJ79on;stZ(^e?2!8 zWH-Q>IKaN&F$}q;4$9^Yt1RD!hW65g=hy%fg{0{PqLO5L%%4%Bcg`|q(PNbcGkGiu zmH|S@x|2xu#tFu0sh_JCdhfdOL-TM_#J)?JYe2GQ={eKb`Vtzq<@mfb3U+9?#!C1O zA|p=S{SG6wc6(bwdzb3!0U8wNX@OwGl--PDCJCk@XMeGK0&^ps)v$6B$IcN>#2b3=HIx^Nfw|!H z*dx+gn;x*~iw)6ShPDap;R00cUgbu6SYu{j6S&!cZQfIu9rFclt2bXV^TknnWeL#cj-6kZSX4&&PQGAA%#?-aQ3BT_iN3XKnIxLP@HcqX3@L@)|>rS zczENd-T*L;20r?8>r8Ol+M%OiPIEPX?({VpYUz{hl4@<&D@gk~f0*1_Xq}HuA|{>J z9B0cy!soW?d|7Pna)U62_nh55mai+MaEQJUNI>}x)$5!3a)L0TydPsh(HItU-_jod zcwIh_;g++*zbsfPd%rjP8C7}h5m|~*>1aM##2#LUBF=EdoRFTywZz$=^)^!5J-veu zW;DDy>~L3nLW|}*^@7~((C98$Fyg1ArmLo0#&A5F65-}8!@dsWWTJM`nFs)n`Xpz^ z7*At*)l@!moGzCM$YN}}EY?v~kpj`FPiM(DZ^oa9FT|P7k#Jr?n`&y}a@2;?S_4fh z)A4F>zeLm?wQc*@J~{Qquy0uvx}f&1cXWdW*HdVy4jx_+(Zfr0ZI?RnEV*}vf5mg! z(2neDnpa4Wpn@JA86FGMKEcjov@;P1Qsiu`aAq-jXKW$AzsJ}lIIKuET^DEp3nDCD z@?8$2Pr^HDxBByi_u_f)v17`P8&?+^y!=Ons^~P4t(F4?nW-bkjndx3MCrbx6{Y4L zn{zRx!NO8GM#$7nY`LqupBkmHG!$wixc@^B>LL@6O1m@TM}K4ms^aG_Zv4vy2bYjA zmid~{L$0wZCNX%bk7T`IOTRo6{o!VUh|)fz^h`cvu2eUbPIOt&cskF7`j}!mdIgfF zu*_7KK}$7lw*C+XSvqvO;Y1(9p%VY94a*qefK8ixlW~j2s-T9Nf<(Y1=nKJM-x6JQ>eVVKxu25;(N{e}i)d!OHjQwFH$qlN; zmtMUe$fpNKam$$ojU^qh8wa7-mD9J?&PxU6y>9p#1=}jnAkDXus5{iyns0?OR<{mY zDNI6-|N3G3H6u1_m7hWbAz_qTWdw~B#@V)qr%agr-gB-FS*w5NExd|`WVo@=sbsCP zG0k78WZGkbvB1K7KGlW~1($!}Hh%N0(YMl!s~B%P{RE~|guyxSF;c$R}ucqCAnWR$EQ{)INj3FNIn77QV~sdPke7E?mZlnB^H;{6O5Bx>=%+$*l92$ zeGI!U<9Pf>*BlFbAEn7ENpEqi5bE(nq)k;Z1EP6%)BxsvnS4^=t)WyS(=c@RYh zvu=Rs+HPsmPse{1S$-TE-jHV& znVAcCO@A1xp%OM;mey~i(9R~=>_fg&@gs^n8)j1c;oHZVR1?!S*D8M$E1kJFqux#q zswX*@h5EA?3=KluF>vxNbHf7;*LYaff11GJGV0SoWeZLu%0_& z2pO&49SNTl3!2r^#$;uf5{a97Rtn^OYLxL1&O zw|M(ewSBx%r96?fGC3afTQ676>G_2xk+O2*o6Bsmje@6fy2dN}PxrMaZF#N(rRG_F zA3pWn5&8aK{VH;Dd~JF^H}%h9{8fo=2IFO?YQvdicC?Cj_z?kfUbD7>Tyvj-EOPA9 ziQFS9YTokvTKEz^>z7Q(09Wi3y9@S$%f=b9d+nI%vsVU##c+rg8^7P`$!VqN;FSt! zv>m>-Kd{)JH%FQ!^iVRdVR))I{YdF9isI1o*bY0EKwAJ3D6Q=B$BDV&R#|dB-=qZU z?65se{YS~XQ}gYHP34aqcNm^@%L(Js0 zskZ8FHk@M_->;dQ@J;xQWvS$d7~+N*olM7~b$*$T9R>ztrLx?$yR8?Q2&Pm3x%4C` zkbtCBnG%xLSGW1`6#q(Er&&>+BZ~Zfs~6`=CnHtH<%>?_JQeJtF|IJm8E!)!P=T)~IBNMO%w-z8Z4J^19iNPAXAX+UKj_gE0zFGBBS7al@w z`Vx^-qZoC7l>?(C*yrteWlM<;k*dMp8AZojN%ZatMoXV3!zZw}XPPKmcuZt3#llc0 zv6G^8YVSuivb5Kucck1HuLw8n{IWxR$CU-dl0y52Y}HZKTt=Aj(Hd{DQ3{68j(fri zy>Aqw=c)c+I(cG{&Uy)SfN`;K*hn4KOGB->!$>BnA3EEiRL32WR!g@Q9yDc{Z6?}! z#c-_$B3SnP17Xpb@xObQ>bgo^^O52ER)bYrZO(FG`{Wd(m_4c`x0`y#NB%ZOU-Yr& zXFJl6<|8r+;)&-_{pw1f(=ou>W`T z{#CEOrN*klP&6cD@L0@0k0eVgTe^Rl*BVZ}FV2NHUmdA#iz-{FL5POj;N?*7unvJ|SRNgRA zOh?V9m)QKMTsVN*e~qe~Zfr(=p^tZ1{@yn$ttcZVqM1C5dLRraFtgWmT8)mrrsVcl zuG--r7TH@0#0dwxOQk8t)WWiM(!FiE-kXQsvWEm#4!|&WtO2@F{5{GEQmI{k)lElW z&g5I$N6qbw()_F^#BpiAJo`e9p~{}zv0yZk$Ft`?aO;wqXNjmU7+3jAH?NSUY*pFg z8>>i-0=#2cL6oI%EEpnUL{3)67u3b!yHM{cgzIO|Jy!P9fXn_)!ucBF*9%=OykVtw zmRxuAB^0m%Wzwjx81tb{{XRArm>d3bZA@mJpkKcHL-*d$=AfY6H zjP*4`srxl{G*!>~KRMdLWc5T+K7m4@&Pn~v2-^i z^K8}yb;wq@zv2hg;|FAT$%Q*(Tf#F&e8^7rIa)A$&?eYaUtn}gg!)WI5#YAhA%lJC zCD%3)$@WQ<-pE~Mx{I1 zb7l0KV{^!LiVeT~#V2kg#*!B^$cN(eW`jKsY!J=(Dc90b*>6I~qm)2Oo(Y~uYVn@4 zzAz(C1p@e6NjV_ca5k1}A->|%HsGHzu~eXChq5)SOQyq#&ERHRz8WUiI?O01oXG+6 zz$@=gn6_qldIlhGL`oJBOWM{{7EVTrmn*yc==4lqcqOqx74HwCbq1@ZR5}MTpM{Al zPS}a)_8Il0F+!xI)Sawpg+-4p5%28vV2qqvG+Q7XUtEwoJ8s-HjcIt4N}(-jmv~}U z6pN|0Z~)m;aI#wQ4yreQi@f|xvZU3oHO}gES^Qc_6;<-LgoU?kcYKGKs|}FktJwRbVfYFX&j(GSu2Pr{UkO+G%%8%I z9fq(KAQC;h;IyzanRhzc$_=e`SgO_Vr<0*J(hH-oH7NY{{B4Ib8%2TiWEA#trA#fN zk#l~#HE0_>BK7T+ok3XxJuPnmBJEI@;RTDS=9th)?}|LE1_&Y2HTWGAed5a|Z1+`O zO-d?RTt>1BQp*`;)$bv}_kY-qfn6#}L)> zren!E$D(yJZ*U?=l~Ld{?hCe3mBa4T6Hi9A4`M?UHn3Ls!$NJM5jF;ZEkX3LV=cp3`C$J1-B23}hlf-<;L z&j8T9i^B+TlEXA5v(xNs*m}eD~4?Q(P&(5B(LM#=tMlZ@^!Gm zHr~s7Nv-uDnQ47Vbg|-n-psfp5u60A z$|bf8&5dC>WC2v;aY^i2`p$9a!O^cZraY&kI+O8=uxUlJ6G}0u=i7k;kQCss1SHPT zgZi&gqvUziaw=kcaTAef^N;PFREM9`^!VAQ=T|69#TN5E8&_McSvRcUA-~jpI-P|) z-lEM;3`KJw?mwRhnFLA@v!5RRH!PCsd!id2I?kd|F~q-*{O=eL{Z$xc(EA4L)#5I4 zE;;UdCw3u!D|r5XgY=^)(BNc?IrSY1O*fQ#Q)zO6y8v}bb;xH5UnUf8^H&QTv3x{c-Xs2r5s47G z1e|dPRAn;asKP{R+|*K50E z_-d zh*jQBO`sT3E(IWvWjpRU=$x;Yr0%&cXBMsaQqj||I^>Qu039czoWb7HN-Kjm`{`cC z6=b5rBM0(l&5tC@Sxj*oOHbW+mr2i7rQBnrr%|r)N}y@qOAzY?l5vr?R*RJhk!$(3 zd9P(9ik#F+sIwPekn*T@g+LT_9K<0~E$KR1+Upc1V1R{#n*IWGg_Iq1r#zBE^YgG3 z%b6yj)6|FI72UDq@~_Q1QW!=IIeZ_>GW*3wWB%d+NI!&v-d>G&6FbJTlJD=q+s`@& zlj;XTr-=KA^cLgqwl#E;p6PAP8NZZD`^HL-bIx{kg!ZR#-i-Fg`x?fAlWjsBJ)diN z9J*d!N?~@9+=QGto}b-xP5#21Rmedxjr20(t1>c>GBGQQ&zsEP1C0_pXA>oQ|X>O_GfPoX6)vrE_pz3?{=&4 z0$-ce)m`3+nQIcsiKpCI>IrzW-&8byWUy6Eqs0%X56zhq9KkBgH>RR9kRPr-_9BQ0 zX8M+s+CfD%b4BW|T=mB&9?fi}YxqxZy||w}+Mf+2S);$Ue=WKK90@6=(RWf~P37MX z*!?z3pmoP~H88U|cYW-YZ$yc-O9W#(EZ$tNi3D!jQ42R9 z#g!5nZfpGpsimbnIL9yYorpLu`u+$Q6y#mFvlKXH=M z40V`vVp8y3Q@3Fqg?BUv_%g-M^Z*b%5VVJ#s;tnd@+?~(-?B*ENBK?b1QD{ z!))0lYLoA%?90v20mSM12xGQlfRH)I2dwm19O#Z!H77@s)HomPfORy{_L1*w0eP+x zwBISI=Vu4BzN2$HPin#Ng zS9ss3^~h$#@n~yb`&QG9HIngV4EuVu>D&4eAzXhnR?byCzQmd^R~EkZb3=bY5Gx~* zPPTOM5s#24t%{sr$>YZL$T83I@js}#Hw!v?fFs-3b?P)NDz*AKl6*s>d0HDfz4akh zMQ1A*L~UQt8r?!Hg>t1tQ{ED*eO=2yH}e6Q!E)|n3Pd?P(1v5mJR4(C*I?`v9h1R{ zQ4;6InR!6`c=SrCq~6Y}fzz}*XZ4cj?Os{82#^w-LHM2Hlb%@p3)K6w!NJUhB|74C zXO&0FQ=hbOVkXo5)|Q~q@7Uo$Ey8m`D`T|SpC5V%J<|KJTi|7RlYZwzbAVoS z8q>2nARxuRrLh&hv>R{LMzq)iB!G^dW{8Ka`6Kn`c_73k;@o1y*@E66K9`@er~BRan8| z7e#Au9~I~7B1Qc_VoBAQeFZKArONi+OA@KE%KO0c)7P(M#c3Y`42p?|umrKZE7N<~ z7#Et&^3u$k)|(&1w-yJ496H8+2u?)y<8OTO+46QOQJ_8h(a+;sNpw)9J>{!(i49rF zBTXWi92ME6Fe`214k==Y8Y~GSyGd=NiMsmnAqS43Alx4YXzSu6Lf|)Rf<+)gpL^|%r=rGQW zK+m2?1;~dI-cr)10NwbEo;6Akk5$t|xN(MvH|M_ov*Kfk2=A8+QYgVLWMk+S!Nl3V zuOZd=Q5*gbY**z)>_28)qj?{fYisfKd8W2{ExC=<(UiCDxOQs23Gm$Rf^ zW}c${LL-~;0Vu2N?R0wA%4(6-%2N&_+D3eY$q7I(Zj2PYG|S>MXLrrVyN2EvL0vYY z9GKE!zc3X9ODmIu@0HI#STA<8X2K_HFE4MuGuop!vw3ZjQTK$B@cb2T)c-h@` z^4LzHbhiGZY4&VAPK&+KERnCuDGEGw6Eumy z)a>2VQ~%x(`6GA|2G^hyfbpB-FG#k56yl5XKG3&XdYVvOhM|sTw<_%#4L2%j9b{OLt z;Y?@rJvnz2Ce=jRdXN(qeGvm8?JV@O9}yJ{z5yc3rR~gW-6;MVzd&qJRKDJVLrK*E zHS(2`h4!`9@$!voik%@v1H(!jS7DuC+YwxY(kW%vTdF5ON{RzfXq-5rQ911%K|qRD zY5NgIE&j5_CyU`FunnPWHTZGR_knUvC}NriX|mRxPnu3doqeR5vUhEP`*yVr9Tk|pBh2%g8%9hW9s%g_DGq4zkZV@x#9o_LUggXVcHLRP%QGkRi&jpK z9Tw!g5+~2zXY_OOm)B$3)rYR7aD+7P>HcAi|A=@05flF`j-|1*$pma4*O$JF21X0v z1f6x>wP%@a{>ham#|OsLs?)%|nyZHUGWP%)xVi^QSQmopC)`0nnx2 zJL2u*bqW=5>63`+`TYoyh&Wt9TUJx>L5Krl+Vz9&B{Oj2zfshRL&2?ybu5In!<(Xf z?Dc5v?D#XUpt2_WsPP}22Lsd5tw&)lM_0nRWzpOmH%6l>feCVPrbVzJ>4In8e|4ca zY2k1zUS1->+e+KyW1S>_coxe++vg3sBd1x?uM2jL$=Ee5$s31zHy4@;8D|w{%f4-> zZk$swx@a?asg^##!YWJi!(wIlo)Y$qFk3S@+ZC!dyu^eEdqvVAiy5$ZU)psYvJn-3 zqlkAxSzAcGM2i{zDJA@^O1Nrsd(88`C5ySe>^-NX4$sWKi~E5aV;x$Ox>IXD;;36m zAaFh^0YQ&PyP)BiXoSyAEAVCV!fM2QOI!QEKCSV6+F0p91zTbal*X)ps-KUc{9^Rq z6zl)~%o$0)XaQARvA|J}?Pzpxc!G0$yi*`C0#~ZT$DoH{8U~lta(yq^k#1;{uwfgNP7Ee}(D|obZY}f_xMH`paFJVd$Y! zwI(;%{nS~3jD0@&W@O;sYK%YP7`(QByrrcPAask{${#w44*=ob9kg;I?2YK;F>MY% zKu*klbQ`U5gACiiY0@ZInOO^p%&F_)d;gMO{{Mb7`e(erq2@P0d`%LKiVF&hf0OEc z;Tb17;VE>+%1fA<0Xgb4kT1;DU#0znZDP zf&Rb0_j^Hr4od})JlD6N)r43^B!5Z;rPt7WGPe!}kN?gV{ub{3vrkk_alm$vB}#Jt ztu=`E0h-r`Dn1Ua<%ct=Y075g`sZrt!J{p`M9cN}m-0XP*pD9am#1t3=Kt5KWyj8u8_ry%2h@(2FjRb`Ja8WJv^StF4T*Ep00oWyZ-sf2WaU;WKH7V0fB#h#b1BdKR^Hf$WpHQl)Lv5 UTqPl(!GM3t^0(x2WKjP9A4)}GjsO4v literal 0 HcmV?d00001 diff --git a/nbs/models.ipynb b/nbs/models.ipynb index 0dafa2598..82331c3b2 100644 --- a/nbs/models.ipynb +++ b/nbs/models.ipynb @@ -60,6 +60,7 @@ "from neuralforecast.models.fedformer import FEDformer\n", "from neuralforecast.models.patchtst import PatchTST\n", "from neuralforecast.models.timesnet import TimesNet\n", + "from neuralforecast.models.itransformer import iTransformer\n", "\n", "from neuralforecast.models.stemgnn import StemGNN\n", "from neuralforecast.models.hint import HINT\n", @@ -2706,6 +2707,157 @@ "model.fit(dataset=dataset)" ] }, + { + "cell_type": "code", + "execution_count": null, + "id": "a61c3be9", + "metadata": {}, + "outputs": [], + "source": [ + "#| export\n", + "class AutoiTransformer(BaseAuto):\n", + "\n", + " default_config = {\n", + " \"input_size_multiplier\": [1, 2, 3, 4, 5],\n", + " \"h\": None,\n", + " \"n_series\": None,\n", + " \"hidden_size\": tune.choice([64, 128, 256]),\n", + " \"n_heads\": tune.choice([4, 8]),\n", + " \"learning_rate\": tune.loguniform(1e-4, 1e-1),\n", + " \"scaler_type\": tune.choice([None, 'robust', 'standard']),\n", + " \"max_steps\": tune.choice([500, 1000, 2000]),\n", + " \"batch_size\": tune.choice([32, 64, 128, 256]),\n", + " \"loss\": None,\n", + " \"random_seed\": tune.randint(1, 20),\n", + " }\n", + "\n", + " def __init__(self,\n", + " h,\n", + " n_series,\n", + " loss=MAE(),\n", + " valid_loss=None,\n", + " config=None, \n", + " search_alg=BasicVariantGenerator(random_state=1),\n", + " num_samples=10,\n", + " refit_with_val=False,\n", + " cpus=cpu_count(),\n", + " gpus=torch.cuda.device_count(),\n", + " verbose=False,\n", + " alias=None,\n", + " backend='ray',\n", + " callbacks=None):\n", + " \n", + " # Define search space, input/output sizes\n", + " if config is None:\n", + " config = self.get_default_config(h=h, backend=backend, n_series=n_series) \n", + "\n", + " # Always use n_series from parameters, raise exception with Optuna because we can't enforce it\n", + " if backend == 'ray':\n", + " config['n_series'] = n_series\n", + " elif backend == 'optuna':\n", + " mock_trial = MockTrial()\n", + " if ('n_series' in config(mock_trial) and config(mock_trial)['n_series'] != n_series) or ('n_series' not in config(mock_trial)):\n", + " raise Exception(f\"config needs 'n_series': {n_series}\") \n", + "\n", + " super(AutoiTransformer, self).__init__(\n", + " cls_model=iTransformer, \n", + " h=h,\n", + " loss=loss,\n", + " valid_loss=valid_loss,\n", + " config=config,\n", + " search_alg=search_alg,\n", + " num_samples=num_samples, \n", + " refit_with_val=refit_with_val,\n", + " cpus=cpus,\n", + " gpus=gpus,\n", + " verbose=verbose,\n", + " alias=alias,\n", + " backend=backend,\n", + " callbacks=callbacks, \n", + " )\n", + "\n", + " @classmethod\n", + " def get_default_config(cls, h, backend, n_series):\n", + " config = cls.default_config.copy() \n", + " config['input_size'] = tune.choice([h * x \\\n", + " for x in config[\"input_size_multiplier\"]])\n", + "\n", + " # Rolling windows with step_size=1 or step_size=h\n", + " # See `BaseWindows` and `BaseRNN`'s create_windows\n", + " config['step_size'] = tune.choice([1, h])\n", + " del config[\"input_size_multiplier\"]\n", + " if backend == 'optuna':\n", + " # Always use n_series from parameters\n", + " config['n_series'] = n_series\n", + " config = cls._ray_config_to_optuna(config) \n", + "\n", + " return config " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8f416fa0", + "metadata": {}, + "outputs": [], + "source": [ + "show_doc(AutoiTransformer, title_level=3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7ffd40db", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# Use your own config or AutoiTransformer.default_config\n", + "config = dict(max_steps=1, val_check_steps=1, input_size=12, hidden_size=16)\n", + "model = AutoiTransformer(h=12, n_series=1, config=config, num_samples=1, cpus=1)\n", + "\n", + "# Fit and predict\n", + "model.fit(dataset=dataset)\n", + "y_hat = model.predict(dataset=dataset)\n", + "\n", + "# Optuna\n", + "model = AutoiTransformer(h=12, n_series=1, config=None, backend='optuna')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7a2052de", + "metadata": {}, + "outputs": [], + "source": [ + "#| hide\n", + "# Check Optuna\n", + "assert model.config(MockTrial())['h'] == 12\n", + "\n", + "# Unit test to test that Auto* model contains all required arguments from BaseAuto\n", + "test_args(AutoiTransformer, exclude_args=['cls_model']) \n", + "\n", + "# Unit test for situation: Optuna with updated default config\n", + "my_config = AutoiTransformer.get_default_config(h=12, n_series=1, backend='optuna')\n", + "def my_config_new(trial):\n", + " config = {**my_config(trial)}\n", + " config.update({'max_steps': 1, 'val_check_steps': 1, 'input_size': 12, 'hidden_size': 16})\n", + " return config\n", + "\n", + "model = AutoiTransformer(h=12, n_series=1, config=my_config_new, backend='optuna', num_samples=1, cpus=1)\n", + "model.fit(dataset=dataset)\n", + "\n", + "# Unit test for situation: Ray with updated default config\n", + "my_config = AutoiTransformer.get_default_config(h=12, n_series=1, backend='ray')\n", + "my_config['max_steps'] = 1\n", + "my_config['val_check_steps'] = 1\n", + "my_config['input_size'] = 12\n", + "my_config['hidden_size'] = 16\n", + "model = AutoiTransformer(h=12, n_series=1, config=my_config, backend='ray', num_samples=1, cpus=1)\n", + "model.fit(dataset=dataset)" + ] + }, { "attachments": {}, "cell_type": "markdown", diff --git a/nbs/models.itransformer.ipynb b/nbs/models.itransformer.ipynb new file mode 100644 index 000000000..16f223d3f --- /dev/null +++ b/nbs/models.itransformer.ipynb @@ -0,0 +1,1170 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| default_exp models.itransformer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| hide\n", + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| hide\n", + "from fastcore.test import test_eq\n", + "from nbdev.showdoc import show_doc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# iTransformer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The iTransformer model simply takes the Transformer architecture but it applies the attention and feed-forward network on the inverted dimensions. This means that time points of each individual series are embedded into tokens. That way, the attention mechanisms learn multivariate correlation and the feed-forward network learns non-linear relationships.\n", + "\n", + "**References**\n", + "- [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. \"iTransformer: Inverted Transformers Are Effective for Time Series Forecasting\"](https://arxiv.org/abs/2310.06625)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Figure 1. Architecture of iTransformer.](imgs_models/itransformer.png)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| export\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "\n", + "import numpy as np\n", + "\n", + "from typing import Optional\n", + "from math import sqrt\n", + "\n", + "from neuralforecast.losses.pytorch import MAE\n", + "from neuralforecast.common._base_multivariate import BaseMultivariate\n", + "\n", + "from neuralforecast.common._modules import TransEncoder, TransEncoderLayer, AttentionLayer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Auxiliary functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.1 Attention" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| exporti\n", + "\n", + "class TriangularCausalMask():\n", + " def __init__(self, B, L, device=\"cpu\"):\n", + " mask_shape = [B, 1, L, L]\n", + " with torch.no_grad():\n", + " self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)\n", + "\n", + " @property\n", + " def mask(self):\n", + " return self._mask\n", + "\n", + "class FullAttention(nn.Module):\n", + " def __init__(self, mask_flag=True, factor=5, scale=None, attention_dropout=0.1, output_attention=False):\n", + " super(FullAttention, self).__init__()\n", + " self.scale = scale\n", + " self.mask_flag = mask_flag\n", + " self.output_attention = output_attention\n", + " self.dropout = nn.Dropout(attention_dropout)\n", + "\n", + " def forward(self, queries, keys, values, attn_mask, tau=None, delta=None):\n", + " B, L, H, E = queries.shape\n", + " _, S, _, D = values.shape\n", + " scale = self.scale or 1. / sqrt(E)\n", + "\n", + " scores = torch.einsum(\"blhe,bshe->bhls\", queries, keys)\n", + "\n", + " if self.mask_flag:\n", + " if attn_mask is None:\n", + " attn_mask = TriangularCausalMask(B, L, device=queries.device)\n", + "\n", + " scores.masked_fill_(attn_mask.mask, -np.inf)\n", + "\n", + " A = self.dropout(torch.softmax(scale * scores, dim=-1))\n", + " V = torch.einsum(\"bhls,bshd->blhd\", A, values)\n", + "\n", + " if self.output_attention:\n", + " return (V.contiguous(), A)\n", + " else:\n", + " return (V.contiguous(), None) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.2 Inverted embedding" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| exporti\n", + "\n", + "class DataEmbedding_inverted(nn.Module):\n", + " def __init__(self, c_in, hidden_size, dropout=0.1):\n", + " super(DataEmbedding_inverted, self).__init__()\n", + " self.value_embedding = nn.Linear(c_in, hidden_size)\n", + " self.dropout = nn.Dropout(p=dropout)\n", + "\n", + " def forward(self, x, x_mark):\n", + " x = x.permute(0, 2, 1)\n", + " # x: [Batch Variate Time]\n", + " if x_mark is None:\n", + " x = self.value_embedding(x)\n", + " else:\n", + " # the potential to take covariates (e.g. timestamps) as tokens\n", + " x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1)) \n", + " # x: [Batch Variate hidden_size]\n", + " return self.dropout(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#| export\n", + "\n", + "class iTransformer(BaseMultivariate):\n", + "\n", + " \"\"\" iTransformer\n", + "\n", + " **Parameters:**
\n", + " `h`: int, Forecast horizon.
\n", + " `input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n", + " `n_series`: int, number of time-series.
\n", + " `futr_exog_list`: str list, future exogenous columns.
\n", + " `hist_exog_list`: str list, historic exogenous columns.
\n", + " `stat_exog_list`: str list, static exogenous columns.
\n", + " `hidden_size`: int, dimension of the model.
\n", + " `n_heads`: int, number of heads.
\n", + " `e_layers`: int, number of encoder layers.
\n", + " `d_layers`: int, number of decoder layers.
\n", + " `d_ff`: int, dimension of fully-connected layer.
\n", + " `factor`: int, attention factor.
\n", + " `dropout`: float, dropout rate.
\n", + " `use_norm`: bool, whether to normalize or not.
\n", + " `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + " `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + " `max_steps`: int=1000, maximum number of training steps.
\n", + " `learning_rate`: float=1e-3, Learning rate between (0, 1).
\n", + " `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n", + " `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n", + " `val_check_steps`: int=100, Number of training steps between every validation loss check.
\n", + " `batch_size`: int=32, number of different series in each batch.
\n", + " `step_size`: int=1, step size between each window of temporal data.
\n", + " `scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n", + " `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n", + " `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n", + " `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n", + " `alias`: str, optional, Custom name of the model.
\n", + " `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n", + " `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n", + " `**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n", + " \n", + " **References**
\n", + " - [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. \"iTransformer: Inverted Transformers Are Effective for Time Series Forecasting\"](https://arxiv.org/abs/2310.06625)\n", + " \"\"\"\n", + "\n", + " # Class attributes\n", + " SAMPLING_TYPE = 'multivariate'\n", + "\n", + " def __init__(self,\n", + " h,\n", + " input_size,\n", + " n_series,\n", + " futr_exog_list = None,\n", + " hist_exog_list = None,\n", + " stat_exog_list = None,\n", + " hidden_size: int = 512,\n", + " n_heads: int = 8,\n", + " e_layers: int = 2,\n", + " d_layers: int = 1,\n", + " d_ff: int = 2048,\n", + " factor: int = 1,\n", + " dropout: float = 0.1,\n", + " use_norm: bool = True,\n", + " loss = MAE(),\n", + " valid_loss = None,\n", + " max_steps: int = 1000,\n", + " learning_rate: float = 1e-3,\n", + " num_lr_decays: int = -1,\n", + " early_stop_patience_steps: int =-1,\n", + " val_check_steps: int = 100,\n", + " batch_size: int = 32,\n", + " step_size: int = 1,\n", + " scaler_type: str = 'identity',\n", + " random_seed: int = 1,\n", + " num_workers_loader: int = 0,\n", + " drop_last_loader: bool = False,\n", + " optimizer = None,\n", + " optimizer_kwargs = None,\n", + " **trainer_kwargs):\n", + " \n", + " super(iTransformer, self).__init__(h=h,\n", + " input_size=input_size,\n", + " n_series=n_series,\n", + " stat_exog_list = None,\n", + " futr_exog_list = None,\n", + " hist_exog_list = None,\n", + " loss=loss,\n", + " valid_loss=valid_loss,\n", + " max_steps=max_steps,\n", + " learning_rate=learning_rate,\n", + " num_lr_decays=num_lr_decays,\n", + " early_stop_patience_steps=early_stop_patience_steps,\n", + " val_check_steps=val_check_steps,\n", + " batch_size=batch_size,\n", + " step_size=step_size,\n", + " scaler_type=scaler_type,\n", + " random_seed=random_seed,\n", + " num_workers_loader=num_workers_loader,\n", + " drop_last_loader=drop_last_loader,\n", + " optimizer=optimizer,\n", + " optimizer_kwargs=optimizer_kwargs,\n", + " **trainer_kwargs)\n", + " \n", + " # Asserts\n", + " if stat_exog_list is not None:\n", + " raise Exception(\"iTransformer does not support static exogenous variables\")\n", + " if futr_exog_list is not None:\n", + " raise Exception(\"iTransformer does not support future exogenous variables\")\n", + " if hist_exog_list is not None:\n", + " raise Exception(\"iTransformer does not support historical exogenous variables\")\n", + " \n", + " self.enc_in = n_series\n", + " self.dec_in = n_series\n", + " self.c_out = n_series\n", + " self.hidden_size = hidden_size\n", + " self.n_heads = n_heads\n", + " self.e_layers = e_layers\n", + " self.d_layers = d_layers\n", + " self.d_ff = d_ff\n", + " self.factor = factor\n", + " self.dropout = dropout\n", + " self.use_norm = use_norm\n", + "\n", + " # Architecture\n", + " self.enc_embedding = DataEmbedding_inverted(input_size, self.hidden_size, self.dropout)\n", + "\n", + " self.encoder = TransEncoder(\n", + " [\n", + " TransEncoderLayer(\n", + " AttentionLayer(\n", + " FullAttention(False, self.factor, attention_dropout=self.dropout), self.hidden_size, self.n_heads),\n", + " self.hidden_size,\n", + " self.d_ff,\n", + " dropout=self.dropout,\n", + " activation=F.gelu\n", + " ) for l in range(self.e_layers)\n", + " ],\n", + " norm_layer=torch.nn.LayerNorm(self.hidden_size)\n", + " )\n", + "\n", + " self.projector = nn.Linear(self.hidden_size, h, bias=True)\n", + " \n", + " def forecast(self, x_enc):\n", + " if self.use_norm:\n", + " # Normalization from Non-stationary Transformer\n", + " means = x_enc.mean(1, keepdim=True).detach()\n", + " x_enc = x_enc - means\n", + " stdev = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5)\n", + " x_enc /= stdev\n", + "\n", + " _, _, N = x_enc.shape # B L N\n", + " # B: batch_size; E: hidden_size; \n", + " # L: input_size; S: horizon(h);\n", + " # N: number of variate (tokens), can also includes covariates\n", + "\n", + " # Embedding\n", + " # B L N -> B N E (B L N -> B L E in the vanilla Transformer)\n", + " enc_out = self.enc_embedding(x_enc, None) # covariates (e.g timestamp) can be also embedded as tokens\n", + " \n", + " # B N E -> B N E (B L E -> B L E in the vanilla Transformer)\n", + " # the dimensions of embedded time series has been inverted, and then processed by native attn, layernorm and ffn modules\n", + " enc_out, attns = self.encoder(enc_out, attn_mask=None)\n", + "\n", + " # B N E -> B N S -> B S N \n", + " dec_out = self.projector(enc_out).permute(0, 2, 1)[:, :, :N] # filter the covariates\n", + "\n", + " if self.use_norm:\n", + " # De-Normalization from Non-stationary Transformer\n", + " dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.h, 1))\n", + " dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.h, 1))\n", + "\n", + " return dec_out\n", + " \n", + " def forward(self, windows_batch):\n", + " insample_y = windows_batch['insample_y']\n", + "\n", + " y_pred = self.forecast(insample_y)\n", + " y_pred = y_pred[:, -self.h:, :]\n", + " y_pred = self.loss.domain_map(y_pred)\n", + "\n", + " # domain_map might have squeezed the last dimension in case n_series == 1\n", + " if y_pred.ndim == 2:\n", + " return y_pred.unsqueeze(-1)\n", + " else:\n", + " return y_pred\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/markdown": [ + "---\n", + "\n", + "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/itransformer.py#L94){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n", + "\n", + "### iTransformer\n", + "\n", + "> iTransformer (h, input_size, n_series, futr_exog_list=None,\n", + "> hist_exog_list=None, stat_exog_list=None,\n", + "> hidden_size:int=512, n_heads:int=8, e_layers:int=2,\n", + "> d_layers:int=1, d_ff:int=2048, factor:int=1,\n", + "> dropout:float=0.1, use_norm:bool=True, loss=MAE(),\n", + "> valid_loss=None, max_steps:int=1000,\n", + "> learning_rate:float=0.001, num_lr_decays:int=-1,\n", + "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n", + "> batch_size:int=32, step_size:int=1,\n", + "> scaler_type:str='identity', random_seed:int=1,\n", + "> num_workers_loader:int=0, drop_last_loader:bool=False,\n", + "> optimizer=None, optimizer_kwargs=None, **trainer_kwargs)\n", + "\n", + "iTransformer\n", + "\n", + "**Parameters:**
\n", + "`h`: int, Forecast horizon.
\n", + "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n", + "`n_series`: int, number of time-series.
\n", + "`futr_exog_list`: str list, future exogenous columns.
\n", + "`hist_exog_list`: str list, historic exogenous columns.
\n", + "`stat_exog_list`: str list, static exogenous columns.
\n", + "`hidden_size`: int, dimension of the model.
\n", + "`n_heads`: int, number of heads.
\n", + "`e_layers`: int, number of encoder layers.
\n", + "`d_layers`: int, number of decoder layers.
\n", + "`d_ff`: int, dimension of fully-connected layer.
\n", + "`factor`: int, attention factor.
\n", + "`dropout`: float, dropout rate.
\n", + "`use_norm`: bool, whether to normalize or not.
\n", + "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + "`max_steps`: int=1000, maximum number of training steps.
\n", + "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n", + "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n", + "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n", + "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n", + "`batch_size`: int=32, number of different series in each batch.
\n", + "`step_size`: int=1, step size between each window of temporal data.
\n", + "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n", + "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n", + "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n", + "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n", + "`alias`: str, optional, Custom name of the model.
\n", + "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n", + "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n", + "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n", + "\n", + "**References**
\n", + "- [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. \"iTransformer: Inverted Transformers Are Effective for Time Series Forecasting\"](https://arxiv.org/abs/2310.06625)" + ], + "text/plain": [ + "---\n", + "\n", + "[source](https://github.com/Nixtla/neuralforecast/blob/main/neuralforecast/models/itransformer.py#L94){target=\"_blank\" style=\"float:right; font-size:smaller\"}\n", + "\n", + "### iTransformer\n", + "\n", + "> iTransformer (h, input_size, n_series, futr_exog_list=None,\n", + "> hist_exog_list=None, stat_exog_list=None,\n", + "> hidden_size:int=512, n_heads:int=8, e_layers:int=2,\n", + "> d_layers:int=1, d_ff:int=2048, factor:int=1,\n", + "> dropout:float=0.1, use_norm:bool=True, loss=MAE(),\n", + "> valid_loss=None, max_steps:int=1000,\n", + "> learning_rate:float=0.001, num_lr_decays:int=-1,\n", + "> early_stop_patience_steps:int=-1, val_check_steps:int=100,\n", + "> batch_size:int=32, step_size:int=1,\n", + "> scaler_type:str='identity', random_seed:int=1,\n", + "> num_workers_loader:int=0, drop_last_loader:bool=False,\n", + "> optimizer=None, optimizer_kwargs=None, **trainer_kwargs)\n", + "\n", + "iTransformer\n", + "\n", + "**Parameters:**
\n", + "`h`: int, Forecast horizon.
\n", + "`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
\n", + "`n_series`: int, number of time-series.
\n", + "`futr_exog_list`: str list, future exogenous columns.
\n", + "`hist_exog_list`: str list, historic exogenous columns.
\n", + "`stat_exog_list`: str list, static exogenous columns.
\n", + "`hidden_size`: int, dimension of the model.
\n", + "`n_heads`: int, number of heads.
\n", + "`e_layers`: int, number of encoder layers.
\n", + "`d_layers`: int, number of decoder layers.
\n", + "`d_ff`: int, dimension of fully-connected layer.
\n", + "`factor`: int, attention factor.
\n", + "`dropout`: float, dropout rate.
\n", + "`use_norm`: bool, whether to normalize or not.
\n", + "`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + "`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
\n", + "`max_steps`: int=1000, maximum number of training steps.
\n", + "`learning_rate`: float=1e-3, Learning rate between (0, 1).
\n", + "`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
\n", + "`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
\n", + "`val_check_steps`: int=100, Number of training steps between every validation loss check.
\n", + "`batch_size`: int=32, number of different series in each batch.
\n", + "`step_size`: int=1, step size between each window of temporal data.
\n", + "`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
\n", + "`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
\n", + "`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
\n", + "`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
\n", + "`alias`: str, optional, Custom name of the model.
\n", + "`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
\n", + "`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
\n", + "`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
\n", + "\n", + "**References**
\n", + "- [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. \"iTransformer: Inverted Transformers Are Effective for Time Series Forecasting\"](https://arxiv.org/abs/2310.06625)" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "show_doc(iTransformer)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/markdown": [ + "---\n", + "\n", + "### iTransformer.fit\n", + "\n", + "> iTransformer.fit (dataset, val_size=0, test_size=0, random_seed=None)\n", + "\n", + "Fit.\n", + "\n", + "The `fit` method, optimizes the neural network's weights using the\n", + "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n", + "and the `loss` function as defined during the initialization.\n", + "Within `fit` we use a PyTorch Lightning `Trainer` that\n", + "inherits the initialization's `self.trainer_kwargs`, to customize\n", + "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n", + "\n", + "The method is designed to be compatible with SKLearn-like classes\n", + "and in particular to be compatible with the StatsForecast library.\n", + "\n", + "By default the `model` is not saving training checkpoints to protect\n", + "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n", + "\n", + "**Parameters:**
\n", + "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n", + "`val_size`: int, validation size for temporal cross-validation.
\n", + "`test_size`: int, test size for temporal cross-validation.
" + ], + "text/plain": [ + "---\n", + "\n", + "### iTransformer.fit\n", + "\n", + "> iTransformer.fit (dataset, val_size=0, test_size=0, random_seed=None)\n", + "\n", + "Fit.\n", + "\n", + "The `fit` method, optimizes the neural network's weights using the\n", + "initialization parameters (`learning_rate`, `windows_batch_size`, ...)\n", + "and the `loss` function as defined during the initialization.\n", + "Within `fit` we use a PyTorch Lightning `Trainer` that\n", + "inherits the initialization's `self.trainer_kwargs`, to customize\n", + "its inputs, see [PL's trainer arguments](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).\n", + "\n", + "The method is designed to be compatible with SKLearn-like classes\n", + "and in particular to be compatible with the StatsForecast library.\n", + "\n", + "By default the `model` is not saving training checkpoints to protect\n", + "disk memory, to get them change `enable_checkpointing=True` in `__init__`.\n", + "\n", + "**Parameters:**
\n", + "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n", + "`val_size`: int, validation size for temporal cross-validation.
\n", + "`test_size`: int, test size for temporal cross-validation.
" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "show_doc(iTransformer.fit, name='iTransformer.fit')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/markdown": [ + "---\n", + "\n", + "### iTransformer.predict\n", + "\n", + "> iTransformer.predict (dataset, test_size=None, step_size=1,\n", + "> random_seed=None, **data_module_kwargs)\n", + "\n", + "Predict.\n", + "\n", + "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n", + "\n", + "**Parameters:**
\n", + "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n", + "`test_size`: int=None, test size for temporal cross-validation.
\n", + "`step_size`: int=1, Step size between each window.
\n", + "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)." + ], + "text/plain": [ + "---\n", + "\n", + "### iTransformer.predict\n", + "\n", + "> iTransformer.predict (dataset, test_size=None, step_size=1,\n", + "> random_seed=None, **data_module_kwargs)\n", + "\n", + "Predict.\n", + "\n", + "Neural network prediction with PL's `Trainer` execution of `predict_step`.\n", + "\n", + "**Parameters:**
\n", + "`dataset`: NeuralForecast's `TimeSeriesDataset`, see [documentation](https://nixtla.github.io/neuralforecast/tsdataset.html).
\n", + "`test_size`: int=None, test size for temporal cross-validation.
\n", + "`step_size`: int=1, Step size between each window.
\n", + "`**data_module_kwargs`: PL's TimeSeriesDataModule args, see [documentation](https://pytorch-lightning.readthedocs.io/en/1.6.1/extensions/datamodules.html#using-a-datamodule)." + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "show_doc(iTransformer.predict, name='iTransformer.predict')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Usage example" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import pytorch_lightning as pl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from neuralforecast import NeuralForecast\n", + "from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic\n", + "from neuralforecast.losses.pytorch import MSE" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:198: Attribute 'loss' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['loss'])`.\n", + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:198: Attribute 'valid_loss' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['valid_loss'])`.\n", + "Seed set to 1\n", + "GPU available: True (mps), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "---------------------------------------------------------\n", + "0 | padder | ConstantPad1d | 0 \n", + "1 | loss | MSE | 0 \n", + "2 | valid_loss | MAE | 0 \n", + "3 | scaler | TemporalNorm | 0 \n", + "4 | enc_embedding | DataEmbedding_inverted | 3.2 K \n", + "5 | encoder | TransEncoder | 135 K \n", + "6 | projector | Linear | 1.5 K \n", + "---------------------------------------------------------\n", + "140 K Trainable params\n", + "0 Non-trainable params\n", + "140 K Total params\n", + "0.562 Total estimated model params size (MB)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "db2340a0a0ea4ab79a8f3c3fbc5e8962", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Sanity Checking: | | 0/? [00:00]. Skipping setting a default `ModelSummary` callback.\n", + "GPU available: True (mps), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'predict_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=10` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "b61339b3642d44bfb953a7b2becf4cc4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Predicting: | | 0/? [00:00=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n", + "\n", + "model = iTransformer(h=12,\n", + " input_size=24,\n", + " n_series=2,\n", + " hidden_size=128,\n", + " n_heads=2,\n", + " e_layers=2,\n", + " d_layers=1,\n", + " d_ff=4,\n", + " factor=1,\n", + " dropout=0.1,\n", + " use_norm=True,\n", + " loss=MSE(),\n", + " valid_loss=MAE(),\n", + " early_stop_patience_steps=3,\n", + " batch_size=32)\n", + "\n", + "fcst = NeuralForecast(models=[model], freq='M')\n", + "fcst.fit(df=Y_train_df, static_df=AirPassengersStatic, val_size=12)\n", + "forecasts = fcst.predict(futr_df=Y_test_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmcAAAKHCAYAAAB0L5wRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZfrG8e+kk5CEnkLvvfcivVgQsSBWUNwVxZXFXrDg4mJZQazrDwXBXlBEERFEQOrSeycJkEYIBNL7+f0xnjEhnZnMJOH+XFcuJ3POec8z5USde573tRiGYSAiIiIiIiIiIiIiIiJO4ebqAkRERERERERERERERK4kCmdEREREREREREREREScSOGMiIiIiIiIiIiIiIiIEymcERERERERERERERERcSKFMyIiIiIiIiIiIiIiIk6kcEZERERERERERERERMSJFM6IiIiIiIiIiIiIiIg4kcIZERERERERERERERERJ1I4IyIiIiIiIiIiIiIi4kQKZ0RERESkylu7di0WiwWLxcKMGTNcXY6IiIiIiIhc4RTOiIiIiEilMGfOHFvAYrFY+Oqrr1xdUr56Lv2pXr06jRo1YvTo0bz33nskJia6ulyREkVERBT7vi7sZ+zYsa4uW0owY8YMZsyYwcKFC11dioiIiIj8SeGMiIiIiFQKCxYsyPf7/PnzXVRJ6aSkpHD69Gl+/vln/vGPf9CqVSt+/fVXV5clIlegl156iZdeeknhjIiIiEgF4uHqAkRERERESrJlyxYOHDiQ777Vq1cTERFBkyZNSjx+8ODBGIZRTtVZLVmyJN/vSUlJ7N69m08++YT4+HjOnDnDDTfcwLp16+jdu3e51iLiCHXr1mXevHkl7hcSEuKEakREREREqhaLUd7/lyoiIiIiYqe///3vfPTRRwDce++9fPzxxwC88MILvPTSSy6ry2Kx2G4X9Z/V586d45prrmHbtm0A9OnTh82bNzulPpGyioiIoGnTpgA0btyYiIgI1xYkDmH+rRo0aBBr1651bTEiIiIiAmhaMxERERGp4FJSUvj6668BaNq0KW+99RbVq1cH4OOPPyY3N9eV5ZWodu3aLFq0yPb7li1bOHXqlAsrEhEREREREVdTOCMiIiIiFdo333xDUlISAHfffTf+/v7cfPPNAJw+fZpVq1aVOMbatWtti5fPmDGj0H2aNGmCxWKxTZOWkZHBe++9x+DBgwkJCcHd3b1UU6gVpm3btrRs2dL2+759+2y309PTWbp0KVOnTqVfv37UrVsXT09P/P39admyJXfffXepHiNAYmIis2fPZsiQIQQFBeHl5UVAQADNmzenX79+PProo6xYsYLMzMxCj4+NjeWll16if//+1KlTB09PT2rUqEGrVq0YOHAg06dPZ+3atSUGYrt37+af//wnnTt3platWnh7exMaGsp1113HggULyM7OLvZ487UaPHiw7Tl6++236du3L7Vr16ZatWo0b96cyZMnExYWVqrnJiUlhVmzZtG9e3cCAwPx9/enQ4cOTJ8+nZiYGADuuece27lL6hi5ePEis2fPZvjw4YSGhuLt7U2tWrXo3r07zzzzDFFRUcUeX9i5fvjhB2666SYaN26Mt7d3oXWsX7+eSZMm0bZtW/z9/fHy8iI4OJiOHTty44038t577xEeHl6q56S8ZWRk8N///perr74633PUtWtXnnzyyRLrLOy6PXbsGI899hjt27enRo0aRV7T6enp/N///R+jR4+mYcOG+Pj4EBgYSIcOHZg6dSpHjx4t9eOIj4/n1VdfZdiwYbbH4evrS8uWLRk3bhzz588nMTGx0GOPHj3KnDlzuPHGG2nZsiXVq1fHy8uLevXqMXDgQF5++WXi4+NLVcflvPbm82dat26d7b68P1qLRkRERMQFDBERERGRCqx///4GYADG8ePHDcMwjN9//91237hx40ocY82aNbb9X3zxxUL3ady4sQEYjRs3NsLDw40OHTrYjjF/GjdunO+YvNtK0q9fP9u+n3/+ue3+pk2bFjhPYT833HCDkZSUVOT427dvN4KDg0s11rZt2wocv3z5csPf379Ux589e7bQGtLT041JkyYZFoul2OPbt29vnDhxosjHYu43aNAgIywszOjYsWORY/n5+Rm//fZbsc/9oUOHbK9vYT9169Y1/vjjD2PixIm2+8LDw4sc75tvvjFq1apV7GP08fExFi5cWOQYec915MgR4+abby50HLOOnJwcY/LkyaV6fa677rpin4/ihIeHF/l+L4sdO3YU+5wDhpeXl/Gf//ynyDEuvW4//fRTo1q1agXGufSaXrt2rVG/fv1iz+3u7m7MmjWrxMfxzjvvGH5+fiU+5/fcc0+BYxctWlSq1ysgIMBYtmxZkTXY89qX5hjA+Pjjj0t8LkRERETEsTwQEREREamgjhw5wsaNGwEYMGAAzZs3B2Dw4ME0adKEiIgIli5dSnx8PHXq1HHIOTMyMrjpppvYv38/ffr04ZZbbqFhw4ZcuHAhX8dLWcXFxdlu16hRw3Y7NTWVGjVqMHToULp27Urjxo3x9fUlMTGRvXv38vXXXxMTE8PSpUuZNGkS33zzTYGxU1NTGTt2LLGxsQB0796dG2+8kfr16+Pn50dCQgKHDh1izZo17Nmzp8Dx0dHR3HrrrSQnJwPWdSmuu+46goOD8fb2Jj4+nv3797N69eoiOw6ys7O5+uqrbetZBAUFcdttt9GlSxf8/PyIiopiyZIl/PHHHxw4cICBAweya9cu6tatW+RzlpiYyHXXXcehQ4cYOXIko0ePJjg4mNjYWD755BO2b99OSkoKt99+O4cPH6ZWrVoFxjh79ixDhw61dcc0atSISZMm0bp1a5KTk1m5ciWLFy/mpptuonPnzkXWYvrwww+ZPHkyhmHg4eHB6NGjGTp0KMHBwaSkpLBx40Y+//xz0tLSuOeee/Dy8uL2228vdsxp06bxyy+/0LhxYyZMmECbNm3IzMxk69ateHt7A/Duu+/yf//3fwD4+/tzyy230L17d+rWrUtmZiaRkZFs376d3377rcTHUN7279/PoEGDbO+n1q1bc/fdd9OiRQsuXrzI8uXLWbp0KZmZmTzxxBNkZGQwffr0YsfctGkT//73v7FYLEycOJGrrrqK6tWrExYWRoMGDWz7/fLLL9xwww1kZWVhsVgYPnw4o0aNokGDBmRmZrJ9+3Y++eQTLly4wLPPPgvAM888U+g5n376aV577TXb7wMGDGD06NE0btyY3NxcTp06xcaNG1m1alWha06lpqZisVjo3LkzAwcOpE2bNrb3aGRkJL/99hsrVqwgMTGRm2++mU2bNtGtW7cC49jz2i9ZsgSAG2+8EYD27dvz8ssvF9ivsPOKiIiISDlzdTokIiIiIlKUJ554wvbN7g8//DDftueff9627c033yx2nLJ0zpg/r776aon15d2/OAcPHsy376lTp2zbli9fbmRmZhZ5bEpKinHjjTfajl2/fn2Bfb799lvb9scee6zYWg4cOGDExcXlu+8///mP7fh33nmn2OP/97//GWlpaQXuf/rpp21j3H777UZycnKhx7/77ru2/e68885C98n7XHl4eBjffPNNgX2ys7ON66+/3rbfG2+8UehYEyZMsO0zdOjQQutatmyZ4eXlVWjHSl579uwxvL29DcBo2LChsXv37kLPefjwYaNBgwYGYPj7+xvnzp0rsE/ezhnAGDt2bKHPq6l9+/YGYNSqVcs4efJkkfulp6cbW7ZsKXJ7SeztnMnNzTU6depkG2PixImFvr+///57w9PT09bFsn379gL75L1uAaNevXrGnj17ijx3dHS0raMpMDDQWL16dZH7mTW6u7sbhw4dKrDPDz/8YDuvn5+f8f333xd53nPnzhlr1qwpcP/+/fuNY8eOFXmcYRjGb7/9Zvj6+hqAMWzYsEL3ccRrbz6WQYMGFVuPiIiIiDiPwhkRERERqZCysrKMoKAgA6xTRF24cCHf9uPHj9s+cOzQoUOxY5U1nLnhhhtKVWNpwpnz588bvXv3tu3Xp0+fUo2d18WLF21TK/3tb38rsP2VV16xjX/gwIEyj593yqSUlJQyH3/mzBnDx8fHAIwePXoY2dnZxe5/55132j4Yj4yMLLA97/P6/PPPFznOkSNHbPsV9sF2bGysLQAIDAw0zpw5U+RYzz33XInhjBmSubu7Gzt37iz2Ma5atarYoC9vOFO/fv1ip6wzDMMWCpVmGj975A1nSvNz6Yf9y5Yty3ddZmVlFXmul156ybbvrbfeWmD7peHMkiVLiq39kUcese27dOnSYvc9fPiw4e7ubgDGAw88kG9bbm6uLRABjK+++qrYseyVN2gu7HpwxGuvcEZERESk4nFDRERERKQC+umnnzhz5gwAY8eOJTAwMN/25s2bM2DAAMA6jdLWrVsddu6pU6eW+Zgffvgh389nn33GE088QZs2bfjf//4HgJeXF3PmzCnz2AEBAXTs2BGALVu2FNju5+dnu71jx44yj2/v8V9//TXp6ekAPP7447i7uxe7/4QJEwDIyclh9erVRe7n5ubGP//5zyK3t2rVioYNGwJw4MCBAtt//vlnsrKyALjzzjupV69ekWM9/PDDeHgUPevzhQsXWLp0KQAjRoyga9euRe4LMHz4cEJDQwH49ddfi9130qRJVK9evdh9zNdo3759ZGZmFruvK3333Xe2248//nixz+m0adPw9fUFrNe7+VoVplGjRtxwww1FbjcMg08//RSwTqM2ZsyYYuts3bo1vXr1Agq+Pjt37rS9n7p27cr48eOLHcte/fv3t90u7vqu6K+9iIiIiJSN1pwRERERkQpp/vz5ttsTJ04sdJ977rmHDRs2ALBgwQLbh632cHd3p1+/fmU+zlzToSh169Zl4cKF9O3bt8C2hIQEPv/8c1asWMH+/fs5d+4cKSkpha5jERkZWeC+4cOHY7FYMAyDBx98kGPHjnHbbbfRrl27UtU+cuRIW2h000038dRTT3HzzTfTtGnTUh3/xx9/5HssP/zwQ7H7R0VF2W4fPHiwyP1at25N7dq1ix2rfv36nD59moSEhALbtm3bZrs9ZMiQYsepV68e7dq1Y+/evYVu37hxI7m5uYB13Y+SHiNgC1yKe4wAV111VYljjRw5kq+++orDhw8zbNgwHnnkEUaOHFliqGOPunXrMm/evGL3uXStp7zhwqhRo4o9NiAggH79+vHbb7+RlpbGnj176NGjR6H7DhgwAIvFUuRYBw8eJD4+HoDg4OBSvT5miBgeHk56ejo+Pj4ArF+/3rbP2LFjSxynJBs2bODLL79k69athIWFkZSUVGQQVdj17YrXXkRERETKn8IZEREREalwoqOjWbFiBQAhISGMGDGi0P1uvfVWpk6dSmpqKl9++SVz5syxfRP/ctWuXdv2Ia09qlWrRu3atenYsSPXXHMNd999NzVq1Ciw39KlS7nvvvs4d+5cqcZNTEwscF/btm157rnnmDlzJikpKcycOZOZM2dSr149BgwYwMCBA7n66qtp3bp1oWOOGjWKCRMm8MknnxAfH88TTzzBE088QaNGjejfvz+DBg3i2muvtXWpXCoiIsJ2+8EHHyzV4zCdP3++yG2XfvBfGG9vbwAyMjIKbIuOjrbdbt68eYljNW/evMhwJu9j/Pbbb/n2229LHM9U3GME8i1oX5TXXnuNDRs2EBkZyYYNG9iwYQMeHh506dKFq666isGDBzNy5EiHvHdNvr6+ZQ4nYmJiAGuAFRwcXOL+rVu3ti1kn/f1ulRJz1He12fdunWsW7euFNX+5fz587ZOp9OnT9vuL23AWZjk5GTuvvvuUgVFpsKub1e89iIiIiJS/hTOiIiIiEiFs3DhQnJycgDrdFRFTZPl7+/PjTfeyOeff05iYiKLFy+2TZl1uapVq3ZZxxXW5VKSzZs3c8stt5CdnQ1Ap06dGD58OC1atKBmzZp4e3vbugWee+45Dhw4YOveuNS//vUvevXqxauvvsrGjRsBiIuL4/vvv+f7778HrNMnzZ49m969exc4ftGiRQwbNow333yT3bt3A3Dq1ClOnTrFl19+icVi4ZprrmHOnDkFQp4LFy6U+bGbipumyc3NvlmYU1JSbLdLE9oVt489j7G46bqgdO+5Ro0asWvXLmbNmsUnn3zCuXPnyM7OZvv27Wzfvp0333yTgIAA/vnPfzJ9+nRbaOVsSUlJQP6p8oqTt/vDPLYwJT1H9rw+kP99mDcgsac7Zfz48SxfvhywPh/XXXcdXbt2JTQ0FF9fX9uUb/v37+f5558HsP3dy6uyvPYiIiIiUjYKZ0RERESkQjEMgwULFth+f+ONN3jjjTdKdez8+fPtDmec6YUXXrAFM++99x5Tpkwpct9///vfJY43evRoRo8ezZkzZ1i/fj2bN29m3bp17Ny5E8Mw2LhxI1dddRXLly9n+PDhBY6fMGECEyZM4NSpU7bj16xZw8GDBzEMg+XLl7N+/Xo2btxoWwMH8n+AnZCQUGiHkCvkDQhSU1NL3D9vmHOpvI9x7ty5xa6FU17q1KnDnDlz+M9//sOOHTvYtGkTGzdu5Pfff+f8+fMkJiYyc+ZMNm7cyKpVq+wOty6Hv78/Fy5cKPa5zCs5OTnfsZcr7+szbdo03nzzzcseKyAgwHY7b31lsXHjRlsw07FjR1auXFlkJ5Gnp2eJ41WG115EREREykb/xSYiIiIiFcq6des4ceLEZR37xx9/cOzYMQdXVD6ysrJYu3YtAN27dy82mIH80zaVJCgoiFtuuYXZs2ezfft2IiIiuOWWW2znfeSRR4o9vlGjRtx55528++67HDhwgAMHDjBo0CDA2t3w7LPP5ts/75RT5kLqFYE5TRVQqvdUWFhYkdvyPsb9+/fbV5id3N3d6dWrF9OmTePbb7/lzJkzfPPNNwQGBgLw+++/s2TJEpfUFhISAljfJ7GxsSXuf/ToUdvtvK9XWTny9ck7VknrBRVl5cqVttuzZs0qdoq38PDwUo9bkV97ERERESkbdc6IiIiISIUyf/582+0bb7yRTp06lXjM1q1b+eWXXwBYsGABr7zySrnV5yjx8fG2rpkWLVoUu+/WrVtti51fjkaNGvHFF1+wbt06zp49y/79+7lw4UKpO1zatWvH999/T926dcnNzc23YDrA4MGDWbZsGQDff/89/fv3v+xaHalnz5588MEHAKxZs8YWUBUmLi6u2GBp0KBBWCwWDMNg2bJlZGZm4uXl5fCaL4eHhwfjxo0jKirKFrytX7+em2++2em19OnTh0OHDgHw66+/MnHixCL3TUpKYtOmTYB12rLOnTtf9nm7dOlCjRo1uHDhAuvXryc+Pr5UaxYVZuDAgbbbP/zwAy+88EKZx8gbTJV0fZsdNpejtK+9+d69nOkXRURERKR8qHNGRERERCqMixcv8t133wHWb4i///77zJgxo8SfuXPn2sZYtGhRoes2VDR5p9w6fvx4sfu++OKLdp/P09OT+vXr2343g6HSqlWrlm26p0vXULntttts61x88MEHJT4eZ7nuuutsU0Z9/vnnnD17tsh933nnnWLfN3Xq1OG6664DrB+8z54927HFOkDTpk1tt8v6+jpK3gBs9uzZxdbx1ltv2aY/GzNmTKmm9yqKu7s7d911FwAZGRlMnz79ssfq1q0b7du3B2DXrl18/fXXZR6jtNf3pk2bWLFiRdmLvERJr7057Vtpp5sTERERkfKncEZEREREKowvvviCtLQ0AEaOHFnsVEB5tWrVij59+gAQExNj1zfRnSUgIIBWrVoBsGPHDhYvXlxgn5ycHB555JESP7x9++23+fbbb/Mtan6p9evXs3fvXsA6bVPeroKXXnqJX3/9ldzc3CKP/+KLL2yLrnft2jXftvr169u+tZ+amsqoUaPYtWtXsTXv37+fBx54oNh97BUUFMTtt98OWIO/2267rdAPp3/++Wdef/31Esd7+eWXbSHUc889x1tvvVVsJ8LFixeZO3cuv/3222U+AquYmBgee+yxYqdmy8rKYt68ebbfu3TpYtc5L9c111xj64DZt28f999/f4EwD+DHH39k5syZgDVYefLJJ+0+97PPPkutWrUAmDdvHk899VSh5zalpaXx8ccf89VXX+W732Kx8PLLL9t+v++++/jhhx+KHCchIcE2RaGpZ8+ettsvvfQS6enpBY7bu3cv48aNK/Y95KjX3gxvDh8+bPsbKyIiIiKupWnNRERERKTCyDul2YQJE8p07IQJE9iyZYttnOuvv96htZWHadOm2daaufXWWxk/fjyDBg2iZs2aHD9+nM8//5xDhw7RoUMHvL292bFjR6Hj7Ny5k0WLFhEYGMioUaPo1q0bDRo0wMPDg7i4ONasWcOyZcts4cula8asWbOGGTNmUK9ePUaNGkWXLl0ICQnBYrEQExPDL7/8ki9guPR4sAYXe/bs4ZdffiEsLIwePXpw9dVXM3ToUOrXr4/FYuHcuXPs37+ftWvXcujQIdzd3W3TjpWXN954g1WrVhETE8Pvv/9Ou3btmDRpEm3atCE5OZmVK1fy7bffUqtWLbp06cLq1asBCl1QvXPnznz00UdMnDiR3Nxcpk2bxvvvv8+NN95I27Zt8fPzIykpiRMnTrB161bWrVtHZmYmn376qV2PISMjgzlz5jBnzhy6d+/OVVddRbt27ahRowbJycmcOHGCL7/80rZmTrNmzbjtttvsOuflslgsfP755/Tp04fk5GQ+/vhjNm/ezIQJE2jWrBmJiYn88ssv+dZFeemll+jWrZvd5w4JCeHbb7/luuuuIz09nddff53PP/+ccePG0alTJ/z9/UlJSeHkyZNs376d1atXk5qaaguJ8ho7diyPPfYYs2fPJiUlhRtvvJEBAwYwevRoGjdujGEYnD59ms2bN7NixQrGjx/P4MGDbcffdNNNNGrUiFOnTrF9+3Zat27N3/72N1q0aEFqairr1q3jq6++Iisri4kTJ7Jo0aJCH5OjXvvhw4ezd+9eUlJSuP7665kwYQJ169bFYrEA0LFjx3yddSIiIiLiBIaIiIiISAWwe/duAzAAIzAw0EhLSyvT8efPnze8vb0NwPDw8DBiY2Nt29asWWMb+8UXXyz0+MaNGxuA0bhx41Kf0xzzcv+zOjc315g0aVK+cS796dixoxEWFmYMGjSoyHPde++9xY5h/nh6ehovv/xygeOHDBlSquP9/PyMBQsWFPl4srKyjCeeeMLw9PQs1XhFPdfm9kGDBpX4HBb3vJgOHjxoNGrUqMg6ateubaxdu9a48847bfedP3++yPFWrlxpNGjQoFSP0dvb2/jll18KjDFx4kTbPuHh4cU+xoiIiFKdCzA6dOhgHD9+vMTnrSjh4eElvj6lsX37dts1VdSPl5eX8dprrxU5Rmmu28Ls3LnTaNOmTameL3d3d+PDDz8scqw33njD8PHxKXGce++9t9DnoE6dOsWe+9VXXy32cTrqtY+KijKCgoKKPPbjjz8u9fMrIiIiIo6hzhkRERERqRDyds2MGzcOHx+fMh1fs2ZNrr/+ehYvXkx2djaLFi1yyFRJ5clisTB//nyuu+465s2bx/bt20lMTKR27dq0bt2acePGcd9995X4XHzwwQfcc889rFmzhg0bNnDkyBHOnj1LdnY2AQEBtGzZksGDB3PffffRsmXLAscvW7aMDRs2sGbNGjZt2sTx48eJj4/HMAxq1KhBmzZtGD58OH/7298IDQ0tsg4PDw9ef/11/vGPf7BgwQJ+//13jh07xvnz53Fzc6N27dq0atWK3r17M2rUqHwLr5entm3bcvDgQd566y0WL17M8ePHMQyDhg0bcv311zN16lTq16/Pq6++ansc5vo6hRkxYoStY+Hnn39m+/btnD17lvT0dPz9/WnSpAmdO3dm6NChXH/99dSoUcOu+hs3bsypU6dYs2YNa9asYefOnZw6dYqkpCS8vLwIDg6ma9eu3Hzzzdx66614eLj+f/O6d+/OkSNHmD9/PkuXLmXv3r2cO3cOPz8/GjduzIgRI5gyZUq+tVIcpWvXrhw4cIAlS5awdOlStmzZwpkzZ0hJSaF69eo0bNiQjh07MmTIEK6//vpip0987LHHuOOOO5g3bx4rV67k2LFjJCQk4OXlRf369enWrRvXXHNNvrV28j4He/fuZfbs2SxbtoyTJ0/i4eFBaGgoQ4YM4f7776dbt24FpkTLy1GvfWhoKDt37mT27Nn89ttvhIeHk5ycXOyUaiIiIiJSviyG/mtMRERERESucLm5uQQHB3P27Fk6d+7M7t27XV2SiIiIiIhUYQUnUhYREREREbnCfP3115w9exaAIUOGuLgaERERERGp6hTOiIiIiIhIlbZlyxbS09OL3L5hwwYeeughANzc3Lj//vudVZqIiIiIiFyhXD8ZsYiIiIiISDl69dVX+eOPP7jmmmvo0aOHbd2cqKgofvvtN1asWGFbe+PJJ5+kbdu2rixXRERERESuAFpzRkREREREqrSxY8eydOnSYvexWCw89thjvPbaa7i5aYIBEREREREpXwpnRERERESkSjt+/Dg//vgjq1at4sSJE5w7d47ExET8/f1p1KgRgwYN4v7776d9+/auLlVERERERK4QCmdEREREREREREREREScSGvO2CE3N5fo6Gj8/f2xWCyuLkdERERERERERERERFzIMAySkpIIDQ0tdspkhTN2iI6OpmHDhq4uQ0REREREREREREREKpDTp0/ToEGDIrcrnLGDv78/YH2SAwICXFyNyOXLyspi5cqVjBw5Ek9PT1eXIyLF0PUqUrnomhWpPHS9ilQuumZFKg9dr3KlSUxMpGHDhrb8oCgKZ+xgTmUWEBCgcEYqtaysLHx9fQkICNC/JEUqOF2vIpWLrlmRykPXq0jlomtWpPLQ9SpXqpKWQil6wjMRERERERERERERERFxOIUzIiIiIiIiIiIiIiIiTqRwRkRERERERERERERExIkUzoiIiIiIiIiIiIiIiDiRwhkREREREREREREREREnUjgjIiIiIiIiIiIiIiLiRB6uLuBKlJWVRU5OjqvLkCuIu7s7np6eri5DRERERERERERERFA441SJiYnEx8eTkZHh6lLkCuTt7U2dOnUICAhwdSkiIiIiIiIiIiIiVzSFM06SmJhIVFQU1atXp06dOnh6emKxWFxdllwBDMMgKyuLixcvEhUVBaCARkRERERERERERMSFFM44SXx8PNWrV6dBgwYKZcTpqlWrhr+/P5GRkcTHxyucEREREREREREREXEhN1cXcCXIysoiIyODwMBABTPiMhaLhcDAQDIyMsjKynJ1OSIiIiIiIiIiIiJXLIUzTpCTkwOgBdnF5cz3oPmeFBERERERERERERHnUzjjROqaEVfTe1BERERERERERETE9RTOiIiIiIiIiIiIiIiIOJHCGRERERERERERERERESdSOCMiIiIiIiIiIiIiIuJECmfE6SwWS5l+mjRp4uqSRUREREREREREREQcxsPVBciVZ+LEiQXu27BhAydOnKBz58506dIl37Y6deo4qTIRERERERERERERkfKncEacbuHChQXuu+eeezhx4gRjx45lxowZTq9JRERERERERERERMRZNK2ZiIiIiIiIiIiIiIiIEymckQpt7dq1WCwW7rnnHmJjY/nb3/5GgwYN8PDwYO7cuQAMHjwYi8VCREREgeMjIiKwWCwMHjy40PF/+uknRo0aRe3atfHx8aFVq1Y8//zzJCcnl9+DEhERERERERERkStSbm4uf//733n++ecxDMPV5YgLaVozqRTOnj1Lz549yc7OZsCAAaSnp+Pr62vXmI899hhz5szBx8eHXr16UadOHXbs2MHLL7/ML7/8wrp16/Dz83PQIxAREREREREREZEr3YEDB/joo48A6NChA+PHjy90v3374OGHoWlT+PhjZ1YozqJwpgIwDIPU1FRXl1Fqvr6+WCwWp55z+fLl3HjjjXzxxRf4+PjYPd4333zDnDlz6Nq1K99//z1NmjQBICsri3/84x/MmzePGTNm8J///Mfuc4mIiIiIiIiIiIgA+Wb/eeihhxgyZAj16tWz3ZeTA3PmwHPPQWYmrFsH770Hdn5PXSoghTMVQGpqKtWrV3d1GaWWnJzs9I4Sb29v3nnnHYcEMwCzZs0C4Msvv7QFMwCenp689dZb/Pjjj3z00Ue89tpruLlp9j8RERERERERERGx38mTJ223z507x0MPPcS3334LQHg4TJwI69fnPyYyElq1cmaV4gz61FkqhW7dulG/fn2HjBUXF8eePXto27YtrVu3LrDdx8eHHj16cOHCBY4dO+aQc4qIiIiIiIiIiIiY4czQoUPx8PBg8eLFfPPNt8yfD506WYOZ6tVh/nxo1856zKlTLixYyo06ZyoAX1/fSrUAvb1rvVyORo0aOWws8w/goUOHSpyeLT4+vtAAR0RERERERERERKSszM8mr7/+evr378/Mmf/H3Xf7k5lp3X7VVbBokXWtmW++gYMH4fRpFxYs5UbhTAVgsVi08HwJLnc6s9zc3AL35eTkABASEsLIkSOLPb527dqXdV4RERERERERERGRS5lrzjRu3JjQ0Idwd59GZmYt3NyyeO01Tx55BNzdrfs2bGj9p8KZqknhjFR6Xl5eAIV2H50u5C9XgwYNAAgODmbhwoXlWpuIiIiIiIiIiIiIydo5E8CCBQNZtswTqAXsJjf3bpo2nYG7+822fRXOVG1ac0YqvZCQEACOHj1aYNvKlSsL3NegQQNat27N3r17CQ8PL/f6RERERERERERERNLS0oiLuwBsZtmy2ri5wTPPwFNPLQH2M2XKFOLj4237K5yp2hTOSKU3aNAgAGbPnk1qaqrt/t9++425c+cWesxzzz1HTk4ON998M/v37y+w/cSJEyxYsKBc6hUREREREREREZErz6lTp4DOQDsCAgz++ANmzYKXXnqW9u3bExcXx9SpU237K5yp2hTOSKV3++2307p1azZt2kTbtm255ZZb6N27N6NGjWLKlCmFHnPXXXfx5JNPsmvXLrp06ULPnj259dZbufrqq2nbti0tWrTg7bffdvIjERERERERERERkarKOqVZKwC6dbPQv7/1fm9vbz7++GPc3Nz48ssvWbJkCaBwpqpTOCOVXrVq1Vi9ejW33347SUlJLF++nNzcXL7++mseeuihIo977bXXWL16NWPGjCEyMpIffviBXbt24evryxNPPKHOGREREREREREREXGYiIgIzHCmVav823r27MmTTz4JwIMPPsi5c+ds4UxSEly86Lw6xTk8XF2ACMDChQtZuHBhgfsHDx6MYRglHl+/fn2++OKLQrcVd/zQoUMZOnRoqesUERERERERERERuRzWzpmOALRsWXD7iy++yNKlSzl06BDTpk3j008/pVYtOH/e2j0TGOjceqV8qXNGRERERERERERERKSc5Z3W7NLOGQAfHx/b9GafffYZP/74o6175tQp59UpzqFwRkRERERERERERESknEVEFB/OAPTu3ZvHH38cgMmTJxMSkglo3ZmqSOGMiIiIiIiIiIiIiEg5CwtLA6rj5mbQrFnR+7300ku0bt2a2NhYwsPXAwpnqiKFMyIiIiIiIiIiIiIi5SgrK4vYWH8AGjXKwcur6H19fHz46KOPADh6dDWgcKYqUjgjIiIiIiIiIiIiIlKOIiMjMYwWALRp417i/v369cPT0xPDOAkonKmKKm04ExUVxV133UXt2rXx9fWlS5cu7Nixw7bdMAxmzJhBaGgo1apVY/DgwRw4cCDfGBkZGTz88MPUqVMHPz8/xowZQ2RkpLMfioiIiIiIiIiIiIhUYSdP5l1vxlLi/m5uboSEhADWVEbhTNVTKcOZhIQE+vfvj6enJ7/88gsHDx5k9uzZ1KhRw7bP66+/zpw5c3j33XfZtm0bwcHBjBgxgqSkJNs+06ZNY8mSJXz11Vds2LCB5ORkRo8eTU5OjgselYiIiIiIiIiIiIhURREREfwVzpTumPr162OGM5GRYBjlUpq4iIerC7gcr732Gg0bNuTjjz+23dekSRPbbcMwmDt3LtOnT+emm24CYNGiRQQFBfHFF18wefJkLl68yPz58/n0008ZPnw4AJ999hkNGzbkt99+Y9SoUU59TCIiIiIiIiIiIiJSNVk7Z3oDZQ1ntmOxGKSnW4iPh7p1y61EcbJKGc78+OOPjBo1inHjxrFu3Trq16/PlClT+Pvf/w5AeHg4sbGxjBw50naMt7c3gwYNYtOmTUyePJkdO3aQlZWVb5/Q0FA6dOjApk2bCg1nMjIyyMjIsP2emJgIWBdzysrKKrLerKwsDMMgNzeX3Nxcux+/yOXKzc3FMAyysrJwd/9rbkvz/Vvc+1hEKgZdryKVi65ZkcpD16tI5aJrVqTy0PVqdeLESaA5AE2bZlGapyM4OBjIwtc3iZSUAMLDs8gzeZRUUKV9r1fKcCYsLIz//ve/PProozz77LNs3bqVqVOn4u3tzYQJE4iNjQUgKCgo33FBQUF/JpQQGxuLl5cXNWvWLLCPefylXnnlFV566aUC969cuRJfX98i6/Xw8CA4OJjk5GQyMzPL9FhFHCkzM5O0tDT++OMPsrOzC2xftWqVC6oSkcuh61WkctE1K1J56HoVqVx0zYpUHlf69bp1awzghbt7Fvv2LeeS5dELZTYHuLlFAQH88MNOYmIK/+xaKo7U1NRS7Vcpw5nc3Fx69OjBrFmzAOjatSsHDhzgv//9LxMmTLDtZ7HkX1jJMIwC912quH2eeeYZHn30UdvviYmJNGzYkJEjRxIQEFDkmOnp6Zw+fZrq1avj4+NT4uMTKS/p6elUq1aNgQMH5nsvZmVlsWrVKkaMGIGnp6cLKxSRkuh6FalcdM2KVB66XkUqF12zIpWHrlerBx9cCkCjRhmMHn1tqY65cOECn3zyCd7eZ0lKaku9ej249lrNzFTRmaFaSSplOBMSEkK7du3y3de2bVu+++47wGz3snbHhISE2PaJi4uzddMEBweTmZlJQkJCvu6ZuLg4+vXrV+h5vb298fb2LnC/p6dnsX9YcnJysFgsuLm54ebmVspHKeJ4bm5uWCyWIt+zJb2XRaTi0PUqUrnomhWpPHS9ilQuumZFKo8r+XrNzc3lzJlAAFq3div189C4cWMAsrPDgIFER7vj6ele/EHicqV9fStlUtC/f3+OHDmS776jR4/a3qxNmzYlODg4X6tcZmYm69atswUv3bt3x9PTM98+MTEx7N+/v8hwRkRERERERERERESkLGJiYsjNta4307Fj6WdWql+/PgCpqYcBOH3a8bWJ61TKzplHHnmEfv36MWvWLG699Va2bt3KvHnzmDdvHmCdzmzatGnMmjWLli1b0rJlS2bNmoWvry933HEHAIGBgdx333089thj1K5dm1q1avH444/TsWNHhg8f7sqHd8UoaYq5QYMGsXbtWucUIyIiIiIiIiIiIlIOrOugtwKgTZvS90uEhoYCkJl5AlA4U9VUynCmZ8+eLFmyhGeeeYZ//etfNG3alLlz53LnnXfa9nnyySdJS0tjypQpJCQk0Lt3b1auXIm/v79tnzfffBMPDw9uvfVW0tLSGDZsGAsXLsTdXa1hzjRx4sRC72/Tpo2TK6k81q5dy5AhQ5g4cSILFy50dTkiIiIiIiIiIiJSBGs40xeAVq1Kf5yfnx+BgYFcvGhNZRTOVC2VMpwBGD16NKNHjy5yu8ViYcaMGcyYMaPIfXx8fHjnnXd45513yqFCKS2FCyIiIiIiIiIiIlJVHTt2GhgPlC2cAevUZmY4ExUFOTmg3oKqoVKuOSMiIiIiIiIiIiIiUhns358GuOHtnUbdumU71rruTCzu7rnk5EBsbHlUKK6gcEYqjdOnTzN58mQaN26Mt7c39erV46abbmLbtm0F9o2IiMBisTB48GASExN57LHHaNq0KZ6enkybNs2239mzZ3n88cdp3bo1Pj4+1KxZk2uuuYY//vijyDoOHjzIvffea6sjKCiIgQMH8tZbb+Xbb/fu3Tz55JN0796dunXr4u3tTbNmzZgyZQrR0dGFjn3o0CHuvvtumjdvjo+PD3Xr1qVLly5MmzaNmJgYAO655x6GDBkCwKJFi7BYLLaf4jrFRERERERERERExPmOH7d+DB8SkkwJy3AXYA1ncvH3TwI0tVlVUmmnNZMry759+xg6dCjx8fG0adOGm266iVOnTrFkyRJ++uknvvjiC8aNG1fguLS0NAYNGsTJkycZNGgQ3bp1o2bNmgAcPnyY4cOHExUVRfPmzbn22ms5d+4cv//+OytXruTTTz/ljjvuyDfet99+y913301GRgbt27enX79+nD9/nv379zNt2jT++c9/2vZ99dVXWbx4MR06dKB///5YLBZ2797Nf//7X3744Qe2b99uW9QLYOfOnQwYMID09HR69epFr169SEpKIiwsjLfeeouxY8cSEhLCgAEDiI2N5ddff6V58+YMGDDANkaXLl0c/MyLiIiIiIiIiIiIPSIjfQFo1iy7zMdawxnw8YkHAjl9Gvr0cWR14ioKZ6TCMwyDO++8k/j4eJ555hn+/e9/Y/kzYl68eDHjx4/nvvvuY+DAgQQFBeU7duvWrfTt25ewsDBq1Khhuz8nJ4dx48YRFRXFW2+9xcMPP2wbc9euXYwYMYL777+f4cOHU69ePQCOHTvGhAkTyM3N5euvv+bWW2+1jZebm8vy5cvznfv+++/nzTffJCQkJN9+L7/8Mi+++CLPPfccCxYssG17++23SUtL47vvvuOmm27KN9ahQ4ds9f/tb3+jRYsW/PrrrwwYMEBr9oiIiIiIiIiIiFRQhmFw/nwdANq39yrz8eaXu93do4Dm6pypQjStWQVgGJCSUnl+DMOxjz/vtFx5fy5cuADA2rVr2bdvH02bNmXmzJm2EAXglltuYezYsSQlJfHxxx8XOv7bb7+dL5gB+Omnn9i/fz+33347U6dOzTdm165def7550lJSeGzzz6z3f/mm2+Snp7O5MmT8wUzAG5ubowePTrffUOHDs0XzJj7vfDCC9SvX5+lS5fm2xYXF2c77lJt27YtMJaIiIiIiIiIiIhUbPHx8eTkNAOgR4+AMh9vds5kZ0cAcOqUw0oTF1PnTAWQmgrVq7u6itJLTgY/P8eNN3HixELv9/KyJsnr168HYPz48bi7uxfY7+677+b7779n/fr1PP300/m2hYSE0KNHjwLHrFq1CoCxY8cWem5zqrC869n89ttvAEyePLm4h5PPuXPn+PHHH9m/fz8XLlwgJycHgKysLM6fP8/58+epVasWAN27d+eXX35hwoQJPPfcc/To0QM3N+WnIiIiIiIiIiIildXJkyeBlgC0b+9Z5uPNcCY9/QigNWeqEoUz4nIlTcsVHR0NQJMmTQrdbt5v7pdXo0aNCj0mIiICsAY+48ePL/Lc8fHxttun//zL16xZs2LrNX355Zfcf//9JCcnF7lPUlKSLZx54okn2LBhAz/99BM//fQTgYGB9O7dm9GjR3PPPffg7+9fqvOKiIiIiIiIiIhIxXDwYBRg/fJ4y5ZlP94MZxITDwIKZ6oShTMVgK+vtRulsvD1dc158049VtrtPj4+he5rdrBcc801tjVlCtOmTZsC5yipDrAm4vfccw+GYTB37lyuu+466tevT7Vq1QDo168fmzdvxsgzR1xAQAC///47Gzdu5KeffmLt2rWsXr2alStX8sorr7B+/XqaN29e4rlFRERERERERESkYti1y/rBr49PAgEBNct8fL169XB3dycn5ySgcKYqUThTAVgsjp0mrKoxF70KDw8vdLu1NZAyrcnSoEEDAB544AHGjBlTqmMaNmzIsWPHOHHiBB06dCh23+XLl5OZmcljjz3GP//5zwLbw8LCCj3OYrEwYMAA27RqZ8+e5Z///Cdffvklzz77LF9//XWpahURERERERERERHXO3gwG4A6dRKAsocz7u7uhISEEBlpTWXOnIHMTPhzRQipxLSghVR4V111FQBff/21reMlr88++yzffqUxfPhwAH744YcyHzNv3rwS901ISACsgc6l/vjjD86cOVOqc9atW5cZM2YAsG/fPtv95no82dnZpRpHREREREREREREnC8iwvo5XqNGGZc9hvXL6/F4eeVgGBAV5aDixKUUzkiFN3jwYDp27Eh4eDgvvPBCvqnAfvjhB77//nuqV6/OPffcU+oxb7nlFtq0acPChQt57bXXyMrKyrc9MzOT77//Pl8gMm3aNHx8fPjggw/47rvv8u2fm5vL8uXLbb+3atUKsAZHKSkptvujoqJ44IEHCq3pgw8+KLQ76JdffgHyr59jdhMdOXKkVI9XREREREREREREnC8urgYArVuXvFRCUcx1ZwIDkwBNbVZVaFozqfAsFguff/45Q4YMYdasWSxZsoQuXbpw6tQpNm7ciIeHBwsWLCA4OLjUY3p4eLBkyRJGjRrF008/zVtvvUWnTp0ICAjg9OnTHD58mAsXLrBkyRI6duwIWAOXBQsWMHHiRG655RY6dOhAhw4dSEhIYN++fURHR9uCozFjxtC+fXu2b99OixYt6N+/P+np6axZs4YuXbrQr18/Nm3alK+mDz74gAcffJB27drRtm1bPDw8OHLkCLt376ZatWq8+OKLtn2bNGlCp06d2L59O7169aJ9+/a4u7szZsyYUk/TJiIiIiIiIiIiIuUrKSkIgC5dLn8hbzOc8fU9B9RQOFNFqHNGKoWOHTuyc+dO/v73v5OcnMzixYs5cuQIY8eOZePGjYwbN67MY7Zp04bdu3czY8YM6tWrx4YNG/j55585e/YsAwcO5OOPP7ZNZWa6/fbb2bZtG3fccQfnzp3ju+++Y/fu3bRs2ZK3337btp+Xlxfr16/nwQcfxMfHh2XLlnHo0CEefvhhVq1ahaenZ4F6Zs6cyaRJk7BYLKxevZqffvqJ1NRU7r//fvbu3Uvfvn3z7f/dd98xduxYwsLC+OSTT5g/fz47d+4s8/MgIiIiIiIiIiIijnfhwkVycpoD0K9f7csexwxn3N1jAHXOVBXqnBGXyTs9WWk0atSoVOu9gLWzpDTj16xZkxdffDFfV0pJOnfuzOeff16qsd9///1Ct61du7bAfddffz3XX399qeto0aIFS5YsKfX+IiIiIiIiIiIi4jy7dkUB7YBcOnb0u+xxzHAmN/ckMIBTpxxSnriYOmdERERERERERERERBzsf/9LAMDLKxpv78sfxwxn0tKOAuqcqSoUzoiIiIiIiIiIiIiIONi+fekA1Khx1q5xQkNDAUhM3A8onKkqFM6IiIiIiIiIiIiIiDjYsWPWj99DQpLtGuevzpkjgMKZqkLhjIiIiIiIiIiIiIiIg0VF+QLQrFm2XeP4+/vj7+8PWFOZ8+chNdXe6sTVFM6IiIiIiIiIiIiIiDhYQkIdADp2tGPBmT9Zu2cS8fW1Bj3qnqn8FM6IiIiIiIiIiIiIiDhQTg6kpVmnI+vZM9Du8cypzWrWtE6RpnCm8lM4IyIiIiIiIiIiIiLiQMeOpQM+QAa9e4fYPV5oaCgAvr7nAYUzVYHCGScyDMPVJcgVTu9BERERERERERGR8rdx41kA3NzCqFOnpt3jmZ0znp6xgMKZqkDhjBO4u7sDkJWV5eJK5EpnvgfN96SIiIiIiIiIiIg43s6d1unH/PxisFgsdo9nhjOGcQpQOFMVKJxxAk9PT7y9vbl48aI6F8RlDMPg4sWLeHt74+np6epyREREREREREREqqzDh7MBqFs3wSHjmeFMRsYxAE6dcsiw4kIeri7gSlGnTh2ioqKIjIwkMDAQT09PhySmIiUxDIOsrCwuXrxIcnKy7Q+5iIiIiIiIiIiIlI+ICG8AGjVKd8h45md6iYkHAXXOVAUKZ5wkICAAgPj4eKKiolxcjVyJvL29qV+/vu29KCIiIiIiIiIiIuUjLi4QgNatHfMFfTOcOX9+D2ANZwwD9P3/ykvhjBMFBAQQEBBAVlYWOTk5ri5HriDu7u6aykxERERERERERMQJMjIgObkOAN26VXfImEFBQbi5uZGbGwFAcjJcvAg1ajhkeHEBhTMu4OnpqQ/KRURERERERERERKqgsDAAdyCRTp2CHDKmh4cHQUFBxMTEEBiYxcWLnpw+rXCmMnNzdQEiIiIiIiIiIiIiIlXFwYPZf946SpMmjR02rjm1Wa1aqYDWnansFM6IiIiIiIiIiIiIiDjIjh0XAXBzC6NevXoOG9cMZ6pXTwAUzlR2CmdEREREREREREREKinDMAgPD8cwDFeXIn/auzcDgBo14nBzc9xH8GY44+UVCyicqewUzoiIiIiIiIiIiIhUQllZWdxyyy00a9aML774wtXlyJ+OH7d+7B4amuzQcc1wxjCsqYzCmcpN4YyIiIiIiIiIiIhIJZOTk8OECRP4/vvvAdi6dauLKxJTVJQfAM2b5zh03NDQUAAyM08AcOqUQ4cXJ1M4IyIiIiIiIiIiIlKJ5Obmct999/HVV1/Z7ouKinJhRWJKSoLkZH8A2rf3cujYZudMUtJBQJ0zlZ3CGREREREREREREZFKwjAMHnroIRYtWoS7uzsTJ04EFM5UFMeOmbfO0KZNsEPHNsOZ8+f3ABAZCVpqqPJSOCMiIiIiIiIiIiJSCRiGwaOPPsoHH3yAxWLh008/5cEHHwQgMjLSxdUJ5A1njtGkSROHjv1X58whLBaDjAw4e9ahpxAnUjgjIiIiIiIiIiIiUsEZhsH06dOZO3cuAPPnz+f222+nQYMGAMTExJCT49g1TqTsjhzJ/fPWURo3buzQsQMCAvDz8wOyqFvX+lprarPKS+GMiIiIiIiIiIiISAX38ssv88orrwDw3nvvce+99wIQFBSEm5sbOTk5xMXFubJEAfbsSQfAYjlOaGioQ8e2WCy2MWvVSgUUzlRmCmdEREREREREREREKrA33niDF154AYDZs2czZcoU2zYPDw+Cg61rm2hqM9c7fNja0VKnzjk8PDwcPr45tZm//wVA4UxlpnBGREREREREREREpIJ69913eeKJJwBr98yjjz5aYB9zarOoqCin1ib5GQZERHgD0KhRRrmcwwxnvL2tXVIKZyovhTMiIiIiIiIiIiIiFdBHH33Eww8/DMD06dOZPn16ofuZH9irc8a14uMhNdULyKV1a8d3zcBfr7XFYn2tFc5UXgpnRERERERERERERCqYZcuWcf/99wPw6KOPMnPmzCL3VedMxXDsmHnrFM2bO3a9GZMZzmRlnQAUzlRmCmdEREREREREREREKpj58+djGAb33HMPb7zxBhaLpch9zQ/sFc641tGj5q1jNG7cuFzOYb7WycmHATh1qlxOI06gcEZERERERERERESkgjl+/DgAt912W7HBDGhas4rir3DmaLmFM6Gh1o6c8+f3ABAdDTk55XIqKWcKZ0REREREREREREQqkNzcXE6csE5b1aJFixL317RmFcPRo4Z5iyZNmpTLOcwg7syZPXh4GOTkQExMuZxKypnCGREREREREREREZEKJCYmhrS0NNzd3WnUqFGJ++ed1swwjBL2lvJy8KDZwnKUhg0blss5QkJCsFgs5ORkEhycC2jdmcpK4YyIiIiIiIiIiIhIBWJOadakSRM8PT1L3N8MZ1JSUrh48WK51iaFy82FsDDrx+11617A29u7XM7j6elJvXr1AKhTJw1QOFNZKZwRERERERERERERqUDKMqUZgK+vLzVr1gQ0tZmrREZCRoYbkEmzZu7lei4zjAsIsAZxCmcqJ4UzIiIiIiIiIiIiIhWI2TlT2nAG/vrAPjIyslxqkuIdPWreCqNp0/KZ0sxkvtY+PmcBhTOVlcIZERERERERERERkQrEDGeaN29e6mMaNGgAqHPGVY4csd2icePG5Xqu0NBQANzcrEGcwpnKSeGMiIiIiIiIiIiISAViT+eMwhnXcGY4Y77WWVnhgMKZykrhjIiIiIiIiIiIiEgFYRhGmdecAU1r5mquCGdSU60nVThTOSmcEREREREREREREakg4uPjSUxMxGKx0LRp01Ifp2nNXMsV4cyFC/sAiI2FjIxyPaWUA4UzIiIiIiIiIiIiIhWEOaVZgwYN8PHxKfVxmtbMddLS4NQp48/fnBfOxMbux3yL6GWvfBTOiIiIiIiIiIiIiFQQl7PeDPzVOaNpzZzv2DEwDAtwnlq1DKpXr16u5zPDmYSE89SvnwtoarPKSOGMiIiIiIiIiIiISAVxOevNwF8f2MfHx5Oenu7wuqRoeac0a9u2Tbmfr0aNGrauqrp1rfOZKZypfBTOiIiIiIiIiIiIiFQQZudM8+bNy3RcrVq18Pb2BiA6OtrhdUnR8oYz7dq1K/fzWSwWWxgXGJgIKJypjBTOiIiIiIiIiIiIiFQQlzutmcVisU1tpnVnnOvoUfOWc8IZ+KtTytc3HlA4UxkpnBERERERERERERGpIC43nIG/PrBXOONcf3XOHKVt27ZOOaf5Wru7W1/rU6ecclpxIIUzIiIiIiIiIiIiIhXAhQsXOHfuHFD2ac3grw/sIyMjHVqXFM0w4MgR48/fnN85YxjWNYr+zPSkElE4IyIiIiIiIiIiIlIBnDhh/aA9KCiI6tWrl/l4TWvmfHFxcPGiBcjFzy/W9hqUt9DQUADS0/cDEBYGOTlOObU4iMIZERERERERERERkQrAninNQNOaucJfU5pF0K5dMywWi1POa77WCQn78PKCrCytO1PZKJwRERERERERERERqQDsDWfMrg1Na+Y8f4UzzpvSDP4KZ2JiIjFnwDt2zGmnFwdQOCMiIiIiIiIiIiJSAZjTmqlzpvJwdTgTHR1NixbWNW+07kzlonBGREREREREREREpAIwO2eam60QZZT3A/vc3FyH1SVFc1U4Y645k5GRQYMG6YDCmcpG4YyIiIiIiIiIiIhIBWDvtGbBwcG4ubmRnZ1NXFycI0uTIhw5Ypi3aNu2rdPO6+XlRd26dQGoWfMcoGnNKhuFMyIiIiIiIiIiIiIulpKSQkxMDHD54YynpydBQUGApjZzhqwsCAuz3vb2PkmTJk2cen6ze8bXNxpQ50xlo3BGRERERERERERExMXC/vyUv2bNmtSsWfOyx2nQoAEAkZGRDqlLihYWBjk5FiCZNm0CcHd3d+r5zWns3NysaxWdOAE5OU4tQeygcEZERERERERERETExeyd0sxkfmCvzpny99d6M0dp1855U5qZzNc6Pf0Ynp6QmQnK5CoPhTMiIiIiIiIiIiIiLqZwpvL5K5w5Qrt27Zx+fvO1jomJpFkz632a2qzyUDgjIiIiIiIiIiIi4mKOCmc0rZnzVJRwJioqipYtrfcdO+b0MuQyKZwRERERERERERERcbETJ6zrhjRv3tyucdQ54zxHjhjmLZeHM2amp86ZykPhjIiIiIiIiIiIiIiLOXpaM3XOlL9Dh3IBcHc/YXeodjlCQ0OB/J0zCmcqD4UzIiIiIiIiIiIiIi6UkZHBqVOnAMdNa6bOmfKVkADnzrkD0LKlgaenp9NrMIO4+Ph4GjXKBDStWWWicEZERERERERERETEhcLDwzEMg+rVq1OvXj27xjI/sE9OTiYxMdER5Ukh/lpvJpIOHZq4pIbatWvj7e0NQEBAHAAnTkBurkvKkTJSOCMiIiIiIiIiIiLiQnnXm7FYLHaN5efnR40aNQBNbVaejh41bx2hbdu2LqnBYrHYpjYzjJN4ekJGBuhlrxwUzoiIiIiIiIiIiIi4kKPWmzHlXSheysdfnTNHadeuncvqMF/rM2eiaNrUep/WnakcFM6IiIiIiIiIiIiIuJDCmcrnyBHDvFUhwpmoqCjMt4/CmcpB4YyIiIiIiIiIiIiICzk6nGnQoAGgac3K04ED2QBYLMdo1aqVy+owpzWLioqiZUvrfceOuawcKQOFMyIiIiIiIiIiIiIulHfNGUdQ50z5ysmBEyesH603apSGj4+Py2pR50zlpXBGRERERERERERExEWys7MJDw8HHD+tmTpnysepU5CV5Q6k06lToEtraflnu8y+fftsnTMKZyoHu8OZ1NRUUlNTi9z+zjvvcNVVV9G2bVuuvfZali1bZu8pRUREREREREREpIwMwyA5OdnVZcglTp06RXZ2Nt7e3rZQxV7mtGbqnCkfR46Yt47Tvn0bV5ZCnz59ADhw4AD16iUC1nAmN9eVVUlp2BXO/PTTT/j7+xMaGkpSUlKB7ZMmTWLatGls2rSJI0eO8Ouvv3LDDTfw+uuv23NaERERERERERERKYOcnBzGjBlDrVq1OHr0qKvLkTzM9WaaNWuGm5tjJjrStGbl669w5ght27Z1ZSnUq1fPNh1eTMwWPDwgPR2io11alpSCXVf7r7/+imEYjB07Fn9//3zbNmzYwMKFCwHw9fWla9eu+Pj4YBgGzz33HAcOHLDn1CIiIiIiIiIiIlJKM2fOZNmyZWRlZbF582ZXlyN5mOvNOGpKM/ircyYuLo6MjAyHjStWecOZdu3aubIUAPr16wfA//63kaZNrfcdO+bCgqRU7ApntmzZgsViYciQIQW2zZs3D4DQ0FAOHTrEjh07OHz4MA0bNiQnJ4f/+7//u+zzzpgxA4vFku8nODjYtt0wDGbMmEFoaCjVqlVj8ODBBcKgjIwMHn74YerUqYOfnx9jxozRHIwiIiIiIiIiIlLlrFq1in/961+236P1lfoKxeyccWQ4U7t2bby9vQGIiYlx2LhideBA5p+3jtCmjWunNYO/wplNmzZhvo207kzFZ1c4ExcXB/y16FBeK1aswGKx8PDDD9uS2oYNG/Lwww9jGAbr1q2z59S0b9+emJgY28++ffts215//XXmzJnDu+++y7Zt2wgODmbEiBH5pl6bNm0aS5Ys4auvvmLDhg0kJyczevRocnJy7KpLRERERERERESkooiKiuLOO+/EMAzbzDcKZyqW8ghnLBYLoaGhAPpCejk4fNgAIDg4ierVq7u4mr/CmS1bttC8uXWxGYUzFZ9d4czZs2cBCrwBDx48SHx8PABjxozJt61Hjx4ARERE2HNqPDw8CA4Otv3UrVsXsHbNzJ07l+nTp3PTTTfRoUMHFi1aRGpqKl988QUAFy9eZP78+cyePZvhw4fTtWtXPvvsM/bt28dvv/1mV10iIiIiIiIiIiIVQVZWFrfddhtnz56lS5cuvPjii4DCmYrGDGfMdUMcxfzCvNadcayUFIiLs3YltWvn7uJqrNq3b4+/vz/Jycn4+Vk7pTStWcXnYc/B7u7WN9/58+fz3b9+/XoA6tatW6Ctq2bNmgCkp6fbc2qOHTtGaGgo3t7e9O7dm1mzZtGsWTPCw8OJjY1l5MiRtn29vb0ZNGgQmzZtYvLkyezYsYOsrKx8+4SGhtKhQwc2bdrEqFGjCj1nRkZGvjkaExMTAeu/6LKysux6PCKuZL5/9T4Wqfh0vYpULrpmRSoPXa8ilYuu2dJ55pln2LBhA/7+/nzxxRfs378fsH5Yr+euYsjNzSUsLAyAxo0bO/R1CQkJAeDUqVMufb2r2vVqXT3DEzhLp04NKszj6tWrF6tXryYxcSdQn2PHDLKysl1d1hWptO8Ju8KZ+vXrc/z4cXbv3s3gwYNt9//8889YLBauuuqqAsdcvHgRgDp16lz2eXv37s0nn3xCq1atOHPmDC+//DL9+vXjwIEDxMbGAhAUFJTvmKCgIE6ePAlAbGwsXl5etqAo7z7m8YV55ZVXeOmllwrcv3LlSnx9fS/78YhUFKtWrXJ1CSJSSrpeRSoXXbMilYeuV5HKRdds0bZu3crs2bMBePDBBzl69KhtJpuwsDCWL1/uwurEFB8fT3p6Ou7u7hw8eJAjf600b7fMTOu6KBs2bKBVq1YOG/dyVZXrdf36+kAP4AhZWVkV5loyP2/fseNr4HqOHs3h55+XY7G4tq4rUWpqaqn2syucueqqqzh27Bjvvvsud911F3Xq1GHbtm2sWLECoNAOlEOHDgEQHBx82ee95pprbLc7duxI3759ad68OYsWLaJPnz6AdV7FvAzDKHDfpUra55lnnuHRRx+1/Z6YmEjDhg0ZOXIkAQEBl/NQRCqErKwsVq1axYgRI/D09HR1OSJSDF2vIpWLrlmRykPXq0jlomu2eBEREdx7770A/OMf/+Dll18GrJ+jPfnkk1y4cIGrr74aNze7VjwQBzDX5W7atCnXX3+9Q8c+fvw4P/zwA15eXlx77bUOHbssqtr1umOHed0cYfz48bbPo13Nw8ODr7/+mvj47bi7G2RmetCly7XUr+/qyq485oxbJbErnJkyZQoLFy4kPDycZs2a0apVKw4ePEh2dja1atVi/PjxBY75/fffsVgsdOnSxZ5T5+Pn50fHjh05duwYY8eOBazdMWbrHkBcXJytmyY4OJjMzEwSEhLydc/ExcXZFk8qjLe3N97e3gXu9/T0rBJ/WET0XhapPHS9ilQuumZFKg9dryKVi67ZgjIzM7nzzjtJSEigV69ezJ492/YcNWzYELB+WJ6YmGhbw1lcx+xmat68ucPfy40aNQIgJiamQlwnVeV6PXQoC3AHjtCx480V5jH1798fgLCwIzRpkkNEhAcnT3rSpIlr67oSlfY9YVc83q1bN/7zn/9gsVhITk5m586dpKen4+npyYcffoi/v3++/S9evMjPP/8MwIgRI+w5dT4ZGRkcOnSIkJAQmjZtSnBwcL42uczMTNatW2cLXrp3746np2e+fWJiYti/f3+x4YyIiIiIiIiIiEhF9sQTT7Bt2zZq1qzJN998g5eXl22bp6cn9erVAyA6OtpVJUoeJ06cAKBFixYOH7tBgwYAREZGOnzsK9m+fdbp4mrWPEuNGjVcW0weNWrUoH379gDUrHkOgOPHXVmRlMSuzhmARx55hOHDh7N48WJbt8rtt99O69atC+y7du1aevbsCcDw4cMv+5yPP/44119/PY0aNSIuLo6XX36ZxMREJk6ciMViYdq0acyaNYuWLVvSsmVLZs2aha+vL3fccQcAgYGB3HfffTz22GPUrl2bWrVq8fjjj9OxY0e76hIREREREREREXGVxYsX8/bbbwPwySef0Lhx4wL7hIaGEhcXR3R0NJ07d3Z2iXKJ439+el4e4Uz9P+ezio6OJjc3V9PYOYBhwMmT1sCzkI+/Xc5cl91iOQ4EceyYqyuS4tgdzoB1vsqOHTuWuN8NN9zADTfcYPf5IiMjuf3224mPj6du3br06dOHLVu22P6F8+STT5KWlsaUKVNISEigd+/erFy5Ml8nz5tvvomHhwe33noraWlpDBs2jIULF+Lu7m53fSIiIiIiIiIiIs50/PhxJk2aBMBTTz3F6NGjC90vNDSU3bt3q3OmgijPcCYkJASLxUJWVhZnz561Lfkgly8mBtLTPYFsunYNdHU5BfTr148PP/yQhITtQH91zlRwdoUz5h/8a665hnHjxjmkoNL46quvit1usViYMWMGM2bMKHIfHx8f3nnnHd555x0HVyciIiIiIiIiIuI8aWlpjBs3jqSkJK666ipefvnlIvcNDQ0FNK1ZRWAYhi2cad68ucPH9/T0JCgoiNjYWKKiohTOOMCRI+atcDp2rHitM+aSHadP/w78U50zFZxdvWyLFi1i0aJFBAQEOKoeERERERERERERKYNnnnmG3bt3U7duXb788ks8PIr+PrbCmYrj7NmzJCcnY7FYaNq0abmcw5zaLCoqqlzGv9L8Fc4coV27dq4spVAtW7akdu3aZGcfAqxrzhiGi4uSItkVztStWxdAqauIiIiIiIiIiIiLmLPMzJs3z/ZhfFEUzlQcZtdMw4YN8fHxKZdzNGjQALAuEyH2278/689bFTOcsVgs9O3bF4jAYsklNRViY11dlRTFrnDGfAOePHnSIcWIiIiIiIiIiIhI6cXGxnLmzBnc3NwYOXJkifsrnKk4ynNKM5M6Zxxr9+5UAPz8omyNCxWNdWqzLHx94wA0tVkFZlc4c9ddd2EYBosWLXJUPSIiIiIiIiIiIlJKu3btAqB169b4+vqWuL/CmYrDDGdatGhRbudQOONYx45ZP05v1iyrhD1dx1x3Jjv7MGCd2kwqJrvCmXvvvZdhw4axdOlSXnrpJQxNYCciIiIiIiIiIuI0u3fvBqBLly6l2t8MZ2JjY8nJySmnqqQ0Tpw4AZRvOKNpzRwnIwPOnvUDoEuXai6upmg9e/bE3d2djIz9gMKZiqzo1cFKYf369Tz++OOcPXuWf/3rX3z11VeMHz+eTp06UbNmTdzd3Ys9fuDAgfacXkRERERERERE5Ipmds507dq1VPvXq1cPNzc3cnNziYuLIyQkpDzLk2Koc6ZyOX4cDMMNuEi3bsWv7eRKvr6+dOnShR07rO8vTWtWcdkVzgwePBiLxWL7/ejRo8ycObNUx1osFrKzs+05vYiIiIiIiIiIyBWtrJ0z7u7uBAcHEx0dTXR0tMIZF3LmmjPqnLHfkSO2W7Rv386VpZSoX79+tnBGnTMVl13TmgEYhnHZPyIiIiIiIiIiInJ5kpKSOPbn1+JLG86A1p2pCBISEjh//jzgnHAmKSmJpKSkcjvPleDQIbPR4Cjt2lX8cAasfxuOHQN9FF8x2dU5s2bNGkfVISIiIiIiIiIiImWwd+9ewPoBfN26dUt9nMIZ1zPXmwkODqZ69erldh5/f38CAgJITEwkKiqKNm3alNu5qrrt25OAmnh7R9iuoYrKGs5EADmkpLhz5gwEB7u4KCnArnBm0KBBjqpDREREREREREREyqCs682YzA+WtQ6J6zhjvRlTgwYNOHjwIJGRkQpn7HDwYA4ADRum5VvqoyJq2LAhoaF1iI4+BTTl+HGFMxWR3dOaiYiIiIiIiIiIiPOVdb0ZkzpnXM8Z682YzKnNFMbZ5/RpXwDat7er38EpLBZLganNpOJROCMiIiIiIiIiIlIJ2ds5o3DGdZzZOaNwxn7x8ZCWZg1nevWq6eJqSscazljfZ3++3aSCcVjMl5iYyOLFi9m8eTOxsbGkpqayYMECGjdubNsnOjqaCxcu4OPjQ7NmzRx1ahERERERERERkStKVlYW+/fvB8reOWN+WK9wxnXMNWecNa0ZQGRkZLmfq6o6csS8dZLOnVu6spRSs4YzXwFw/LgBVOyp2K5EDgln3nvvPaZPn05SUhIAhmFgsVhISUnJt9+6deu488478fHxITIyklq1ajni9CIiIiIiIiIiIleUQ4cOkZmZSUBAAE2bNi3TseqccT11zlQu1vVm3IEjtGvXztXllErXrl3x8HiN7GzYvz8D8HF1SXIJu6c1mzFjBlOnTiUxMREvLy+6d+9e5L7jx48nJCSEjIwMvvvuO3tPLSIiIiIiIiIickXKu95MWRcnN8OZs2fPkpmZ6ejSpATJycnExsYCzllzRp0z9tu69SIA7u4n8s0UVZF5eXnRsWM1AMLC3DAMFxckBdgVzuzatYuZM2cCcNdddxEbG8vWrVuLPpmbG+PGjcMwDFatWmXPqUVERERERERERK5Yl7veDEDt2rXx9PQEsIUE4jzmlGa1atWiZs3yX79EnTP227s3A4CQkETc3CrPMu6DBzcCcklP9yIuztXVyKXseie98847GIZB3759+eSTTwgMDCzxmL59+wKwb98+e04tIiIiIiIiIiJyxcrbOVNWFotFU5u5kDPXm4G/wpm4uDh1Sl0Gw4Djx61TgrVqVbnaTwYO7A2cAuDPmfSkArErnFm3bh0Wi4V//OMfpT6mSZMmgJJaERERERERERGRy2EYhi2cuZzOGdC6M65krjfjjCnNAOrUqYOXlxeGYRATE+OUc1YlK1fC+fM1gWT69fN0dTllYm2UsL7f9u5NKX5ncTq7whnzYm7dunWpj/H29gYgIyPDnlOLiIiIiIiIiIhckU6ePMmFCxfw9PSkbdu2lzWGwhnXMcMZZ3XOuLm52V5vfWG+7F55JffPW/Po3t05gZqjBAUFERBwBoA//tAUhhWNXeGMl5cXAFlZWaU+xgx0atSoYc+pRURERERERERErkjmejPt27e3fT5XVgpnXGf//v1A2b7wbi+tO3N5Nm7MYd06NyATb+/36d27t6tLKrMWLSwA7NuX6uJK5FJ2hTMNGjQA4MCBA6U+ZuXKlYDzkmEREREREREREZGqxN4pzUDhjKtkZ2fbXr9u3bo57bzm57iRkZFOO2dll5uby+237wbAYvmC7757i5CQENcWdRl69aoJwKlT3i6uRC5lVzgzdOhQDMPg448/LtX+YWFhzJ8/H4vFwogRI+w5tYiIiIiIiIiIyBXJ7Jzp0qXLZY+hcMY1jhw5QlpaGn5+frRq1cpp51XnTNkYhsEdd8zk9OnuQC5z59bnuuuuc3VZl2XEiKYAJCUFkZ2d4+JqJC+7wpl//OMfeHh4sHHjRmbMmFHsvtu3b2fkyJEkJyfj7e3N5MmT7Tm1iIiIiIiIiIiUA8MwiIqK4uLFi64uRYqgzpnKa8eOHYD1tXN3d3faedU5U3qGYfDoo4/y9deNAOjRI4qpUytvo8GoUS2BXCCQDRsOu7ocycOucKZVq1Y8//zzGIbBzJkz6d27N6+//rpt+4oVK3jttdcYNmwYvXv3Jjw8HIvFwquvvlopW8BERERERERERKqS7OxsDhw4wOeff84TTzzBiBEjqFevHg0aNKBZs2YKaCqgc+fOcfr0aQA6d+582eMonHGNnTt3As6d0gzUOVNahmEwffp05s5dDNwFwLvvNnRtUXby83PHx+csAD//fNTF1UheHvYO8Pzzz5OVlcWsWbPYtm0b27dvx2KxLjL0xBNP2PYzDAOLxcILL7zA1KlT7T2tiIiIiIiIiIiUUUREBMuXL2f37t3s3r2bffv2kZ6eXui+58+fZ/fu3QwaNMjJVUpxzK6Z5s2bExAQcNnjmOFMQkICaWlpVKtWzRHlSQnMzpnu3bs79bwKZ0rn5Zdf5pVXXgHmAJ4MGQK9e7u6KvsFB6cQEQGbNsW5uhTJw+5wBuBf//oXY8aM4dVXX2XFihWkpqbm2+7l5cWwYcOYPn06/fr1c8QpRURERERERESkDLKysujVqxdnz57Nd3/16tXp3LkzXbp0sf08++yzrFq1ioMHDyqcqWAcsd4MQGBgINWqVSMtLY2YmBiaNWvmgOqkOLm5ubbXz9mdM+a0ZlFRUbYv0Ut+b7zxBi+88AJQCy+vf5CZCU8/7eqqHKNtW08iIuDQoSxXlyJ5OCScAejRoweLFy8mOzubgwcPEhcXR05ODrVr16Z9+/ZK30VEREREREREXGjHjh2cPXuW6tWr8/DDD9O1a1e6dOlC8+bNcXPLP/N9586dWbVqFYcOHXJRtVIUR6w3A2CxWAgNDeXEiRNER0crnHGCo0ePkpKSQrVq1WjTpo1Tz20uMZGZmUl8fDx169Z16vkrunfffdc2C9TQoUv4/XdPunaFEZV3qZl8+vatwy+/QEJCbeLi4qhXr56rSxIcGM7YBvTwoFOnTo4eVkRERERERERE7LBu3ToAhg8fzqxZs4rdt127dgAcPHiw3OuSsnFU5wyQL5yR8meuN9O5c2c8PBz+sWyxvLy8CAoK4syZM5w8eVLhTB4fffQRDz/8MABPPDGD+fMHAtaumarSYNSxo9k40YLNmzdzww03uLQesXIreRcREREREREREanszHCmNNOUKZypmNLS0jh8+DBgf+cM/LXujMIZ53DVejMm87ret2+fS85fEX355Zfcf//9ADz66KOEhr7A+fPQvDncfLOLi3OgFi3MWy3ZuHGTK0uRPBTOiIiIiIiIiIhUcdnZ2axfvx4oXThjTrkUExPDhQsXyrM0KYN9+/aRm5tL3bp1bdNU2UPhjHOZnTOuCmfMQM/svrrS5eTk8I9//APDMJgyZQqzZr3BnDnWVpknnwR3dxcX6EDNm5u3arBp0xFXliJ52NU/N2nSpDIfY7FY8PHxITAwkJYtW9KnTx/atm1rTxkiIiIiIiIiIlKMXbt2kZycTGBgYKmmow8MDKR+/fpERUVx6NAh+vbt64QqpSR515txxILuCmecJzc31xbOdOvWzSU1mFPhme+jK92ePXs4f/48AQEBvPXWW3z+uYXTpyE4GCZMcHV1jlWtGtSrl0FcnDdHj+a6uhz5k13hzMKFCx3yL4IePXowZ84c+vfvb/dYIiIiIiIiIiKSnzml2VVXXYV7Kb8O3q5dO6Kiojh48KDCmQrCkevNgMIZZzpx4gSJiYl4e3vbphdzNrNzZvfu3eTm5uLmdmVPqvTHH38AMGDAANzcPHjtNev9jzwCPj4uLKyctGrlRlwcnD0bQGpqKr6+vq4u6Ypn1xXYqFEjGjVqRJ06dTAMw/ZjLjAVFBSEl5eX7X6AOnXq0KBBAwICAmz3b9u2jUGDBvH555875EGJiIiIiIiIiMhfzHBm8ODBpT5G685UPHk7ZxxB4YzzmF0znTp1wtPT0yU1tG7dGm9vb5KSkggPD3dJDRWJ+Xdx4MCB/PQTHDoEgYHwwAMuLqyctG1rvu9acvz4cZfWIlZ2hTMREREsWbIEf39/vLy8eOSRR9i1axcpKSlER0cTHR1NSkoKu3btYtq0aXh6elK9enWWLFlCQkICp0+f5rXXXsPf35/c3Fz+9re/cfr0aUc9NhERERERERGRK15OTk6Z1psxmdPQK5ypGHJycti7dy+gzpnKaMeOHYDr1psB8PT0pGPHjoDWncnNzbX9XRw4cBCvvGK9f8oUCAhwYWHlqEUL2y2OHTvmylLkT3aFM2fOnOHaa68lNjaWNWvWMHv2bDp37pyvJc7NzY3OnTszZ84c1qxZQ2xsLNdeey0xMTHUr1+fJ554grVr11KtWjUyMzN599137X5QIiIiIiIiIiJitXfvXi5evIi/v3+ZPtQ3O2cOHTpUTpVJWRw7dsw2FVHLli0dMmZISAgASUlJJCUlOWRMKZyr15sxmX8DrvRw5uDBg5w7dw5fX19SU3vwv/+Btzf885+urqz8tGlj3uqscKaCsCucmT17NrGxsTz66KOlmnu0b9++PProo8TFxfGf//zHdn/Xrl2ZNGkShmGwatUqe0oSEREREREREZE8zKl7BgwYgIdH6ZcfNsOZkydPkpycXC61SemZH6Z36tSp1OsGlcTf3x9/f38AYmJiHDKmFGQYhi2ccWXnDORfd+ZKZv5d7NevH2+8Yf27OGkSBAW5sqry1bu3easdBw5EurIU+ZNd4czSpUuxWCyMGjWq1MdcffXVAPz888/57r/mmmsA61RpIiIiIiIiIiLiGGvXrgXKNqUZQO3atalbty4Ahw8fdnRZUkaOXm/GpKnNyl9ERAQJCQl4enrSoUMHl9aizhmrP/74A4BWrW5lxQpwc4PHH3dxUeUsKAjq1k0G3Ni928vV5Qh2hjORkdaEzdvbu9THmPuax5rMfxGkpqbaU5KIiIiIiIiIiPwp77oKZQ1nQFObVSTmh+mOWm/GpHCm/JnrzXTs2BEvL9d+KN6pUycsFgsxMTGcOXPGpbW4imEYf3bOBLJt280AjB8PzZq5ti5n6NYtA4CIiGAXVyJgZzjj6+sLwPbt20t9zLZt2/Ida8rIsL4xatasaU9JIiIiIiIiIiLyp/3793P+/Hn8/PwuazolM5w5ePCgo0uTMjAMwxbOqHOm8qkoU5oBVK9e3bZm0ZU6tdnBg8c4c2YccJxt22rh7g5PPeXqqpxj6NBqACQnd9Q6UxWAXeFM9+7dMQyDV155hXPnzpW4f3x8PK+++ioWi4UePXrk23bkyBEA6tWrZ09JIiIiIiIiIiLyJ3Ndhf79++Pp6Vnm4xXOVAzR0dHEx8fj7u7u8GmxFM6UP7Nzplu3bi6uxOpKXXfGMGDpUhg2rB7wDlCHtm3hl1+gc2dXV+ccw4aZDRN9OHLkmEtrETvDmSlTpgDWKcr69OnDzz//jGEYBfYzDINly5bRt29fTp8+DcBDDz2Ub58VK1YUGtqIiIiIiIiIiMjlMcOZy5nSDKBt27aAwhlXM7tm2rRpQ7Vq1Rw6tsKZ8mUYRoXqnIErc92ZnTth6FAYOxbOnKkBxHHttT+ydy+MGOHi4pyoUydwc0sHavLHH7GuLueK52HPwWPGjOH+++9n3rx5hIWFMWbMGGrXrk2XLl1sHTBxcXHs3r07X2fN5MmTGT16tO332NhYfvjhBwzD4JprrrGnJBERERERERERIe+6CpcfzpidM2FhYaSnp+Pj4+Ow+qT0zA4HR683Awpnytvp06eJj4/Hw8ODjh07uroc4MrqnImMhOnT4dNPrZ0z3t4GXl7vkZT0LI888j0edn06Xvl4ekLduhGcOdOG9etzePRRV1d0ZbP77ffBBx/QuHFjZs6cSXp6OvHx8axevTrfPmY3jbe3Ny+++CJPP/10vu0BAQG2heXq169vb0kiIiIiIiIiIle8gwcPEh8fT7Vq1ejZs+dljREcHEyNGjW4cOECR48epVOnTg6uUkqjvNabAYUz5c2c0qx9+/YVJtw0Q76jR4+SnJxM9erVXVtQOUhPh1mz4I03IC3Net8dd8CDD0Zy1VUP4+HhQd++fV1bpIu0bHmeM2dg/35/V5dyxbNrWjPTM888Q1hYGK+88grDhw8nKCgILy8vvLy8CAoKYtiwYcyaNYuwsLACwQyAr68vjRs3pnHjxnhcaXGliIiIiIiIiEg5MLtm+vXrh5eX12WNYbFYNLVZBeCszpnClisQ+1S0Kc0AgoKCCAkJwTAM9u3b5+pyysX06TBzpjWYGTAA/vc/+PxzOHHidwB69uyJn5+fi6t0jT59cgGIimro4krEIeEMWL9J8dRTT7Fy5Uqio6NJS0sjLS2N6OhoVq1axdNPP01ISIijTiciIiIiIiIiIsWwd0ozkzm1mcIZ17h48SJhYWFA+YQz5ud1aWlpXLhwweHjX+nMzplu3bq5uJL8qvq6M0uWWP/51lvwxx/Qq5f1d/Pv4sCBA11UmeuNGhUIQFpaUy5edHExVziHhTMiIiIiIiIiIlIxOGK9GZMZzphT0otz7dmzB4CGDRtSu3Zth49frVo1atasCWhqM0czDMMWzlSkzhmo2uvOhIdbfzw84N57wWL5a9sff/wB2P93sTLr3bsJEAa48fvvyS6u5sqmcEZEREREREREpIo5evQoZ86cwdvbm17mV8YvkzpnXKs815sxad2Z8hEdHU1cXBxubm4Vbr2mqtw5s2aN9Z+9eoF/nmVVoqKiOHHiBG5ubvTv3981xVUA/v7++PjsBmDFCrXOuJLDF3hJTEwkKSmJnJycEvdt1KiRo08vIiIiIiIiInLFM7tm+vTpY/ci5OaaM0ePHiUrKwtPT0+765PSK8/1ZkyhoaEcOHBA4YyDmevNtGvXDl9fXxdXk58Z9u3bt4/s7OwqtQ746tXWfw4dmv9+8+9i165dCQgIcHJVFUv9+qc4cQK2bLGUvLOUG4dcdatWreL9999n/fr1JCQklOoYi8VCdna2I04vIiIiIiIiIiJ5rF27FnDM1D0NGzbEz8+PlJQUTpw4QZs2beweU0pPnTOVV0Wd0gygWbNm+Pv7k5SUxOHDh+nQoYOrS3IIw4Dff7feHjYs/zZzSrMreb0ZU/v2iZw4AUeP1iQ3F9w0v5ZL2P20T506lauvvpoff/yR8+fPYxhGqX9ERERERERERMSx8q43M3jwYLvHc3Nzs3XPaGoz58rMzLQ95+XdOQMKZxzN7Jzp1q2biyspyM3Njc6dOwNVa92Zw4chNhZ8fKBPn/zbHLUOV1XQq5cPkEp6ejWOHHF1NVcuuzpnvvjiC959910AfHx8GDt2LN27d6dWrVq4KW4TEREREREREXG6EydOEB0djZeXF30u/XTyMrVr147t27dz8OBBbrrpJoeMKSU7cOAAWVlZ1KhRg8aNG5fbeerXrw8onHG0itw5A9ZurA0bNrBr1y7uuusuV5fjEGbXTP/+1oDGFBcXx+HDhwG46qqrXFBZxdKmTXNgOzCQzZvhz/xdnMyucOb//u//AGt76++//07z5s0dUpSIiIiIiIiIiFwe89vhvXr1olq1ag4ZU50zrpF3vRmLpfzWhlDnjOPFxsYSHR2NxWKxdahUNGY3VlXqnDHDmUvXmzGnNOvYsSO1atVyclUVT8uWLYFfMMOZSZNcXdGVya72lr1792KxWHjxxRcVzIiIiIiIiIiIVADlMXVPu3btADh06JDDxpSSOWO9GVA4Ux7MKc3atGlD9erVXVxN4cz31a5du6rEEhQ5ObBmjfX2peGMpjTLr0WLFsBmADZs0LrwrmJXOJOVlQWU/78gRERERERERESkdMoznDl8+DA5OTkOG1eKl7dzpjyZ4UxMTAy5ubnleq4rRUVeb8bUrl07PDw8SEhI4PTp064ux2579kBCAvj7Q48e+beZnTMDBw50QWUVj6+vL8HBEQAcOeLOxYuuredKZVc406RJEwCSk5MdUYuIiIiIiIiIiNghIiKCU6dO4eHhQb9+/Rw2btOmTfH29iY9PZ2IiAiHjSvFM6eR69ixY7meJzg4GLB+EfvcuXPleq4rRUVfbwbA29ub9u3bA391aVVm5pRmgwaBR57FPM6fP8++ffsAhTN5tWlTEwjDMCxs3erqaq5MdoUz5gJwq1evdkgxIiIiIiIiIiJy+dauXQtAz5498fPzc9i47u7utG7dGtDUZs6SkJBgC0qs60OUH09PT+rVqwdoajNHqQzhDFStdWeKWm9mw4YNGIZB69atCQoKcn5hFZT174p1arPNm8t+fExMTJXouHIlu8KZxx57jEaNGjF37lwOHz7sqJpEREREREREROQylOe6CubUZmY3h5Sv48ePA9auFmesWaJ1Zxzn7Nmztg+ty3tKOnvlXXemMsvKgj9nLtN6M6Vkbzjz+uuLaNRoCtOmPeLYwq4gdoUzgYGBrFixgqCgIPr378/7779PQkKCo2oTEREREREREZEyUDhTdRw7dgwo/64Zk8IZxzHXm2nVqhUBAQEurqZ4VaVzZts2SEmB2rXh0lkAFc4ULm84s2ULlHW5qW++aQL8xM6dDzi6tCuGR8m7FK1Zs2YApKamkpCQwMMPP8zUqVOpU6cOvr6+xR5rsVg4ceKEPacXEREREREREZE/nT59mvDwcNzd3enfv7/Dx2/bti2gcMZZzM6ZFi1aOOV8CmccxwxnunXr5uJKSmaGMydPnuT8+fPUqlXLtQVdJnPVjSFDwC1PO0JiYqKtK0jrzeRnDWf2AqlcuODLkSPw55/5EoWFpRIdPQaASZMqdgBZkdkVzly6AJxhGBiGQVxcXInHWiwWe04tIiIiIiIiIiJ5mN8O79atG/7+/g4f3+ycOXToEIZh6LOdcqbOmcqrsqw3A9aZkZo2bUp4eDh79uxhyJAhri7pspjrzQwblv/+jRs3kpubS7NmzWjQoIHzC6vAmjdvjsWSg2FsBwayeXPpw5knnogDmuDltZMJE7qWZ5lVml3hzMSJEx1Vh4iIiIiIiIiI2MEMZwYPHlwu47do0QIPDw+Sk5OJjIykYcOG5XIesVLnTOVVmTpnwLruTHh4OLt27aqU4UxaGmzaZL196Xozf/y5EI26Zgry8fGhYcOGnDq1GTOcmTSp5OPOnIEff7T+vRg4cA1ubpXjfV4R2RXOfPzxx46qQ0RERERERERE7LB27Vqg/NZV8PLyomXLlhw6dIiDBw8qnCln6pypnM6fP094eDhQecKZLl268P3331fadWc2bYLMTKhfHy69XLTeTPFatmz5ZzgDmzeX7pj//Aeys72ALdxxR+3yK+4K4FbyLiIiIiIiIiIiUpFFR0dz/Phx3NzcGDBgQLmdR+vOOEdCQgLnzp0DrFMPOYPCGccw1zdp3rw5NWrUcG0xpdS1q3VaKrP2ysac0mzoUMg722JKSgrbtm0D1DlTFGv4a01lDh6EixeL3//MGXj/fePP32YwdGjl67SqSBTOiIiIiIiIiIhUcua3w7t06UJgYGC5nSfvujNSfswpzYKDg8tl/aDCmOFMbGwsOTk5TjlnVWSuN1NZumbA+ncDrNd1enq6a4u5DKtXW/956ZRmW7ZsITs7mwYNGtC0aVPnF1YJWMOZOPz8zmAYsHVr8fv/5z+QlmYBttCkyVEaN27sjDKrLIeGM+np6WzcuJHvvvuOTz/9lMTEREcOLyIiIiIiIiIihXDW1D1mOKPOmfLl7PVmAOrVq4ebmxu5ubnExcU57bxVjbneTPfu3V1cSenVr1+fOnXqkJOTw/79+11dTplcvAh/NscUCGfy/l205G2pERtz2kQvL2uoWNzUZtauGfO3GQwZMrgcK7syOCScOX36NBMnTqRGjRoMHDiQW2+9lXvuuYfIyMh8+82fP59evXoxYsQIDMMoYjQRERERERERESkL80PIwYMHl+t58k5rps92yo+z15sBcHd3Jzg4GNDUZvaojJ0zFovF1j1T2aY2W78ecnOhRQto1Cj/tj/++APQlGbFMf/GpKRY24+KC2feeAPS0sDPbz/wK0OGaEoze9kdzmzdupWuXbvy2WefkZmZiWEYRf7LecyYMezdu5fff/+dlStX2ntqEREREREREZEr3oULFzh8+DBAua43A9C6dWssFgsJCQnqrihHruicAa07Y6+LFy/aXrvKFM7AX+vO7N6927WFlFHe9WbySk9PZ8uWLUD5dxRWZs2aNcPNzY3MzLUAbNliDbsuFRcH771nvZ2a+hRQ/l8GuBLYFc5cvHiRG264gfPnzxMcHMz777/Pvn37ity/bt26XHPNNQD8/PPP9pxaRERERERERESAI0eOANYP1mvVqlWu56pWrRrNmjUDNLVZeXJF5wwonLGX2XXSuHFjateu7eJqyqayds4UFc5s3bqVjIwMgoKCaNWqlfMLqyS8vLz+XDdmL97eOVy4AH/+KyUf61oz0KpVAoaxnObNm9OwYUNnl1vl2BXOvPPOO5w5c4Y6deqwefNmHnjgAdq3b1/sMeaUZltLWl1IRERERERERERKZIYzrVu3dsr5tO5M+VPnTOX03XffAdC7d28XV1J2ZufM3r17ycnJcXE1pRMfD3v2WG9f2sSRd0ozrTdTPGsInE2jRmeBglOb5e2a6dDB+h7XlGaOYVc489NPP2GxWHj00UdpdOmkfkUww5sTJ07Yc2oREREREREREcH54UzedWfE8S5cuEB8fDygcKYyuXDhAh9//DEAf//7311cTdm1atWKatWqkZKSYgsHK7o1a6z/7NABgoLyb/v+++8BGHppS40UYHbo1aplnR7z0nDG7Jrp1QvCw/8LKJxxFLvCGbPFsiyLKtWoUQOAxMREe04tIiIiIiIiIiK4rnPm0KFDTjnflcb8YDwoKAh/f3+nnlvhzOX78MMPSUlJoWPHjgwbNszV5ZSZu7s7nTp1Alyz7kxycjJ9+vyLq656p8j1zC9lTml26dO9Z88edu3ahZeXF+PGjXNwpVWPGc5YLP8D8oczcXHw/vvW2489lszu3dZp77TejGPYFc6kpaUB4OfnV+pjkpOTAfDx8bHn1CIiIiIiIiIiAhw+bP22c5s2bZxyPk1rVr5ctd4MKJy5XNnZ2bzzzjsATJs2rdJOo+WqdWeysrIYPnwG//vfdDZs+DsffFD0muZ5FbXejNnBNGbMmEq39o8rmH9rLlz4BYCDB+HiReu2N96A1FTo2RO8vX/HMAxatWpl+1sh9rErnKlbty4Ap0+fLvUxO3bsACAkJMSeU4uIiIiIiIiIXPFycnJsnRbO6pwxQ6AzZ85w7tw5p5zzSuKq9WZA4czl+u677zh9+jT16tXjjjvucHU5l81cd8aZnTOGYfDAAw/wv/+9CfwE+PDII00paWa1yEg4ehTc3CDvpE6ZmZl8/vnnANx7773lVndVYoYzJ09upWlTA8OA//0v/1ozM2bA2rXWeeQ0pZnj2BXO9OrVC4BffvmlVPvn5OQwb948LBYLAwYMsOfUIiIiIiIiIlKO0tLSKs2i0FeykydPkpGRgbe3d6nXA7aXv78/DRs2BDS1WXmoCJ0zcXFxZGVlOf38lZFhGMyZMweAKVOmVOrZgvJ2zpR2ajF7/etf/2LBggW4ucGjj+4EtpGR4c/VV+dSXPZrrjfTvTv8uYoGAMuWLSM+Pp6QkBBGjhxZnqVXGU2aNMHd3Z20tDQ6d7bOlLVlS/6umWuugbVr1wKa0syR7Apnbr/9dgzDYMGCBSW2u+Xm5vLAAw/YWl7vuusue04tIiIiIiIiIuXk7NmzNGjQgHbt2rFnzx5XlyPFMNebadmyJe7u7k47r9adKT+u7JypXbs2np6eAMTGxjr9/JXR5s2b2bp1K97e3jz44IOuLscuHTt2xM3Njbi4OKe8/vPnz2fGjBkAvP/++7zxxks0aTIViODECTfGjoWMjMKPXb3a+s+ipjSbMGECHh4e5VJ3VePp6UnTpk0BaNgwEoBly/J3zSQknLf994DCGcexK5y5+eab6devHxkZGQwbNoz33nuPuLg423aLxcKZM2f49NNP6dGjBwsWLMBisXD11VfrRRQRERERERGpoJYvX8758+c5evQovXv3Zt68eU77FrWUjbPXmzFp3Zny48rOGTc3N9tSBJrarHTefPNNAO68807q1avn4mrs4+vra5sesbzXnfnll1+YPHkyANOnT2fy5MlYLBbuv38McB3u7sls2ACTJsGl//oxjMLXm4mNjbXN8KQpzcrG/Hvj778fgG3brF0zPXpYu2bWrVuHYRi0bduW4OBgV5ZapdgVzgD88MMPtGnThgsXLjB16lRCQkJsi15169aN0NBQ7rnnHvbs2YNhGHTo0ME275+IiIiIiIiIVDyrVq0CrN+iz8jIYPLkydx1110kJye7uDK5lNk546z1Zkxt27YFFM442oULF4iPjwdc0zkDWnemLCIiIvj+++8BmDZtmmuLcRBnrDuzfft2xo0bR05ODhMmTGDmzJm2bRMmTMDN7TA5OWPx8DD44gt44YX8x584AadPg6cn5F0549NPPyUnJ4e+ffs6/W9iZWeGM2lp/6Natb/unzEDLBZNaVZe7A5n6tSpw/bt23nooYfw9vbGMAzbT0ZGhu22h4cH999/P5s2baJG3okARURERERERKTCyM3NtYUzixcv5rXXXsPd3Z0vvviCHj16sG/fPhdXKHm5KpzRtGblw5zSLCgoCH9/f5fUoHCm9N555x1yc3MZMWIEHTt2dHU5DmGGM+XVORMWFsZ1111HSkoKw4cP58MPP7R90R+gfv36jBo1CljNyJHW4Ovll+HP2cqAv7pm+vYFX1/rbcMwbFOaqWum7MxwJizsCD16WO/r0QOuvdZ6e82fi/wMGTLEFeVVWXaHM2BteXvnnXc4ffo0n332GdOmTeOOO+5g/PjxTJkyhQ8//JDw8HA++OAD/Pz8HHFKERERERERESkHe/fuJS4uDj8/P/r168eTTz7J2rVrqV+/PkeOHKF37962D8DE9VzdOXP69GkSExOdeu6qzJXrzZgUzpROYmIiH330EQCPPPKIi6txnC5dugDl0zlz7tw5rrnmGuLi4ujcuTPfffcdXl5eBfabNGnSnzVM5emncwG4//6/1pkpbEqzrVu3cujQIapVq8b48eMdXntVZ4Yzx44d48EHoUkTmDvX2jVz9uxZ2xczBg0a5LoiqyCHropUu3Zt7rjjDu644w5HDisiIiIiIiIiTmJ2zQwePNj2odmAAQPYtWsXd999N7/++iuTJk1i3bp1vPfee/oSpgslJiYSExMDOD+cqVWrFsHBwcTGxnL48GF69erl1PNXVa5cb8ZkhjNRUVEuq6EyWLBgAYmJibRp0+bPTo+qwQxnjh8/TmJiIgEBAQ4ZNyMjgxtvvJGjR4/SsGFDli9fXuTY119/PbVr1yY6OpoBA37lttuu4auv4OabYePGwsMZ80sDN998s8NqvpKYf3NOnDjB+PG53H77Xz0d69atA6B9+/aVfl2lisYhnTMiIiIiIiIiUjWsXLkSgJEjR+a7v27duixfvpx///vfuLm5sWjRInr16qU1R1zI7JoJDg4mMDDQ6efXujOOp84Z51u6dCkbNmwo0zE5OTm8/fbbgHWtGTe3qvMRa506dWjQoAHguKnNcnJyePPNN9myZQs1atRgxYoVtvdZYby9vbnrrrsAWLhwAR9/DP37w8WLMGgQnD1rnc6sd2/r/mlpaXz11VeApjS7XI0aNcLT05OMjAxOnz6db5u53oymNHO8cv/LkZGRwerVq/n666/ZunVreZ9ORERERERERC5TWloa69evBwqGMwBubm48++yz/P7774SEhHDw4EF69uzJd9995+xSBddNaWbSujOOV5E6Z66EcCYiIoKxY8cyaNAgPvnkk1Ift3TpUsLDw6lVqxZ33313OVboGr3/TD02b97skPGeeOIJtmzZgpeXF0uXLrX97SiOGbIsXbqU5OR4fvgBWrSAc+es26+6CswZ0ZYsWcLFixdp0qSJFqy/TB4eHjRr1gz46++QSevNlB+7wpmTJ0/y5JNP8uSTT3LhwoUC27ds2ULz5s0ZOXIkd9xxB3379qVnz56cOnXKntOKiIiIiIiISDlYv349GRkZNGjQoNgP/AcNGsTu3bsZPnw4qampTJo0iezsbCdWKlBxwhl1zjiOOmeca8+ePQDk5uZyzz33MH/+/FId9+abbwLw4IMP4muuSF+F9O/fH4BNmzbZPVZ4eDjvvvsuYJ16bODAgaU6rnPnznTr1o2srCy++OIL6tSB5cuhdm3r9mHD/trXnNJs4sSJVaqLydnyrjtjOnPmjO1vfGlfOyk9u96tS5Ys4Y033uD333+nRo0a+bYlJSUxduxYYmJiMAzD9rNjxw6uu+46h/1H2yuvvILFYmHatGm2+wzDYMaMGYSGhlKtWjUGDx7MgQMH8h2XkZHBww8/TJ06dfDz82PMmDFERkY6pCYRERERERGRyijvlGYWi6XYfevVq8eKFSvw9/cnMTFR3RMucPjwYQDatGnjkvOb4cz+/ftdcv6q5uLFi5w9exZwbThjTmmVkJDA+fPnXVaHM5ifFwYEBGAYBn/72994//33iz1m+/btbNiwAU9PTx566CFnlOl0/fr1A6zhjGEYdo1lTonVpk0bxo0bV6ZjJ02aBMD8+fMxDIOWLa3rzUyfDg8+aN3n1KlTrF69GrCGM3L5CgtnzPVmOnXqRJ06dVxSV1VmVzizatUqLBYLY8eOLbBt3rx5xMXFATB16lSWLl3KlClTAOs3KhYtWmTPqQHYtm0b8+bNo1OnTvnuf/3115kzZw7vvvsu27ZtIzg4mBEjRpCUlGTbZ9q0aSxZsoSvvvqKDRs2kJyczOjRo8nJybG7LhEREREREZHKqKj1Zori7u5O9+7dAesHluJcru6cMT+PiYiIKHRGFSkbs2umXr16Ll3QPDAw0PaeckTnREVmdgQ8/fTTti9+P/TQQ8ydO7fIY8yumdtuu42QkJDyLtElunbtio+PD+fOnePo0aN2jWWGM+3bty/zsbfffjve3t7s3bvXtv5Np07w8stQvbp1n0WLFmEYBkOGDKFp06Z21XqlKyyc0ZRm5cuucCYsLAzA9h9ieX3zzTdYLBZuvPFG5s6dy/XXX8+7777LuHHjMAyDxYsX23NqkpOTufPOO/nwww+pWbOm7X7DMJg7dy7Tp0/npptuokOHDixatIjU1FS++OILwPpNhPnz5zN79myGDx9O165d+eyzz9i3bx+//fabXXWJiIiIiIiIVEYxMTHs27cPi8XCsLzzxZSgR48egPULlOI8ubm5tg/QXBXO1KpVi4YNGwKwd+9el9RQlVSE9WZMAwYMALCtQVVVmZ0z7du3Z86cOTz11FMAPPLII7z++usF9o+MjOSbb76x7VNVeXl50bNnT8D+gM7svOjQoUOZj61VqxY33ngjAAsWLCiwPTc3l4ULFwJ/rVEjl6+4cEZr+ZQPD3sONjtjgoKC8t2fmJjIzp07gYIXxm233ca3335rm9Pxcj300ENcd911DB8+nJdfftl2f3h4OLGxsfm+5ePt7c2gQYPYtGkTkydPZseOHWRlZeXbJzQ0lA4dOrBp0yZGjRpV6DkzMjLIyMjI9zgBsrKyyMrKsuvxiLiS+f7V+1ik4tP1KlK56JoVqTx0vcKKFSsA6zemAwMDS/1cdO3aFYCtW7de0c+fs0VERJCeno6Xlxf169d32XPfqVMnTp8+zc6dO+nbt6/TzlsVr1mzE6pZs2Yuf1x9+/Zl/vz5rF+/3uW1lJecnBzb1ICtWrUiOzubf/3rX3h4ePDvf/+bp556itTUVKZPn2475q233iI7O5tBgwbRoUOHKvvcAPTu3Zv169ezfv167rrrrssa4+TJk//P3n1HR1V2fx/+THogEHrvvYXee+9NUUEQRAQLD4hdsYL+BDtYERBBQURRkU7oNfTQQu81IfQQUkg57x95zwjSksxMZib5XmtlLcicc987yZyUs2fvzcmTJ/H09KRSpUrp+nz179+fWbNmMXPmTMaOHYufn5/1sbVr13Ls2DFy5MhB9+7dM/XXIyOUKlUKSCnIiI2N5cKFCxw8eBCLxULjxo31+U2D1H6ubErOmG3C/tsKbMOGDSQlJeHl5XVHVs18RYUtPStnzZpFaGjoXV+VExERAdyZMCpYsCAnT560HuPj43NbxY15jHn+3YwdO5bRo0ff8f6lS5dmyuFfkvUsW7bM2SGISCrpehVxL7pmRdxHVr5ezfbjpUuXZtGiRak+z7w3sGvXLubOnYu3t7dD4pPbmS+KLVSoEMHBwU6Lw7wfsmDBAqe0FMpM16xZYZCcnJyma9ARzBuLW7duZc6cOfj6+jo1HkcIDw+3Jjj37dtnTY7Vq1ePfv368euvvzJ69Gj27dtH3759iY+P54cffgCgSZMmTv8aOZqPjw+Qco2l92M1qy7Kli2Lv79/uq7XpKQk8uXLx8WLF/nggw+sVV2QkiwDaNiwobV9mqRfcnIy3t7eJCQk8Msvv1hb2pUuXZqNGzc6OTr3EhMTk6rjbErOBAYGcvnyZc6dO3fb+82LoUaNGmTPnv2u596a5UyL06dPM2LECJYuXXrfNf47uNAwjAcOM3zQMSNHjuTll1+2/j8qKorixYvTvn17p/YCFbFVQkICy5Yto127dvpDSsTF6XoVcS+6ZkXcR1a/Xg3D4NlnnwXg2WefTVP7EsMweOutt7h8+TLFihW7a+tzsb+jR48CULt2bTp37uy0OOLi4pg9ezZXrlzJ0Dgy4zX7ySefANC5c2enfk0h5boePXo0ERER5MuXj2bNmjk1HkeYP38+AFWqVKFbt263Pda5c2eCgoJ48803mT17NsWLF6dUqVJER0dTrlw53nvvPTw8bJoW4fLq16/PmDFjOHPmDA0bNiRPnjxpXuOff/4BoEuXLgDpvl63b9/OmDFj2LVrF2PGjAFSXhjQt29fAN55550MrdzLzMqXL8++ffsoVqyYtTCiW7duTv+e5G7MjlsPYlNyplq1aqxdu5Y5c+bQo0cPICWbac6budugoLNnzwJ3Vrak1vbt24mMjLztl72kpCTWrl3Lt99+a81yR0RE3DaUKzIy0rpnoUKFuHnzJleuXLmteiYyMpLGjRvfc29fX9+7vlLA29s70/wiIFmbnssi7kPXq4h70TUr4j6y6vW6e/duzp8/T7Zs2WjevHmaPwd169Zl6dKl7Ny5k4YNGzooSrmVOTy+cuXKTn3OmjOHzNkdGR1LZrpmza9ppUqVXOJjatasGbNnz2bTpk20bt3a2eHYnXkPsWrVqnf9fL/xxhv4+/szYsQIvvzyS+s9wREjRmTKSqL/Kly4MBUrVuTgwYNs27bNmmBJC3NmUcuWLTEMI93X69NPP82YMWNYvnw54eHhlChRgn/++YeYmBgqVqxIs2bNHviifEmdChUqsG/fPo4fP26t5mvTpo1LfE9yJ6n9fNmU4n3ooYcwDIPp06fzxhtvsGDBAvr27WttH/bYY4/dcc62bdsAKFGiRLr2bNOmDXv27GHnzp3Wt7p169KvXz927txJmTJlKFSo0G1lcjdv3mTNmjXWxEudOnXw9va+7Zjw8HDCwsLum5wRERERERERyYyWLl0KpNxAS89NR3Nw9N3aj4tjmDeWK1as6NQ4SpcuTUBAAPHx8daYJO2uXbvGhQsXAChXrpyTo0lhto9av369kyNxjH379gEpyZl7eeGFF5gwYQKQMos6V65cDBw4MCPCcwnmfdKQkJA0n3vmzBmOHj2Kh4cHTZo0sSmOMmXKWBM8v/zyCwBTp04FYODAgUrM2FH58uWBlM5YR44cwcPDI1NWzrkKm5Izzz77LJUrV8YwDD7//HN69OjBn3/+CaSUO5mvnrjVnDlzsFgsaSqRvlWOHDmoVq3abW/Zs2cnb968VKtWDYvFwosvvsiYMWOYM2cOYWFhDBw4kGzZsllL3QIDA3n66ad55ZVXWLFiBTt27OCJJ54gKCiItm3bpvvzISIiIiIiIuKOzBcvtmvXLl3nm3//my/IFMczB5k7Oznj4eFBjRo1gJS5Q5I+ZtVMgQIFXKZ1vpmcMWdLZzZmcqZKlSr3Pe65557jp59+Inv27Lz11lsEBARkRHguwUzObNiwIc3nmlUXtWvXtstzetCgQUBKUubQoUOsX78eDw8PBgwYYPPa8i8zOTN37lwAatWqRa5cuZwYUeZmU3LG19eXFStW8PDDD+Pl5WUtT+vfvz/Tp0+/4/i1a9dav/Gl9xe+1Hj99dd58cUXGTp0KHXr1uXs2bMsXbqUHDlyWI8ZN24cPXv25LHHHqNJkyZky5aN+fPn4+np6bC4RERERERERFxNbGwsa9euBaB9+/bpWsOsnNm7d2+qh+BK+l2/ft06/9fZyRmAmjVrArBz506nxuHOzOSMeWPUFVSvXp0cOXIQFRVFWFiYs8Oxq+TkZPbv3w88ODkD8NRTTxEVFcVrr73m6NBcilnxsmXLFhISEtJ0rpmcadGihV1i6dWrFzly5ODYsWMMGTIEgA4dOlCkSBG7rC8pzO9BiYmJAHcdWyL2Y/PkqkKFCvHnn38SFRXF2bNniYqK4ueff74tEWIqXrw4q1atYuXKldZf3Oxh9erVjB8/3vp/i8XCqFGjCA8PJy4ujjVr1lCtWrXbzvHz8+Obb77h0qVLxMTEMH/+fIoXL263mERERERERETcwfr164mLi6No0aJUrlw5XWsULVqUwoULk5SUxI4dO+wcofzXoUOHgJQqi1tn6TqLWTmj5Ez6HT58GHCdlmYAXl5e1iHrma212YkTJ4iNjcXX15cyZcqk6hwPD5tvo7qdihUrkjt3bmJjY9NcGWfv5Ey2bNl4/PHHAawvKHjqqafssrb8678JYiVnHMtu31V8fX0pXLgwPj4+9zymdOnStGjRghYtWqgXoIiIiIiIiIgLuLWlmS1/q6u1WcZxlXkzJrNyZteuXRiG4dxg3JQrVs4A1lkT5mD3zGLv3r0AVKpUSV107sPDwyNdrc3Cw8M5dOgQFovFrvNKbk3G5MmTh+7du9ttbUlRpEgRsmXLBoCnp6e1vaE4RtZL+YqIiIiIiIiI1dKlS4H0tzQzmR0ytm7danNMcn+ulpypVq0aHh4eXLhwgfDwcGeH45ZcsXIG/p07s27dukyVeDPHLlStWtXJkbg+MzkTEhKS6nPMqpkaNWrYdV5JgwYNrBWeffv2xdfX125rSwqLxWL9PlSnTh2XmYGVWdmcnImJiblvP9lvvvmGZs2aUblyZTp37syCBQts3VJERERERERE7OD8+fPWVjVt27a1aS1VzmScAwcOACmv+ncF/v7+1kSRWpulj6tWztSvXx9vb2/OnTvHyZMnnR2O3ZiVM6mZN5PV3Vo5k9oEnb1bmpksFgvfffcdvXr1YuTIkXZdW/5lfj9XSzPHsyk5M3/+fHLkyEGRIkW4fv36HY8PGjSIF198kZCQEA4ePEhwcDA9evTg008/tWVbEREREREREbGD5cuXA1CrVi3y589v01pmcubgwYNcu3bN5tjk3lytcgZub20maRMVFUVkZCTgepUz2bJlo06dOkDmam2mypnUq1+/Pp6enpw9e5bTp0+n6hwzOdOyZUu7x9OqVSv+/PNPihQpYve1JcU777zDkCFDeOWVV5wdSqZnU3ImODgYwzDo2bMnOXLkuO2x9evXM23aNCDlG3mtWrXw8/PDMAzeeecda4ZaRERERERERJzDXi3NAPLnz0/JkiUBCA0NtXk9ubvk5GQOHToEuGZyRpUzaWdWzRQoUMAlWwiZrc3Wr1/v5EjsIzk5mf379wOqnEkN874upK61WWRkpPXza895M5JxqlevzqRJk2x+0YY8mE3JmU2bNmGxWO5a4jRp0iQgZYjQ/v372b59OwcOHKB48eIkJSUxceJEW7YWERERERERERsYhsGyZcsAaNeunV3W1NwZxztz5gyxsbF4e3tTunRpZ4djVaNGDUDJmfRw1XkzpsyWnDl58iQxMTH4+vpSpkwZZ4fjFpo0aQKktDZ7kLVr1wIQFBRE3rx5HRqXiLuzKTljllzerR/mkiVLsFgsDB8+nGLFigFQvHhxhg8fjmEY1vI2EREREREREcl4e/fuJTw8HH9/f+uNN1uZyRnNnXEcc95MuXLl8PLycnI0/zIrZw4fPsyNGzecG4ybcdV5Mybz+8O+ffu4dOmSk6OxndnNp2LFii51Dbkyc+5MaipnHDVvRiQzsik5c+HCBQACAgJue/++ffu4ePEiAN27d7/tMbMH7YkTJ2zZWkRERERERERsYLY0a9GiBX5+fnZZ0/ybX5UzjuOK82YAChYsSKFChTAMgz179jg7HLfi6pUz+fLlo3LlykDqKidcnTlvRi3NUs9MzuzatYvo6Oj7Hrt69WpAyRmR1LApOePp6QnA5cuXb3u/OSAsf/78VKpU6bbHcufODUBcXJwtW4uIiIiIiIiIDczkjL1amgHWweEnTpywvqBT7MtVkzPwb2uzXbt2OTkS9+LqlTPwb2sz856fOzOTM1WrVnVyJO6jWLFilChRgqSkJLZs2XLP4y5evEhYWBgAzZs3z6jwRNyWTcmZokWLAnf2E124cCEWi+WuQ5+uXbsGpGTdRURERERERCTjxcXFWecCtG/f3m7rBgYGUqFCBQC2b99ut3XlX66cnDFbm2nuTNq4euUM/DvYPTPMnTHbmqlyJm1S09rMTN5VqVKFAgUKZEhcIu7MpuRMs2bNMAyDb7/91trGbOvWrSxZsgSADh063HHO/v37AShUqJAtW4uIiIiIiIhIOm3YsIHY2FgKFy5s91ePm3Nn1NrMMcyZM//tVOIKlJxJu6ioKOtMZ1dOzpiVM9u3bycmJsbJ0aRfcnKy9d6kKmfSxpw9dL/Wdpo3I5I2NiVnhg4dioeHB8ePH6dMmTLUrVuXFi1akJiYSO7cuendu/cd56xcuRKLxWL9gS0iIiIiIiIiGevWlmYWi8Wua5tzZ7Zt22bXdQVu3LjBmTNnANesnDHbmu3Zs4ekpCQnR+MezJZm+fPnJzAw0MnR3FupUqUoUqQICQkJ921r5epOnTrFjRs38PHxoWzZss4Ox62YlTMbN24kOTn5rscoOSOSNjYlZ2rXrs1nn32GxWIhOjqa0NBQ4uLi8Pb2ZvLkyeTIkeO2469du8bChQsB+/a0FREREREREZHUW7ZsGWDflmYmVc44zqFDh4CUVvF58uRxcjR3qlChAv7+/ty4cYOjR486Oxy34A7zZoDbxhe4c2szc95MxYoV8fLycnI07qV69epkz56da9euWT+Pt7py5Yp13pSSMyKpY1NyBuCll15ix44dvPvuuwwZMoT33nuP3bt389BDD91x7OrVq6lXrx7Nmzenbdu2tm4tIiIiIiIiImkUGRnJjh07ABzyt3nNmjXx8PAgPDycc+fO2X39rMyV580AeHp6EhQUBKi1WWq5w7wZk9nazJ2TM5o3k35eXl40aNAAuPvcmXXr1mEYBhUqVNA4C5FUsjk5AxAUFMTo0aOZOHEio0aNuucvCT169GDVqlWsWrWKfPny2WNrEREREREREUmD5cuXAyktqAoWLGj39bNnz26d5aDqGfty5XkzJrO1mfkKerk/d6mcgX+TMyEhIW7bts6s+NC8mfQxW5vdLTljtjRr2bJlRoYk4tbskpwREREREREREffgyJZmJrU2cwxXr5wBrDOGVTmTOu5UORMUFETOnDm5fv06u3fvdnY46aLKGds0adIEgA0bNtzxmObNiKSdkjMiIiIiIiIiWYRhGCxduhRwbHKmbt26AGzbts1he2RFSs5kPu5UOePp6WmtnHDH1maGYVgrZ5ScSZ+GDRsCKc/byMhI6/uvXbtmbZep5IxI6tl98tWJEye4ePEisbGxGIZx32ObN29u7+1FRERERERE5B4OHDjAuXPn8PPzs7YocoRbK2cMw8BisThsr6wiOTnZLZIz5syZc+fOceHCBfLnz+/kiFxXVFQU58+fB9yjcgZSWpstWbKEdevWMXz4cGeHkyanT5/mxo0beHt7u83n29XkypWLqlWrsnfvXkJCQujZsyeQkqxLTk6mbNmyFC1a1LlBirgRuyRnDh48yJgxY5g3bx5RUVGpOsdisZCYmGiP7UVEREREREQkFbZv3w5AnTp18PPzc9g+QUFBeHt7c/nyZU6cOEHp0qUdtldWcfbsWWJiYvDy8qJMmTLODueecuTIQbly5Thy5Ai7du2ibdu2zg7JZR09ehSA/PnzExgY6ORoUqdZs2ZAys14d0u8mi3NKlSogLe3t5OjcV9NmjS5IzmjlmYi6WNzW7N//vmH2rVrM2PGDK5du4ZhGKl+ExEREREREZGMYw5pN4e2O4qvr691D82dsQ+zaqZs2bIuf2NZrc1Sx53mzZjq1auHt7c34eHhHD9+3NnhpInZ0qxq1apOjsS9ma3tQkJCrO9TckYkfWxKzpw+fZonnniC2NhYihQpwvjx45k0aRKQUhmzYsUK/vzzT958802KFCkCpJQ/Ll++nJUrV9oevYiIiIiIiIikWkYlZ0BzZ+zNHVqamcznl/l8k7tzp3kzJn9/f+u1vW7dOidHkzZm5YzmzdimSZMmQMr39vj4eK5fv26tylRyRiRtbErOfP3118TExJAjRw42b97MCy+8QKNGjayPt2rViocffpgxY8Zw+PBh+vTpw4YNG5gyZYouVhEREREREZEMlpHJmVvnzojt3Ck5o8qZ1HHHyhm4vbWZO1HljH2ULVuW/PnzEx8fT2hoKCEhISQlJVGqVClKlizp7PBE3IpNyZnly5djsVgYOnSotTLmXvz9/ZkxYwa1atVi1qxZ/PXXX7ZsLSIiIiIiIiJpEBERQWRkJBaLhWrVqjl8P/PV9du3byc5Odnh+2V27picOXDgAHFxcc4NxoW5Y+UMpHTFAfeqnDEMw5qcUeWMbSwWi7W12YYNG9TSTMQGNiVnTpw4AfzbaxC4bRBYYmLi7Zt5ePDCCy9gGAY//fSTLVuLiIiIiIiISBqYVTPly5cne/bsDt+vSpUq+Pv7c/36dQ4dOuTw/TK7AwcOAFCpUiUnR/JgRYsWJU+ePCQmJlpviMud3LVyxrwPePDgQS5cuODkaFLnzJkzXL9+HS8vL7dLhrkis7VZSEgIq1evBpScEUkPm5IzN27cAKB48eLW92XLls3672vXrt1xjlk6qL6jIiIiIiIiIhknI1uaAXh5eVG7dm1Arc1sFRMTw6lTpwD3qJyxWCxqbfYA169f5/z584D7JWfy5s1rvb+3YcMGJ0eTOua8mQoVKuDt7e3kaNyfmaBbu3at9fu7kjMiaWdTciYwMBDgthLVvHnzWv999OjRO86JiooC4OLFi7ZsLSIiIiIiIiJpsHv3biDjkjPwb2uzbdu2ZdiemZFZYZEnTx7y5cvn5GhSx0zO6MW5d2e2NMuXLx+5cuVybjDp4G6tzdTSzL7q1KmDj48Ply5dIjExkeLFi1O6dGlnhyXidmxKzpiv1jh27Jj1fTly5LAOf1q6dOkd5yxfvhzALX/wiIiIiIiIyO1Wr17N448/zunTp50dijxARlfOANSrVw9Q5Yyt3GnejMl8nqly5u7cdd6MqVmzZgCsX7/eyZGkjpmcMSt+xDZ+fn7UqVPH+v8WLVrcNupCRFLHpuRMo0aNANi0adNt7+/atSuGYfDZZ5+xcuVK6/v//PNPxo8fj8VisfYmFBEREREREff1/vvvM2vWLJ5++mkMw3B2OHIP8fHx1pklzqic2bFjxx1zaSX13GnejOnWyhl9b7iTmXBzt5ZmJrNyJjQ01Dr2wJWZbc1UOWM/t84gV0szkfSxKTnTuXNnDMPg77//Jikpyfr+1157jWzZshEdHU27du3Inz8/OXPmpHfv3sTGxuLh4cFrr71mc/AiIiIiIiLiPImJidZ2VcuWLeO3335zckRyL/v27SMxMZHcuXNTrFixDNu3fPny5MyZk7i4OOvNUUk7d6ycqVSpEj4+Ply7do2TJ086OxybXbhwgebNm/P111/bvNb58+et65hzmdxNiRIlKFasGImJiWzevNnZ4dyXYRiqnHGAW194r+SMSPrYlJxp2bIl77//Pk899RRnz561vr9EiRLMnj2bwMBADMPg0qVLREdHYxgGvr6+TJ48mYYNG9ocvIiIiIiIiDhPWFgYMTEx1v+/9NJLXL582YkRyb3c2tIsI1vPeHh4WFvfaO5M+rljcsbHx8dapZAZWpv99ttvrFu3jhEjRty1jX9qGYbBoEGDuHDhAkFBQTz33HN2jDLjWCwWt2ltdvbsWaKiovDy8nLbNnKuqEWLFuTLl4/atWu7bQWYiLPZlJyxWCy8//77fPjhh5QoUeK2xzp16sSRI0eYMGECw4YN47nnnuOLL77gyJEjDBw40JZtRURERERExAWYLa6bN29OlSpViIyM5M0333RyVHI3zpg3Y9LcGdsYhuGWyRn4t7VZZkjOrF271vrvAQMGcP78+XSt8/3337No0SJ8fX359ddf8fPzs1eIGc5sbZbRyZnw8HCqVavGsGHDUnW8WTVTvnx5fHx8HBlalpInTx4OHTrEmjVrNG9GJJ28HLl4njx5ePbZZx25hYiIiIiIiDiJ2cqmWbNmdOzYkWbNmjF58mQGDBhgvWknrsGZyRlz7oySM+lz7tw5oqOj8fT0pGzZss4OJ01unTvjzgzDsCZn8ubNy/nz5xkwYACLFy/GwyP1r3vet28fr776KgCffPIJQUFBDok3o5jf50NCQkhMTMTLy6G3Ga0+//xz9u7dy969e3niiSce2J1H82YcJ3fu3M4OQcStpbly5vz587z++usEBQWRM2dOsmfPTvny5XnmmWfYv3+/I2IUERERERERF2RWzjRs2JCmTZsyePBgAJ577jlu3rzpzNDkFoZhuETlzJ49e4iLi8vw/d2dWTVTpkwZt3vVv/l8c/fKmUOHDnHhwgV8fX1ZtmwZ/v7+LF26lM8//zzVa8THx9OvXz/i4uJo3749w4cPd2DEGaNatWrkzJmTGzduWKtTHO3KlStMmjTJ+v8333wTwzDue44Zm5IzIuJq0pSc2bRpE1WrVuWLL75g3759REdHExsby7Fjx5gyZQo1a9Zk5syZjopVREREREREXMTVq1c5cOAAAA0aNABSXgmeP39+9u7dyxdffOHM8OQWZ8+e5fLly3h6ejrl5mTJkiXJly8fCQkJ7N69O8P3z2iGYXD69OkH3jBOLXdtaQb/JmdOnDjB1atXnRuMDcyqmYYNG1KrVi2++uorAN5++21rBeGDvPvuu+zcuZO8efMybdq0NFXcuKpbZ0pt2bIlQ/b84YcfiI6Oply5cvj6+rJmzRqCg4Pve45ZOVO1atWMCFFEJNVS/ZMgKiqKRx55hMuXL2MYBoZhkDdvXgoWLAik/PKRkJDA008/rQoaERERERGRTM5sUVW6dGny588PpLS2HjduHAAffPABR48edVp88i+zaqZixYpOmW9hsVisrc22bduW4ftntOnTp1OiRAk6dOjAxYsXbV7PnZMzuXPnpmTJkgBunZgzkzPNmzcHYPDgwTz22GMkJibSp0+fByaeVq1aZa2y+fHHHylcuLBD481I9evXBzImORMXF2dNjL3//vv873//A2DkyJEkJyff9RzDMFQ5IyIuK9XJmZ9++olz585hsVjo2bMnR44c4cKFC4SHhxMeHm4tx7x586ZeISUiIiIiIpLJ3drS7FZ9+/albdu2xMXFMXToULtVD0j6ObOlmclsbZYV5s6Yr+JftmwZderUseljDg4O5vfffwfcMzkDmaO12bp164B/kzMWi4VJkyZRqlQpTpw4wTPPPHPP73VXrlxhwIABGIbB4MGD6dmzZ0aFnSHM5ExGXNvTp0/n/PnzFC9enN69ezNy5Ehy5szJzp07rdfJf4WHh3Pt2jU8PT2pUKGCw2MUEUmLVCdnFi1aBKT84v3XX39RpkwZ62MFChTgq6++4qmnnsIwDOuxIiIiIiIikjmZrXzMlmYmi8XC999/j6+vL0uXLmXWrFnOCE9u4QrJGfMGbmpbQLmzHTt2AJAzZ05OnTpF06ZNmTRpUpoSlVeuXGHQoEF07NiRiIgIypUrxyOPPOKokB2qZs2awL/PQ3dz8uRJTp48iaen523J6MDAQGbNmoWXlxezZ8/mxx9/vONcwzB47rnnOHPmDOXLl7dWFmYmt86UiomJcdg+SUlJfPbZZwC8/PLLeHt7ky9fPl577TUA3nnnnbvOOjNbmplt0EREXEmqkzNhYWFYLBb+97//YbFY7nrMiBEjADh//jyXLl2yT4QiIiIiIiLiUgzDuGflDED58uV55513AHjxxRe5cuVKhsYnt3OF5IyZxNu/f79bzx55kBs3blhnMW3ZsoUePXpw8+ZNnn32WZ5++mliY2MfuMb8+fOpWrUqU6dOxWKxMGLECHbu3Enu3LkdHb5DmMkZd62cMatm6tSpQ0BAwG2PNWjQgI8++ghIuSdmJgJM06dP548//sDLy4tff/31jvMzg2LFilGoUCGSkpIc+jWeO3cuhw8fJnfu3AwePNj6/hdffJECBQpY52H/l9nSTPNmRMQVpTo5c/nyZQAqVap0z2MqV65s/bd++RYREREREcmcjh07xqVLl/Dx8bHeeP2v1157jcqVKxMZGcnIkSMzNkCxiomJ4fDhw4BzkzP58+e3duDIzK3Ndu/ejWEYFC5cmIoVK/L3338zduxYPDw8mDp1Kk2aNOHYsWN3PffSpUs88cQTdO/enfDwcCpUqMC6desYP3482bNnz+CPxH7M511YWBgJCQlOjibt/jtv5r9effVV2rdvT2xsLL1797Ym4I4fP86wYcMAGDVqlLXCJLOxWCwOnztjGAaffPIJAEOHDr0tyRUQEMC7774LpMw6u3Hjxm3nmgkzzZsREVeU6uSMWRp4v+GB3t7edxwvIiIiIiIimYtZNVOrVq17tonx9fXlhx9+AGDixImEhIRkWHzyr7CwMJKTk8mfPz+FChVyaixm9Uxmbm1mtjSrVasWAB4eHrz55pssXbqUfPnysWPHDurUqXNHO/i///6bqlWr8uuvv+Lh4cGrr77Kzp07adKkSYZ/DPZWqlQpcubMyc2bNzl48KCzw0kzs3KmWbNmd33cw8ODX375hYIFC7J3715eeuklEhMTeeKJJ7h+/TpNmzblzTffzMiQM5yZeHJUcmbdunVs2bIFX19fXnjhhTsef+aZZyhdujQRERF89dVXtz2myhkRcWWpTs6IiIiIiIiIwL3nzfxX8+bNGTRoEADPPvusW75q3t3d2tLsXi3KM4r5fDGTe5lRaGgo8G9yxtSmTRtCQ0OpX78+V69epUuXLrz//vucP3+e3r1706tXL86fP0+VKlUICQnhs88+w9/f3xkfgt15eHhYq2fcrbVZZGSktU1d06ZN73lcwYIFmTFjBhaLhYkTJ9K1a1dCQkLImTMn06dPx9PTM6NCdgqzcsZRVXGffvopAE899RQFChS443EfHx8+/PBDAD755BPrqAXDMFQ5IyIuTckZERERERERSRMzOXO3eTP/9emnn5IvXz7CwsL44osvHB2a/IcrzJsxmc+XzZs3YxiGk6NxDLNypnbt2nc8Vrx4cdauXcvzzz8PpLRgKlasGH/88Qeenp689dZbhIaGPjDp6Y7cNTljVs0EBQWRJ0+e+x7btm1ba4VMcHAwAN999x2lSpVyaIyuoG7dugAcOXLEOhbBXsLCwli4cCEWi4VXXnnlnsc9/vjjVK9enaioKD7++GMAIiIiuHr1Kh4eHlSoUMGucYmI2INXWk945513yJUrl83HWSyWuw7qEhEREREREdcVFxdnvQGdmpvIefPm5YsvvuDJJ59k9OjRPPbYY9bZI+J4rpScqVmzJj4+Ply8eJFjx45RtmxZZ4dkVzdv3mTPnj3AnZUzJl9fX77//nsaNWrEs88+S2xsLEFBQUydOpU6depkZLgZypxNZT4f3cWD5s381+jRo1m1ahWbNm2iT58+9OvXz5HhuYw8efJQrlw5jhw5wtatW+nQoYPd1v78888B6NWrF+XKlbvncR4eHowdO5YuXbrwzTffMGLECGvVU7ly5e47pkFExFnSnJyZO3fufR83y6QfdByg5IyIiIiIiIib2blzJwkJCeTLl4/SpUun6pz+/fszdepUVq9ezaRJk6yvahbHMgyD3bt3A66RnPH19aVWrVps3ryZzZs3Z7rkzL59+0hISCBXrlwPrJbo378/9evXZ9u2bTz66KP4+PhkTJBOYiartm3bRlJSktu0+XrQvJn/8vb2ZuHChcydO5c+ffo4vZVgRqpfv77dkzNnzpzh119/BeD1119/4PGdOnWiWbNmrFu3jtGjRxMUFASopZmIuK40tTUzDMNubyIiIiIiIuJ+zHkhDRs2TPWNR4vFwuDBgwFYuHChw2KT2508eZKoqCi8vb2pVKmSs8MBMvfcGbOirFatWqm6NipWrEi/fv0yfWIGoHr16gQEBHD16lXCwsKcHU6qXLt2zdqGLbXJGUipInnqqacyzcyg1DLnzmzZssVua44bN47ExERatmxJvXr1Hni8xWKxJv9/+ukn5syZA0DVqlXtFpOIiD2lunLm+PHjjoxDRERERERE3IA5byatczE6duyIh4cHYWFhnDp1ihIlSjgiPLmF2UKqSpUqLpMAaNiwIV9//bX1eZSZhIaGAvduaZaVeXl50aRJE4KDg1mzZo1LVHI9yIYNGzAMg3LlylGkSBFnh+PyzOTJli1bMAzD5qqhK1euMGnSJCB1VTOmxo0b0717d+bNm8fq1asBVc6IiOtKdXKmZMmSjoxDRERERERE3MCtlTNpkTdvXho1asSGDRtYuHChdSi6OI4rzZsxmUm9nTt3Eh8fj6+vr5Mjsh+zcqZ27dpOjsQ1tWjRguDgYNauXcsLL7zg7HAeKK3zZrK6WrVq4enpyfnz5zlz5gzFixe3ab0ffviB6OhoqlWrRseOHdN07kcffcT8+fOtnXtUOSMiripNbc1EREREREQk64qMjOTEiRNYLJZUtZj5ry5dugBqbZZRXDE5U7p0afLnz8/NmzetyYzMICkpydoCS5Uzd9eiRQsgJenhDu3u0zpvJqvz9/e3znixtbVZXFwcX331FZBSNZPWKpxq1arRv39/ADw8PKhYsaJN8YiIOIqSMyIiIiIiIpIqZiuqypUrExgYmObzzeTMypUriY2NtWtscidXTM5YLBZr9Uxmam125MgRbty4gb+/v24E30PdunXx9/fnwoUL7N+/39nh3FdMTAxbt24FVDmTFubcGfNzl17Tp0/n/PnzFC9enD59+qRrjQ8++IACBQrQrl07/Pz8bIpHRMRRlJwRERERERGRVDFbmqV13owpKCiIYsWKERsby6pVq+wZmvzH9evXOXr0KOBayRn49/ljPp8yA7MKqEaNGnh6ejo5Gtfk4+NDo0aNgH9bhjlKXFwcv//+O506dcLb25tPP/00Tedv3ryZhIQEihYtSunSpR0UZeZjJmdsqZxJSkri888/B+Cll17C29s7XeuULFmSEydOsHjx4nTHIiLiaErOiIiIiIiISKqYlQ7pTc5YLBa1Nssge/bsAaBIkSLky5fPydHczpxXlJkqZ0JDQwG1NHsQswplzZo1dl/bMAy2bt3K0KFDKVy4MH369GHJkiUkJiYyZswYrl+/nuq1zJZmzZs3t3mwfVZitrvctm0bycnJ6Vpj3rx5HDp0iFy5cjF48GCb4vH399fXT0RcmpIzIiIiIiIi8kBJSUnWV0ObN9fTw0zOLFiwwC3mTrgrV2xpZqpXrx4Wi4Xjx48TGRnp7HDswqycqV27tpMjcW2OmDsTERHB559/TlBQEPXr12fChAlcvXqVYsWK8fbbb1OuXDmuXbvGzz//nOo1zcoezZtJmypVqpAtWzauX7/OwYMH03y+YRh88sknAPzvf/8jR44c9g5RRMSlKDkjIiIiIiIiD3TgwAGuX79OtmzZqFq1arrXad26Nb6+vpw6dYq9e/faMUK5lSsnZwIDA6lcuTKQOapnDMNQ5UwqNWjQAB8fH86dO2dtu5de8+fP5//+7/8oXbo0r732Gnv37sXPz4++ffuydOlSTpw4wf/93//x4osvAvD111+nqprj5s2bhISEAJo3k1ZeXl7UqVMHSF9rs5CQEDZv3oyvry/Dhw+3d3giIi5HyRkRERERERF5IHM+SL169fDy8kr3OtmzZ6d169aAWps5kisnZ+Df1niZITlz+vRpLl++jJeXF9WqVXN2OC7N39/fOpfEltZmP//8M7169WLbtm0kJSXRqFEjJk6cSEREBL/++ivt2rWzzv558sknCQwM5PDhw6maPxIaGkpsbCx58+a1JhEl9czWZulJzkyaNAmAvn37UrBgQbvGJSLiipScERERERERkQeydd7MrTR3xrGSk5OtM2eqV6/u5GjuzmyNZyb93JnZ0qxq1ar4+vo6ORrXd2trs/Qyb+I3b96c3bt3ExISwjPPPENgYOAdxwYEBFhnl3z11VcPXNucN9OsWTM8PHTbLK3M5NvWrVvTdN7Vq1eZPXs2AEOGDLF7XCIirkg/ZUREREREROSBzOSMLfNmTGZyJiQkhCtXrti8ntzu6NGj3LhxA19fXypUqODscO7KTPJt2bKFpKQkJ0djG7U0SxuzVVh6K2dOnTpFSEgIFouFgQMHUqlSpQeeM2zYMDw8PFi2bNkD2ylq3oxtzOTMzp07iY+PT/V5M2fOJDY2lqpVq9rl54yIiDtQckZERERERETuKzo6mrCwMMA+lTOlSpWiSpUqJCUlERwcbPN6cjuzpVm1atVsakHnSFWrVrUODj9w4ICzw7GJWTlTu3ZtJ0fiHho3boynpycnT57k5MmTaT7/jz/+AFKSPHny5EnVOaVKlaJnz55AyuyZe0lKSrJWzmjeTPqUKlWKvHnzkpCQYP1e9CCGYTB58mQABg8ejMVicWSIIiIuw6bkTGYoPxYREREREZH727ZtG8nJyRQvXpwiRYrYZU21NnMcV583AymDw83ZFO4+d0aVM2kTEBBgHRqfntZms2bNAuCxxx5L03kjRowA4JdffuHSpUt3PSYsLIxr164REBBAzZo10xybgMViSXNrs9DQUHbu3ImPjw/9+/d3ZHgiIi7FpuRM48aNqVq1Kl988QWRkZH2iklERERERERciPnCPHtUzZjM5MzixYvdvq2Vq3GH5Az8+3xy5xd+XrhwgbNnz2KxWFz+8+1KzLkzaW1tduTIEbZv346npycPPfRQms5t1qwZtWrVIi4uzlql8V9m1Uzjxo1dturMHZjJmS1btqTqePPr0atXL/LmzeuwuEREXI3Nbc0OHDjA66+/TvHixXn44YeZP38+ycnJ9ohNREREREREXIBZ2WDP5Ezjxo0JDAzk0qVLqb6BJ6njLskZc66EO1fOmC3NypcvT44cOZwcjfswkzNprZz5/fffAWjbti358uVL07kWi8VaPfPtt9+SkJBwxzFmPGppZhuzKi4139tv3LjBzJkzgZSWZiIiWYlNyZmvvvqKmjVrYhgGCQkJzJ07l549e1KsWDFGjhzJoUOH7BWniIiIiIiIOIFhGNbKBnsOafb29qZDhw6AWpvZ05UrVzh16hQA1atXd3I092cm+8LCwoiOjnZyNOmjlmbp06RJEywWC4cPHyY8PDzV55ktzXr37p2uffv06UOBAgU4e/Ysf//9922PGYah5IydmMmZgwcPcu3atfse+8cff3D9+nXKli1Ly5YtMyA6ERHXYVNyZvjw4Wzfvp2dO3cyfPhw8ubNi2EYRERE8Omnn1K5cmWaNm3K1KlTuXHjhr1iFhERERERkQxy+vRpIiIi8PT0tPvAc7O12YIFC+y6bla2Z88eAEqUKEHu3LmdHM39FSlShOLFi5OcnMy2bducHU66mJUzSs6kTa5cuawzXVJbPbN3717CwsLw9vZOc0szk6+vL0OHDgVg/Pjxtz12+PBhzp8/j6+vrzW5IOlToEABSpUqhWEYbN++/b7Hmi3Nnn76aTw8bG7wIyLiVuzyXa969ep89dVXnD17lj///JMuXbrg4eGBYRhs3LiRwYMHU7hwYQYPHsyGDRvssaWIiIiIiIhkALPlVI0aNciWLZtd1+7UqRMWi4Vdu3Zx5swZu66dVblLSzOTWT3jrq3NzMoZeycuswKzOiW1c2fMlmadOnUiV65c6d73ueeew8fHh02bNt32vDPnzdSvXx8/P790ry8pzATX1q1b73nM3r172bhxI56engwcODCDIhMRcR12TUl7e3tb586cPn2asWPHUrFiRQzDIDo6mqlTp9K8eXMqV67MZ599xvnz5+25vYiIiIiIiNiZ2dLMnvNmTPnz57euu2jRIruvnxW5W3LGbJVnPs/cSVRUFEeOHAFUOZMe5tyZ1CRnDMOwuaWZqWDBgjz++ONASrt+k1qa2Vf9+vWB+8+d+fHHHwHo1q0bhQsXzpC4RERcicPqBQsVKsQbb7zBvn372LBhA4MHDyYgIADDMDh48CBvvvkmxYsXp2fPnixZssRRYYiIiIiIiIgNzFeW23PezK3M1maaO2Mf7pacMZNzmzZtwjAMJ0eTNubnunjx4mkeTi/QrFkzAPbt28eFCxfue+zOnTs5fPgw/v7+dO/e3ea9R4wYAcDs2bM5e/YsoOSMvZmVM/dKzsTHx/PLL78AMHjw4AyLS0TElWRIM8ebN28SHx9PUlISFosFSHnVQ2JiIvPnz6dLly7UqlXLLV8pIyIiIiIiklklJCRY5wU4onIG/k3OLF++nLi4OIfskVUkJiYSFhYGuE9ypnbt2nh6ehIREcHp06edHU6amC3NVDWTPvny5aNq1arAvy3F7sWsmunSpQsBAQE2712rVi2aN29OYmIi33//PadPn+bEiRN4enrSqFEjm9cXqFOnDh4eHpw5c4bw8PA7Hp8zZw6XL1+maNGidOzY0QkRiog4n8OSM6dOneLDDz+kbNmytG7dmhkzZhATE4OHhwddu3bl999/55133qFYsWIYhsGuXbto2bKl2/aZFRERERERyWx2795NXFwcuXLlonz58g7Zo2bNmhQpUoSYmJhUz56Quzt8+DBxcXFkz56dsmXLOjucVMmWLZs1keRu9wN27NgBKDljC7O1mVm1cjeGYVjnzfTp08due5vVMxMnTmTp0qVAytcyR44cdtsjKwsICKBKlSrA3efOmC3NBg0ahKenZ4bGJiLiKuyanImLi2PmzJm0a9eOMmXKMGrUKI4fP45hGJQuXZr/+7//49SpU8ybN49HH32UDz74gOPHjzNjxgzy5cvHzZs3ee+99+wZkoiIiIiIiKTTrfNmPDwc89o+i8VC586dAbU2s5XZZisoKMhhXy9HuLW1mTsxK2dq167t5Ejcl9lC7H6J2c2bN3Py5EkCAgKs3yvsoUePHpQqVYpLly7x1ltv3RaP2Me9WpsdPXqUFStWYLFYGDRokDNCExFxCXb5bW3z5s0899xzFC5cmP79+7Ny5UqSk5Px8fGhd+/eLFu2jCNHjvDWW2/dMeDLw8ODvn378uWXXwJYS+ZFRERERETEucxKBke1NDPdOnfG3eaOuBJ3mzdjMucZuVPlTFxcHPv27QNUOWMLMxmya9curly5ctdjzJZmPXr0wN/f3257e3p6MmzYMAAiIyNvi0fso379+sCdlTNTpkwBoF27dpQqVSqjwxIRcRk2JWc+++wzqlSpQuPGjZk8eTLXrl3DMAyqVKnCuHHjOHv2LL/99htt2rR54FpmNv1eP4xFREREREQkY5k3y82b547Stm1bfHx8OHbsGAcPHnToXpmZuyZnzOTf9u3bSUhIcHI0qRMWFkZSUhL58uWjWLFizg7HbRUuXJjy5ctjGAYbNmy44/GkpCT++OMPwL4tzUxPP/002bNnt/6/adOmdt8jKzOTM1u2bLEm3hMTE5k6dSoAQ4YMcVpsIiKuwKbkzBtvvMHBgwcxDINs2bIxaNAgQkJC2LNnDyNGjCBPnjypXsvLy8uWUERERERERMSOLl++zKFDh4B/b7A5SkBAAC1btgSyVmuzmJgYtmzZQnx8vE3rHD58mCFDhrBs2TLA/ZIz5cuXJ3fu3MTFxbF7925nh5MqZkuzWrVqYbFYnByNezPnztyttdn69esJDw8nV65ctG/f3u5758qVi4EDBwJQtWpV8ubNa/c9srKgoCB8fX25evUqR44cAVK+x0dERJA/f366d+/u5AhFRJzL5rZmdevWZeLEiYSHh/Pjjz+m+xVVZcuWJTk5maSkJFtDEhERERERERuZMwLKly+fITcszdZmCxYscPheruLll1+mQYMGFCtWjFdeecXaJiu1duzYwWOPPUbFihX58ccfSUxMpF27dtbOFO7Cw8PDmgB0l9ZmO3bsANTSzB7M5MzatWvveMxsafbwww/j4+PjkP3ffvttunTpwujRox2yflbm7e1tvUbM1mY//vgjAE8++aTDvqYiIu7CpuTMrl272Lx5M0OGDCEgIMBeMYmIiIiIiIiTmcPZHT1vxmQmZ9avX8+1a9cyZE9nSk5O5u+//wbg4sWLfPnll1StWpXGjRvz008/ER0dfdfzDMNg9erVdOzYkdq1azN79mwMw6Br166sX7+epUuX4u3tnZEfil2YzzPzeZfRrly5wrx581LdVs2snKldu7Yjw8oSzDkv27dv5/r169b3JyYm8ueffwLQu3dvh+1fuHBhFixYQK9evRy2R1Z2a2uzM2fOsGjRIgAGDx7szLBERFyCTcmZoKAge8UhIiIiIiIiLiSjkzNly5alYsWKJCYmsnTp0gzZ05nCwsK4cOEC2bNn559//qFnz554enqyceNGnn76aQoXLsyQIUPYvHkzhmGQnJzMvHnzaNy4Ma1atSI4OBhPT0/69evHrl27mD9/Pk2aNHH2h5VuZhcOZ1TO7N+/n7p169KjRw+effbZBx6fmJhobb+myhnblShRglKlSpGUlERISIj1/StXruTixYvky5eP1q1bOzFCsYVZybd161amTp1KcnIyzZo1o2LFik6OTETE+WxuayYiIiIiIiKZS3JysjU507hx4wzb16yeyQpzZ5YvXw6ktHTq0aMHc+bM4cyZM3zyySeUL1+e6Ohoa+vw6tWrU716dXr06MGmTZvw9fXl+eef59ChQ8yYMYPq1as7+aOxnfnq+kOHDnH58uUM23f58uU0atSIY8eOATB16lTmz59/33MOHjxIXFwcAQEBlCtXLiPCzPTM6plbW5uZLc0effRRzSl2Y+a1HRoaypQpUwAYMmSIM0MSEXEZqfrpdurUKYdsXqJECYesKyIiIiIiIum3b98+rl27Rvbs2TP0xn+XLl348ssvWbx4McnJyXh4ZN7XE5rJmTZt2ljfV6hQIV5//XVee+011q1bx5QpU5g9ezZhYWEA5MyZk6FDh/Liiy9SsGBBp8TtKHnz5qV8+fIcPnyYLVu20LFjR4fvOXHiRP73v/+RlJRE06ZNqVq1KhMnTmTIkCGEhYWRL1++u55ntjSrWbNmpn6OZqQWLVrwyy+/sGbNGgDi4+OZM2cO4NiWZuJ45cqVI1euXFy9epWTJ08SGBioFnIiIv9fqpIzpUuXtvvGFouFxMREu68rIiIiIiIittmwYQOQ0tIsI1+x3rRpU3LkyEFkZCTbt293u8H2qXXz5k3rTei2bdve8bjFYqF58+Y0b96cr776ij///JObN2/Sr18/AgMDMzrcDNOgQQMOHz7M5s2bHZqcSUpK4vXXX+fLL78E4IknnuDHH3/EMAzWr1/P3r17ee6555g9ezYWi+WO83fs2AGopZk9mZUzW7ZsITY2luXLl3P16lWKFClC06ZNnRyd2MLDw4O6detaE9JPPPEE2bJlc3JUIiKuIVUv8TAMwyFvIiIiIiIi4nrMuQ8Z2dIMwMfHx5qsCA4OztC9M9KmTZuIiYmhQIECVKtW7b7H5sqVi8GDBzN06NBMnZiBf+fOmC31HCE6OpqHH37Ympj54IMP+OWXX/D19cXPz4/p06fj5eXFX3/9xcyZM++6hlk5U7t2bYfFmdWULVuWIkWKkJCQwKZNm25raebp6enk6MRWZmszUEszEZFbpeolUFOnTnV0HCIiIiIiIuIizOSMMwbMd+jQgTlz5hAcHMw777yT4ftnhFtbmqkt1r8aNGgAwObNmzEM465VK7Y4c+YM3bp1Y+fOnfj6+vLzzz/f0TKrVq1avPfee7z33nsMGzaMli1bUrRoUevjhmGwc+dO67FiHxaLhRYtWvDbb7+xZMkS5s2bB0CfPn2cHJnYQ+vWrRkzZgyNGjWiRo0azg5HRMRlpCo58+STTzo6DhEREREREXEB58+f58iRI8C/lQwZqUOHDgBs3LiRa9euZcpqETM5c7eWZllZ9erV8fPz48qVKxw+fJgKFSrYbe3t27fTrVs3wsPDKVCgAHPnzr3n83vkyJHMnz+frVu38vTTT7N48WJrouj48eNcu3YNHx8fqlSpYrf4JKW12W+//cY333xDbGwsJUuWtCbsxL21adOG5cuXExQU5OxQRERcil6iIyIiIiIiIlYbN24EoGrVquTKlSvD9y9VqhQVKlQgKSmJFStWZPj+jnbt2jW2bNkCKDnzXz4+PtZWYZs3b7bbun///TfNmjUjPDycqlWrsnnz5vsmHr28vPjll1/w8/MjODiYiRMnWh8zW5oFBQXh7e1ttxgFWrRoAUBsbCwAvXv3tnv1lDhPmzZtKFCggLPDEBFxKUrOiIiIiIiIiNWGDRsA57Q0M5nD4DPj3Jk1a9aQlJRE+fLlKVGihLPDcTlmpYS95s7MmjWLXr16ERsbS8eOHQkJCaFUqVIPPK9SpUp8/PHHALzyyivWarIdO3YAamnmCJUqVSJ//vzW/6ulmYiIZHZKzoiIiIiIiIiVOW+mcePGTovBbG0WHByMYRhOi8MR1NLs/sykoL2qpr744gsAnn76aebPn0/OnDlTfe7w4cNp1aoVMTExDBw4kKSkJGvljFnhI/ZjsVho3rw5AOXLl6dmzZrODUhERMTBUjVzJjV27drFunXrOHbsGNevXycpKem+x1ssFqZMmWKv7UVERERERMRG8fHxbNu2DXBu5UyLFi3w8fHh5MmTHDx4kEqVKjktFnszkw5Kztxd27Zt8fLy4uDBgxw9epSyZcume61z586xbds2LBYLH330EV5eabsF4uHhwdSpUwkKCmLDhg188cUX1uSMKmcco3///vz111+89NJLamkmIiKZns3JmYMHDzJo0KA0lRwbhmFTcmbChAlMmDCBEydOACm9kN977z06depkXX/06NFMmjSJK1eu0KBBA7777juqVq1qXSM+Pp5XX32V3377jdjYWNq0acP3339PsWLF0hWTiIiIiIjcX3JyMnFxcWTLls3Zocg9bN++nZs3b5I/f36bborbKnv27DRr1owVK1YQHBycaZIz586dY9++fVgsFlq1auXscFxSYGAgzZo1Y9WqVSxcuJAXXngh3WstWLAASGmVVrBgwXStUbJkScaPH8/TTz/N22+/TWJiIh4eHlSvXj3dccm99ejRg5iYGPz9/Z0dioiIiMPZ1Nbs7NmzNG/enE2bNmEYBoZhkD17dooVK0aJEiXu+VayZEmbeusWK1aMjz/+mG3btrFt2zZat25Njx492Lt3LwCffvopX375Jd9++y1bt26lUKFCtGvXjuvXr1vXePHFF5kzZw6zZs1i/fr1REdH07Vr1wdW/IiIiIiISPo8/PDDFChQgD/++MPZocg9mC3NmjRp4vRXrWfGuTNm1UzdunXJnTu3k6NxXV26dAH+Ta6k17x58wDo3r27Tes89dRTdOvWjcTERCBlNoqSzI6jxIyIiGQVNiVnPvroIy5cuADA4MGDOXDgAFFRUZw8eZLjx48/8C29unXrRufOnalQoQIVKlTgo48+IiAgwJokGj9+PG+//TYPP/ww1apV4+effyYmJoaZM2cCcO3aNaZMmcIXX3xB27ZtqVWrFjNmzGDPnj3W/r8iIiIiImI/ly5dYt68edy4cYPevXvz0UcfZbpZIpnBhg0bAOfOmzGZc2dWr15NXFyck6OxD/PvzTZt2jg5EtdmJmfWrFlDdHR0uta4ceOGNRnWrVs3m+KxWCxMmjSJvHnzAmppJiIiIvZhU1uzJUuWYLFYGDBgAJMmTbJXTGmSlJTE7NmzuXHjBo0aNeL48eNERETQvn176zG+vr60aNGCkJAQnn32WbZv305CQsJtxxQpUoRq1aoREhJi/SPgv+Lj44mPj7f+PyoqCoCEhAQSEhIc9BGKOJ75/NXzWMT16XoVcS+6Zv+1ZMkSDMPAz8+PuLg43nnnHQ4cOMCECRPw9fV1dnhCSntos3Kmfv36Tn/eVqxYkSJFinDu3DlWrVrl8Bktjr5eDcOwJmdatmzp9M+vKytTpgxlypTh2LFjLFmyhB49eqR5jSVLlhAXF0fp0qWpUKGCzZ/vvHnz8vPPP/PWW2/x1FNP6evnAvQzVsR96HqVrCa1z3WbkjPnzp0DYMCAAbYsky579uyhUaNGxMXFERAQwJw5c6hSpYr1j4n/9pMtWLAgJ0+eBCAiIgIfH587ysgLFixIRETEPfccO3Yso0ePvuP9S5cuVUmzZArLli1zdggikkq6XkXci65Z+Omnn4CUaojChQszadIkZsyYQWhoKG+++SY5c+Z0coQSHh5OZGQkXl5eREZGsmjRImeHROXKlTl37hwTJ07k5s2bGbKno67X06dPc+7cOXx8fIiKinKJz68rq1y5MseOHWPSpEl4e3un+fwJEyYAKTNqFy9ebLe4PvjgA6Kjo/X1cyH6GSviPnS9SlYRExOTquNsSs7kzp2byMhIcuXKZcsy6VKxYkV27tzJ1atX+euvv3jyySdZs2aN9fH/9kc2DOOBPZMfdMzIkSN5+eWXrf+PioqiePHitG/fXn9MiltLSEhg2bJltGvXLl1/+IhIxtH1KuJedM2mMAyD559/HoDnnnuONm3a0K1bNx5//HH27dvH6NGj+eeff6hYsaKTI83apk+fDqTMQ+nZs6dzg/n/oqOjWbFiBUeOHKFz584O3cvR1+t3330HQLNmzVzm8+vKvLy8WLhwIXv37qVTp05pmoGUnJzMM888A8CwYcNo3bq1o8IUJ9LPWBH3oetVshqz49aD2JScqVu3LosWLeLQoUMZ3nPVx8eHcuXKWePYunUrX331FW+88QaQUh1TuHBh6/GRkZHWappChQpx8+ZNrly5clv1TGRk5H17K/v6+t615YK3t7e+sUimoOeyiPvQ9SriXrL6Nbt7927Cw8Px9/enZcuWeHt707lzZ0JCQujatStHjx6lWbNm/PXXX7qJ6kRbtmwBoGnTpi7zfO3YsSMWi4W9e/cSGRlJ0aJFHb6no67XVatWAejGVCq1adOGbNmyce7cOfbu3Zumew6bNm0iMjKSwMBAWrdurc93JpfVf8aKuBNdr5JVpPZ57mHLJi+88AKGYTht3sytDMMgPj6e0qVLU6hQodvK5G7evMmaNWusiZc6derg7e192zHh4eGEhYW5xOBLEREREZHMJDg4GIBWrVrh5+dnfX/VqlXZvHkzjRo14urVq3To0IEff/zRWWFmeRs2bABwqb+J8ubNS7169YB/n0fuKDEx0ZqccfTsnMzCz8+Pdu3aAbBw4cI0nTtv3jwgJbmnm4AiIiLiqmxKzrRr147XX3+dVatW8fzzz2fYUKe33nqLdevWceLECfbs2cPbb7/N6tWr6devHxaLhRdffJExY8YwZ84cwsLCGDhwINmyZaNv374ABAYG8vTTT/PKK6+wYsUKduzYwRNPPEFQUJB+URYRERERsbMlS5YAKfNm/qtAgQKsXLmSxx9/nMTERIYMGcLrr79OcnJyRoeZpV29epW9e/cCrpWcgZQb7ODeyZmtW7dy/fp18uTJQ82aNZ0djtvo0qULkPbkzPz58wHo3r273WMSERERsZdUtTX75Zdf7vlYlSpVaNy4MZMmTWL+/Pk88sgjVKpUiWzZsj1w3QEDBqQ+0lucP3+e/v37Ex4eTmBgINWrV2fJkiXWV9W8/vrrxMbGMnToUK5cuUKDBg1YunQpOXLksK4xbtw4vLy8eOyxx4iNjaVNmzZMmzYNT0/PdMUkIiIiIiJ3io6OZv369cC/N9n/y8/Pj19//ZWKFSsyatQoPvvsM44cOcIff/yBl5dNnZgllTZt2oRhGJQtW9baDtpVdOjQgQ8++IBly5aRlJTkln+zLV++HIDWrVu7ZfzOYs4Z2rx5MxcuXCB//vwPPOfYsWOEhYXh6elJp06dHB2iiIiISLql6i+dgQMHpmr4Xnh4ON98802qNrZYLOlOzkyZMuWBa48aNYpRo0bd8xg/Pz+++eabVMcrIiIiIiJpt3r1am7evEmpUqUoX778PY+zWCy8//77lC9fnqeeeoo5c+Ywd+5cevXqlYHRZl0hISGA61XNANSvX5/AwECuXLnCtm3baNCggbNDSrMVK1YAammWVkWLFqVmzZrs3LmTJUuW0L9//weeY1bNNGvW7LYZsyIiIiKuJtVtzQzDsPubiIiIiIhkbmYrKnOw+4P07duXYcOGAf/OjRDHM5MzTZo0cXIkd/Ly8rImNcwWee7kxo0b1s+vkjNpZ7Y2W7BgQaqOV0szERERcRepqpw5fvy4o+MQEREREZFM6H7zZu6lW7dufPnllyxcuNBt21i5k8TERDZt2gS4ZuUMpCT3/vrrL4KDg3n//fedHU6arFu3joSEBEqVKkWZMmWcHY7b6dKlCx999BHBwcEkJCTg7e19z2OvXr3KmjVrACVnRERExPWlKjlTsmRJR8chIiIiIiKZzNGjRzly5AheXl60bt061ec1adKE3Llzc+nSJTZu3EjTpk0dGKXs2bOHGzdukDNnTqpWrerscO7KTO5t3ryZK1euuFW7KnPeTJs2bVJVPSa3q1+/Pvny5ePixYuEhITQokWLex67ZMkSEhMTqVy5MmXLls3AKEVERETSLtVtzURERERERNLCbGnWuHFjcubMmerzvL29rYO8zRZF4jgbNmwAoFGjRnh4uOafiMWLF6dy5cokJydbkx3uwoxXLc3Sx9PTk44dOwKwcOHC+x6rlmYiIiLiTmz6zbt169a0adOGkydPpvqcc+fOWc8TEREREZHM69Z5M2nVrVs3QHNnMoI5D8VVW5qZzOeR+bxyB5GRkezatQsgTdVjcjtz7sz9kjMJCQksWrQI+Pf7h4iIiIgrsyk5s3r1alavXs2NGzdSfU5sbKz1PBERERERyZxu3rzJypUrgbTNmzF17NgRLy8vDhw4wJEjR+wdntzCTM40adLEyZHcn/k8Cg4OxjAMJ0eTOuY1UKNGDQoUKODkaNxXhw4d8PT0ZN++fZw4ceKux2zYsIGrV6+SL18+GjZsmLEBioiIiKSDa9asi4iIiIiIWwsJCSE6OpoCBQpQs2bNNJ+fK1cumjdvDqi1mSOdPXuWkydP4uHhQf369Z0dzn01b94cPz8/zpw5w/79+50WR0JCAklJSak6Vi3N7CN37tzWyq57Vc+YVXZdu3bF09Mzw2ITERERSa8MT86YVTZ+fn4ZvbWIiIiIiGQQs/VU+/bt0z3HxGxNpOSM45hVMzVq1CBHjhxOjub+/P39rQm7JUuWZPj+CQkJfPXVVxQqVIjy5cuzfv36+x5vGAbLli0DlJyxh65duwJ3T84YhmFNzqilmYiIiLiLDE/OLF68GIBixYpl9NYiIiIiIpJBzJvn6Zk3YzJvsq5du5YrV67YJS653YYNGwDXnzdjcsbcGfPGf7Vq1XjxxRe5fPkyx48fp0WLFrz99tskJCTc9byjR49y6tQpvL29adasWYbFm1mZc2dWrVpFTEzMbY8dOHCAo0eP4uPjQ/v27Z0RnoiIiEiaeaXl4EGDBt31/e+88w65cuW677nx8fEcPXqUrVu3YrFYaNGiRVq2FhERERERNxEREcHOnTsBaNeuXbrXKVu2LFWqVGHfvn0sWbKExx9/3E4Risld5s2YzLkza9euJTY2Fn9/f4fut2vXLl5++WXr7JgCBQowatQotmzZwrRp0xgzZgxLly5lxowZVKxY8bZzV6xYAaQkvrJnz+7QOLOCKlWqULJkSU6ePMnKlSutlTTwb0uzNm3aEBAQ4KwQRURERNIkTcmZadOmYbFYbnufYRjMnTs3VeebQxvz5MnDyJEj07K1iIiIiIi4iaVLlwJQp04dm4egd+vWjX379jF//nwlZ+wsJiaGHTt2AO5TOVO5cmWKFSvGmTNnWLt2rTVZY28RERG8++67TJkyBcMw8PX15aWXXmLkyJHkzJmT559/ni5duvDMM8+wbds2ateuzZdffskzzzxj/ZtZ82bsy2Kx0KVLF77//nsWLlx41+SMWpqJiIiIO0lTW7MSJUrc9gYpvyAVLlz4jsdufStZsiQVK1akVatWvP322+zevZvSpUs75AMSERERERHnMltO2ePGeffu3QFYtGjRPdtHSfps3bqVxMREihQpYv37ztVZLBbr88oRc2fi4+P5+OOPKV++PD/++COGYdC7d28OHDjA2LFjyZkzp/XYRx55hN27d9OmTRtiYmJ47rnn6NGjB5GRkSQlJVmrbZScsR+ztdmCBQusL/68cOECGzduBJScEREREfeSpsqZEydO3PZ/c7Dn0qVLqVKlit2CEhERERER95ScnGytnLFl3oypQYMG5MuXj4sXL7J+/XpatWpl85qS4taWZv/tkODKOnbsyJQpU+w+d2bevHkMGzaMCxcuAFC/fn3GjRt336qiYsWKsXTpUsaPH8/IkSOZP38+QUFB1tk0OXPmpG7dunaNMytr1aoV/v7+nDlzhj179lC9enUWLlyIYRjUqlVLs21FRETEraSpcua/mjdvTvPmzdU/V0REREREAAgNDeXixYvkyJGDhg0b2ryep6en9dXy8+fPt3k9+deGDRsA92lpZmrTpg0eHh7s37+f06dP22XN48eP06dPHy5cuECxYsWYMWMGGzduTNXnxsPDg5dffpktW7ZQtWpVIiMjeeuttwBo2bIlXl5pek2k3Ie/vz+tW7cGYOHChcC/Lc3MKjsRERERd2FTcmb16tWsWrWKkiVL2iseERERERFxY2arqbZt2+Lt7W2XNc2brvPmzbO2MhLbJCcnW1tBNWnSxMnRpE3u3Llp0KABgN2qZ5YuXUpiYiLlypUjLCyMfv36WTtFpFaNGjXYtm0bI0aMsL6vXbt2dolP/mUmaxcuXEhcXJy1Uk/JGREREXE3NiVnREREREREbmXPeTOm9u3b4+Pjw9GjRzlw4IDd1s3KDh06xOXLl/H396dmzZrODifNzJZ59po7Y86HqVevHtmyZUv3On5+fowfP54VK1bw1ltv8dRTT9klPvmXmZzZuHEjf/31Fzdu3KBo0aLUqlXLyZGJiIiIpI3d66ujoqK4fv06SUlJDzzWXYZOioiIiIjIg127ds1ajWHP5ExAQACtWrUiODiY+fPnU7lyZbutnVWZLc3q169vtwqnjNShQwfef/99li9fTmJiok2tw5KTk1m1ahUAQUFBdomvdevW1vZbYl8lSpSgWrVqhIWF8cYbbwDQrVs3t5qbJCIiIgJ2qpxZtmwZDz30EPny5SN37tyUKFGC0qVL3/etTJky9thaRERERERcxIoVK0hKSqJixYqUKlXKrmvf2tpMbBcSEgK437wZU926dcmTJw/Xrl1jy5YtNq21d+9eLly4QLZs2ShfvrydIhRH6tq1KwBnz54F1NJMRERE3JPNyZkXXniBjh07Mm/ePC5fvoxhGKl+ExERERFJr9jYWN566y3eeust/W7pIswWU2bLKXsyb8Zu3LiRixcv2n39rMasnHHX5Iynpydt27YFbJ87s2LFCgCaNWvmllVEWZHZ2gwge/bstGrVyonRiIiIiKSPTW3NZs6cybfffguk9Nbt2bMnderUIU+ePGkenigiIiIiklqHDx/m0UcfZdeuXQD07t2bGjVqODmqrM0wDIfMmzGVKFGCGjVqsGvXLhYtWsSAAQPsvkdWcfHiRQ4ePAhAo0aNnBxN+nXs2JE//viDJUuWMHr06HSvY86badmypZ0iE0dr2LAhuXPn5sqVK7Rv3x4/Pz9nhyQiIiKSZjYlZyZOnAhA8eLFWblyJWXLlrVLUCIiIiIi9/LHH38wePBgrl+/bn3fwoULlZxxsoMHD3Lq1Cl8fX1p0aKFQ/bo3r07u3btYt68eUrO3EdSUhKXLl0iPDyciIiIO96OHDkCQKVKlcibN6+To02/9u3bA7B161YuXbqUro8lMTGRNWvWANCqVSsiIiLsGqM4hpeXF7179+aHH37giSeecHY4IiIiIuliU3Jm9+7dWCwW3n//fSVmRERERMSh4uPjefnll/n++++BlBZErVq14oMPPmDhwoW89dZbTo4wazNbmjVv3pxs2bI5ZI9u3brx4YcfEhwcTHx8PL6+vg7Zx10YhsGJEycIDQ21vu3Zs4eIiAiSkpIeeH7nzp0zIErHKVq0qHUw/PLly+ndu3ea19i+fTtRUVHkypWLGjVqKDnjRsaNG8fQoUMJCgpydigiIiIi6WJTciYhIQGAWrVq2SUYEREREZG7OXr0KI899hihoaEAjBw5kg8++IBz587xwQcfsGnTpnS/cl7sw2xp5oh5M6Y6depQqFAhIiIiWLNmjbVyIitITk7m8OHDtyViQkNDuXr16l2Pt1gs5M+fn8KFC1OoUKE73ooWLerWLc1MHTp0ICwsjCVLlqQrOWO2NGvVqhWenp72Dk8cyM/PT4kZERERcWs2JWdKlSrF/v37iY6Otlc8IiIiIiK3+fvvv3nqqaeIiooib968TJ8+nU6dOgEpc0iqV6/O7t27WbJkCf369XNytFlTbGwsq1evBhwzb8bk4eFBt27dmDx5MvPmzcsyyZkrV65Qu3ZtTpw4ccdjPj4+VKtWjdq1a1O7dm1q1qxJqVKlyJ8/P15eNv255xY6duzIF198wdKlSzEMA4vFkqbzzeRM69atHRGeiIiIiMg9edhy8sMPPwzAihUr7BKMiIiIiIjp5s2bjBgxgl69ehEVFUXjxo3ZsWOHNTFj6tKlC5Ayd0acY926dcTFxVGsWDGqVKni0L26desGwPz58zEMw6F7uYp//vmHEydO4OvrS6NGjfjf//7HlClT2LFjB9evX2f79u1MnjyZ559/nkaNGlG4cOEskZgBaNq0Kf7+/pw7d46wsLA0nRsfH8/69esBJWdEREREJOPZlJx55ZVXKFGiBOPHj+fAgQP2iklEREREsrgTJ07QtGlTvv76awBee+01Vq9eTfHixe841kzOLFmyhMTExAyNU1KY82Y6dOiQ5sqFtGrTpg1+fn6cOnWKPXv2OHQvV/HPP/8AKe38QkJC+Pbbbxk0aBA1a9bEx8fHucE5mZ+fHy1btgT+ba2XWhs3biQuLo5ChQpRuXJlB0QnIiIiInJvNiVnAgMDWbJkCQULFqRJkyZ8//33XLlyxV6xiYiIiEgWZFbJbN26ldy5czNv3jw+/fRTvL2973p8w4YNyZMnD1euXGHTpk0ZHK0ALF68GHDsvBlTtmzZaNeuHZBSPZPZxcTEsGzZMgB69uzp3GBclNlKz0wSptatLc0cnVQUEREREfkvm5IzZcqUoVOnTly7do0rV64wfPhw8ufPT6FChShTpsx938qWLWuvj0FEREREMpGvv/6a8PBwypQpw44dO6xtrO7F09PTmhRYsGBBRoQotwgLC+PAgQP4+PhYkyaOZj4n5s2blyH7OdPSpUuJjY2lVKlSVK9e3dnhuCTz+l+3bh03btxI9XmaNyMiIiIizmRTI+L/DqQ0DAPDMIiMjHzguXplkoiIiIj817Vr1/jiiy8A+L//+z9KliyZqvO6dOnCzJkzWbhwIR9//LEjQ5T/+P333wHo1KkTgYGBGbJn165dAdiyZQsREREUKlQoQ/Z1BrOlWc+ePfU31D1UqFCBkiVLcvLkSdasWUPnzp0feE50dDSbN28GlJwREREREeewKTnz5JNP2isOERERERHGjx/P1atXqVy5Mo899liqz+vYsSMeHh6EhYVx6tQpSpQo4cAoxWQYBrNmzQKgT58+GbZv4cKFqVevHlu3bmXhwoU8/fTTGbZ3RkpMTLS2blNLs3uzWCx06NCBSZMmERwcnKrkzLp160hMTKRUqVKULl06A6IUEREREbmdTcmZqVOn2isOEREREcnirl69yrhx4wAYNWoUnp6eqT43T548NGrUiA0bNrBw4UKef/55R4UptwgNDeXIkSP4+/tbq1kySrdu3di6dSvz5s3LtMmZ9evXc/nyZfLmzUuTJk2cHY5L69ixI5MmTUr13BmzpVmbNm0cGZaIiIiIyD3ZNHNGRERERMRexo0bx7Vr16hWrRqPPPJIms/v0qULAAsXLrR3aHIPZkuzbt26ERAQkKF7m3Nnli1bRnR0dIbunVHMlmbdunXDy8um19Vleq1bt8bT05NDhw7d0X77bjRvRkREREScTckZEREREXG6y5cvW6tm3n//fTw80v5rqlm5sXLlSmJjY+0an9wpOTnZmpzp3bt3hu9fo0YNypUrR2xsLHPnzs3w/R3NMIzb5s3I/QUGBtKoUSMAgoOD73vs5cuX2bFjBwCtWrVyeGwiIiIiIndj9+TM+fPnWbFiBbNnz2b27NmsWLGC8+fP23sbEREREclEvvzyS65fv0716tV5+OGH07VGtWrVKF68OLGxsaxatcrOEcp/bdq0iVOnTpEjRw46deqU4ftbLBb69esHwK+//prh+zva7t27OXnyJP7+/rRr187Z4biFDh06AA9OzqxevRrDMKhcuTKFCxfOiNBERERERO5gl+SMYRhMnDiRoKAgihQpQvv27enTpw99+vShffv2FClShKCgICZNmoRhGPbYUkREREQyiYsXL/LVV18BKbNm0lM1Ayk369XaLOOYVTM9e/bE39/fKTH07dsXgKVLlxIZGemUGBzFrJpp37492bJlc24wbqJjx44ALF++nISEhHsep3kzIiIiIuIKbE7OXLlyhWbNmjF06FD27duHYRh3fdu3bx/PP/88zZs35+rVq3YIXUREREQygy+++ILo6Ghq1qxpc/smMzmzYMECvSjIgZKSkvjjjz8A57Q0M1WoUIG6deuSlJTE7NmznRaHI6ilWdrVrl2bfPnycf36dTZt2nTP4zRvRkRERERcgU3JGcMw6NGjByEhIRiGQZ48eXj++eeZNm0aS5YsYfHixUybNo2hQ4eSN29eDMMgJCSEHj162Ct+EREREXFjFy5c4JtvvgFSqmYsFotN67Vu3Ro/Pz9OnTrF3r177RGi3MXatWuJiIggd+7cTm+5ZVbPZKbWZidOnGDnzp14eHhYZynJg3l4eFifj/dqbRYeHs7+/fuxWCy0aNEiI8MTEREREbmNTcmZmTNnsn79emu/52PHjvHdd98xYMAA2rdvT4cOHRgwYADffvstx44do3///hiGwfr16/ntt9/s9TGIiIiIiJv67LPPuHHjBrVr16Z79+42r5ctWzbrgG+1NnMcs6VZr1698PHxcWosffr0wWKxsHHjRo4dO+bUWOxl7ty5ADRr1ox8+fI5ORr38qC5M2bVTK1atciTJ0+GxSUiIiIi8l82J2cAWrRowfTp08mRI8c9jw0ICODnn3+mRYsWGIbBjBkzbNlaRERERNzc+fPn+e677wAYPXq0zVUzJs2dcayEhAT+/PNPwLktzUyFCxe2tqfKLC8AU0uz9Gvfvj0A27dv58KFC3c8rnkzIiIiIuIqbErOhIaGYrFYGDZsWKrPGT58OAA7duywZWsRERERcXOffvopMTEx1KtXz5pQsQdzrZCQEK5cuWK3dSXFihUruHTpEgUKFKBly5bODgeAfv36ASmtzdx91tClS5dYu3YtgNpBp0PhwoWpUaMGhmGwbNmyOx7XvBkRERERcRU2JWcuX74MQOnSpVN9jnmsea6IiIiIZD0RERFMmDABsG/VDECpUqWoUqUKSUlJ92xtJOlntjR75JFH8PLycnI0KR5++GF8fX3Zv38/u3btcnY4NlmwYAHJycnUqFEjTX9nyb/u1drs2LFjnDhxAi8vL5o2beqM0ERERERErGxKzgQGBgJw7ty5VJ9jHpszZ05bthYRERERN/bJJ58QGxtLgwYN6Nixo93XN4eoq7WZfcXHxzNnzhwgZdaLqwgMDLR+zX/99VcnR2Mbc96MWpqln/k9JTg4mOTkZOv7zaqZBg0aEBAQ4JTYRERERERMNiVnqlWrBsDUqVNTfc5PP/1027kiIiIikrWcO3fOYVUzJrO12eLFi0lKSrL7+llVcHAw165do2jRojRp0sTZ4dzGbG3222+/3XZD3p3ExMSwZMkSQMkZWzRp0oTs2bNz/vx5du/ebX2/5s2IiIiIiCuxKTnzyCOPYBgGc+bMYdSoUfft72wYBqNGjWLOnDlYLBYeffRRW7YWERERETf18ccfEx8fT+PGja3Du+2tcePG5MqVi0uXLrFlyxaH7JEVzZo1C4DHHnsMDw+b/pSwu06dOhEYGMjZs2etM1vczfLly4mNjaVkyZLUqFHD2eG4LR8fH1q1agX829rMMAzNmxERERERl2LTX1RDhgyhUqVKGIbBhx9+SPXq1fniiy9Yv349hw8f5siRI6xfv54vvviCGjVq8OGHHwJQqVIlhgwZYpcPQERERETcx5kzZ5g0aRLguKoZAC8vL+vciQULFjhkj6wmJiaGefPmAa7V0szk5+fHI488AsDMmTOdHE36/PPPPwD06NHDYddGVvHfuTP79u3j/Pnz+Pn50bBhQ2eGJiIiIiIC2Jic8fb2ZvHixZQuXRrDMNi3bx+vv/46LVq0oFKlSlSsWJEWLVrw+uuvs3fvXgzDoEyZMixevNhlhoeKiIiISMYZO3Ys8fHxNG3a1OGthczWZpo7Yx8LFy7kxo0blC5dmnr16jk7nLvq27cvALNnzyY+Pt7J0aRNYmKiNfmllma2M+fOrF+/nujoaGvVTNOmTfH19XVmaCIiIiIigI3JGYCSJUuye/duXnnlFQIDAzEM465vgYGBvPrqq+zcuZMSJUrYI3YRERGRVNu6dSsnT550dhhZ2s6dO5k8eTIAH3zwgcMrAzp27IjFYmHXrl2cOXPGoXtlBWZLs969e7tsVUeLFi0oUqQIV69etc5ucRbDMNi4cSMXLlxI1fEhISFcunSJ3Llz06xZMwdHl/mVK1eOMmXKkJCQwKpVq9TSTERERERcjl0aRWfPnp3PPvuMiIgINmzYwMSJExk7dixjx45l4sSJbNiwgYiICD799FMCAgLssaWIiIhIqk2bNo369evTunVrtx0U7u6io6Pp3bs3CQkJdO/e3ToPwpHy589PgwYNAFi0aJHD98vMoqKirBVIrtjSzOTp6WmN79dff3VqLF999RWNGzemWrVqtw2lvxezpVm3bt3UZcBOzNZmixcvZvXq1QAOr9gTEREREUktu07x9PHxoVGjRgwZMoQ33niDN954gyFDhtCoUSN8fHzsuZWIiIhIqgQHB1tn3R07dozt27c7OaKsadiwYRw6dIiiRYsyZcqUDNtXrc3sY968ecTHx1OxYkWqV6/u7HDuq1+/fgDMnz+fqKgop8SwdOlSXnnlFQAiIyNp0aIFGzduvOfxhmFYkzNqaWY/ZnJm2rRpXL16lZw5c1K7dm0nRyUiIiIiksKuyRkRERERV7Jjxw4eeeQREhMTrTMG5s6d6+Sosp4ZM2bw888/4+Hhwa+//kq+fPkybG8zObN8+XLi4uIybN/Mxmxp1qdPH5dtaWaqVasWFStWJC4ujjlz5mT4/ocPH6Z3794kJyfTr18/GjduzNWrV2nbti3Lly+/6zlhYWEcP34cPz8/2rdvn8ERZ16tW7fGy8uL2NhYIKXtnaqSRERERMRVKDkjIiIimdKJEyfo3Lkz0dHRtG7dmgkTJgD/tg6SjHH48GGef/55AN577z1atGiRofvXrFmTIkWKEBMTw5o1azJ078zi8uXLBAcHAynzZlydxWKxVs9kdGuzqKgoevTowdWrV2nYsCFTpkxh6dKltG/fnpiYGLp06XLXhJH5fal9+/Zkz549Q2POzHLkyEGTJk2s/9e8GRERERFxJal+2dDatWvtvnnz5s3tvqaIiIjI5cuX6dSpExEREQQFBfH333+TnJzMM888w969ezly5AjlypVzdpiZXnx8PH369CE6OpoWLVrwzjvvZHgMFouFLl26MHnyZBYuXGhtcySpN2fOHBITE6levTqVK1d2djip0rdvX9577z1WrFhBREQEhQoVcvieSUlJ9OvXj/3791O0aFH+/vtvfH198fX1Zd68efTt25e///6bRx99lJ9++okBAwZYz1VLM8fp0KGDNTGreTMiIiIi4kpSnZxp2bKlXVsYWCwWEhMT7baeiIiICEBcXBw9evTgwIEDFCtWjEWLFhEYGAik/D6zfPly5s6da50HkVUdPXqUDz74AD8/PwoXLnzHW8GCBfH29rZpj5EjRxIaGkqePHmYMWMGnp6edoo+bbp27crkyZP5888/+eKLL2z+uLKaW1uauYuyZcvSoEEDNm/ezO+//86IESMcvue7777LggUL8PX1Zc6cORQuXNj6mK+vL7///jtDhgxh2rRpPPnkk0RFRTFs2DBOnTpFaGgoHh4edO3a1eFxZjVdu3bl7bffpmjRolStWtXZ4YiIiIiIWKW54a5hGI6IQ0RERMRmycnJ9O/fn/Xr1xMYGMjixYspVqyY9fEePXqwfPly/vnnnyyfnBkzZgy//PLLPR+3WCzky5ePwoULU7lyZd566600DYJfsGAB48aNA1KGcd/6dchoHTt2pECBAoSHhzNv3jx69erltFgc7fLly7zwwgt07NiRJ554wub1zp8/z8qVKwH3aGl2q379+rF582Zmzpzp8OTMrFmzGDt2LABTpkyhXr16dxzj5eXFlClTyJkzJ19//TXDhw/n2rVr5MiRA4AmTZqQP39+h8aZFQUFBbF8+XIKFSqEh4e6eouIiIiI60hzcsbf358ePXrQrl07/XIrIiIiLuWVV17hzz//xMfHh3/++Ydq1ard9niPHj0YPnw4GzZsIDIykgIFCjgpUucyDINly5YB8NRTT+Ht7U14eLj1LSIigqSkJC5cuMCFCxfYvXs3s2fPZtCgQXz44YcPbBF19uxZBg4cCMCIESPo1q2boz+k+/Lx8eHpp59m7Nix/PDDD5k6OTNjxgx+/fVXfv31V9asWcM333yDn59futYyDIOvv/6a5ORk6tWrR5kyZewcrWM99thjvPTSS2zZsoXDhw9Tvnx5h+wTGhrKoEGDAHjttdes827uxsPDg/Hjx5M7d25Gjx7NO++8Q86cOQG1NHMkzZoREREREVeU6uRMjhw5uH79OrGxsfz++++sXr2avn370r9/f2rUqOHIGEVEREQeaNy4cYwfPx5IqdRo2bLlHccUL16cOnXqsH37dhYsWGC9oZrVHDlyhNOnT+Pj48O3335LtmzZbns8OTmZixcvEh4ezrlz55g6dSqzZ8/mxx9/ZNasWbz11lu89NJLd73pb87duHTpErVq1eKTTz7JqA/rvp555hk+/vhjli9f7tAb9c4WEhJi/fePP/7Ijh07+OuvvyhZsmSa1jl58iRDhgy5LYnnbgoWLEjbtm0JDg7mt99+47333rP7HufPn6dHjx7ExsbSqVMna/XM/VgsFkaNGkVgYCAvv/wyUVFRQEryWEREREREso5Ul76cP3+e3377jc6dO+Pp6UlERATjxo2jdu3a1KhRg88//5xz5845MlYRERGRu/rjjz94+eWXAfj00095/PHH73mseQPUHMCdFS1fvhxIaaP038QMpLy6v0CBAtSoUYNOnTrxxx9/sG7dOurWrUt0dDRvvfUWlSpV4vfff7+j5e2YMWNYs2YNAQEB/P777/j6+mbIx/QgpUqVolOnTgBMnDjRydE4jpmceeedd8ibNy/bt2+ndu3aBAcHp+r85ORkJkyYQLVq1Vi2bBl+fn58/vnnPPvss44M22H69u0LwK+//mr39szx8fH06tWLM2fOULFiRWbOnJmmuUovvfQSU6ZMwcPDg8aNG1O2bFm7xiciIiIiIq4t1ckZPz8/evfuzYIFCzh79izjxo2jVq1aGIbBnj17eOONNyhZsiTt2rVj+vTp3Lhxw5Fxi4iIiACwdu1a+vfvD8Dw4cN59dVX73u82Tpo2bJlWfb3FTM506ZNm1Sf07RpUzZv3sz06dMpVqwYJ0+epE+fPjRp0oTNmzcDsG7dOkaNGgXA999/73LVKc8//zwAU6dOJS4uzsnR2N+ZM2c4ffo0np6evPnmm2zfvp26dety+fJlOnXqxIcffkhycvI9zz927Bht2rRh6NChREdH07RpU3bt2sUrr7zitu2MH3roIfz8/Dh06BChoaF2W9cwDIYNG8aGDRsIDAxk7ty55MqVK83rDBo0iBMnTrBkyRK7xSYiIiIiIu4hXX9l5c+fnxEjRrBt2zb27t3LG2+8QbFixUhKSmLFihUMHDiQggUL0r9/f4KDg+3+KjURERERgL1799KjRw9u3rzJQw89xLhx47BYLPc9p1q1apQpU4a4uDiWLl2aQZG6jqSkJOuA97Zt26bpXA8PD5544gkOHjzIBx98QLZs2di4cSMNGzakb9++9O3bl+TkZAYMGGBNmLmSTp06UaJECS5fvszs2bOdHY7dbdy4EYAaNWqQPXt2SpYsybp163jmmWcwDIP33nuP7t27c+XKldvOS05O5uuvvyYoKIjVq1eTLVs2vvrqK9asWUOFChWc8aHYTY4cOejevTuQUj1jL9999x0//vgjFouF3377jYoVK6Z7reLFi5MjRw67xSYiIiIiIu7B5pfAVa5cmbFjx3Ly5ElWrlzJwIEDyZEjBzExMfz666907tyZokWL8sYbb9gjXhEREREAzp07R6dOnbh69SqNGzfm119/TVVLIYvFkqVbm4WGhnL16lUCAwOpU6dOutbIli0b7777LocPH2bgwIHWG9RnzpyhfPnyfPfdd3aO2j48PT155plnAPjhhx+cHI39mS3NGjdubH2fn58fEydO5KeffsLPz4+FCxdSt25ddu7cCcChQ4do3rw5I0aMICYmhpYtW7J7925eeOEFt62W+a9+/foB8Ntvv5GYmGjzejt37uTFF18E4JNPPrG2yxMREREREUkLu/7F1bJlS3766SciIiKYOXMmnTp1ss6n+eabb+y5lYiIiGRhUVFRdO7cmdOnT1OhQgXmzZuHv79/qs83W5stWLDALjdr3YnZ0qxVq1Z4eXnZtFaRIkWYOnUq27Zto3Xr1hQtWpQ//viDgIAAe4TqEE8//TReXl6EhISwe/duZ4djV3dLzpieeuopQkJCKF26NMeOHaNRo0Y899xz1KhRgw0bNhAQEMD333/PihUrMt3sk44dO5IvXz4iIiJYvHixzet9/fXXJCUl0aNHjwe2URQREREREbkXh7wczmKx4OHhgcVieWBrEREREZG0uHnzJr169WLXrl0UKFCAJUuWkDdv3jSt0bhxY/Lly8fly5dZv369gyJ1TWZyJq0tze6ndu3arFixgjNnzlCzZk27resIhQoV4qGHHgIyV/VMbGysdabK3ZIzALVq1WLbtm107tyZuLg4Jk6cSFxcHO3atSMsLIznn38+01TL3MrHx4cBAwYAMHnyZJvWunLlCrNmzQLg9ddf1986IiIiIiKSbnb962vNmjUMHjyYggUL8vjjj7N48WISEhIoXLgwL7zwgj23EhERkSzIMAwGDx7M8uXLyZ49O4sWLaJ06dJpXsfLy4uuXbsCWau1WUxMjDUZZc/kjLt57rnnAJg+fTrXr193cjT2sW3bNhITEylcuDAlSpS453F58uRh/vz5/N///R9VqlRh8uTJBAcHU7JkyQyMNuMNHjwYgIULF3L27Nl0r/PLL78QGxtL9erVadSokb3CExERERGRLMjm5Mz+/ft56623KFmyJK1bt2bq1KlERUXh7+9P3759CQ4O5vTp03z88cf2iFdERESysHfffZfp06fj6enJ7Nmz0z0zBf5tbfbPP/9gGIadInRtGzZs4ObNmxQrVsztB73bolWrVlSoUIHo6Ghmzpzp7HDsYuPGjUBK1cyDqjk8PDx4++232bt3L4MHD84S1R+VK1emadOmJCcnM3Xq1HStYRiGtdrqueeeyxKfNxERERERcZx0JWciIyP56quvqFu3LtWqVeOTTz7h9OnTWCwWWrduzc8//8z58+eZPn067dq1y5TtEURERCRjTZw4kY8++giASZMm2TyEu127dvj7+3Py5MlMN3vkXlasWAGkVM1k5RvLFovFWj0zYcKETJGcu9+8GUkxZMgQAKZMmUJycnKaz1+zZg0HDhwgICCAJ554wt7hiYiIiIhIFpPqrElcXByzZs2iS5cuFCtWjJdffpnQ0FAMw6Bq1ap88sknnDp1imXLltG/f3+yZ8/uyLhFREQkC5k/fz5Dhw4FYNSoUQwaNMjmNbNly0b79u2BrNPazBHzZtzVk08+iZ+fH7t27WLz5s3ODscmhmEoOZMKjzzyCIGBgZw4ccJ6LaTFhAkTAOjXrx85cuSwd3giIiIiIpLFpDo5U6BAAfr168eSJUtITEykYMGCvPTSS4SGhrJ7925ee+01ihQp4shYRUREJAvasmULvXv3Jjk5mUGDBvHee+/Zbe1bW5tldpcuXbIOjG/Tpo2To3G+PHny0Lt3b+Dfm+7u6ujRo1y4cAFfX19q1arl7HBcVrZs2awVL5MnT07TuefPn+fvv/8G4Pnnn7d7bCIiIiIikvV4pfbA6OhoLBYLfn5+dO/enfbt2+Pp6cnu3bvT3QpkwIAB6TpPREREsoYjR47QpUsXYmNj6dixIz/88INd23F17doVDw8Pdu7cycmTJzP1UPRVq1ZZK54LFSrk7HBcwnPPPcfPP//M77//zrhx48iTJ4+zQ0oXs2qmTp06+Pr6Ojka1zZkyBC+++475s6dS2RkJAUKFEjVeVOmTCExMZGGDRtSo0YNB0cpIiIiIiJZQaqTM6a4uDj++OMP/vjjD5s2tlgsSs6IiIjIPV24cIGOHTty8eJFateuzezZs/H29rbrHvny5aNp06asXbuWuXPn8sILL9h1fVeilmZ3atCgATVr1mTnzp1MmzaNl19+2dkhpcvGjRsBtTRLjRo1alC/fn22bNnCzz//zGuvvfbAc5KSkpg0aRKgqhkREREREbGfVLc1g5R+1vZ8ExEREbmb+Ph4unbtytGjRylVqhQLFy4kICDAIXtlldZmSs7cyWKx8NxzzwHwww8/uO3vp5o3kzZDhgwB4Mcff0zV13zJkiWcPHmS3Llz8+ijjzo6PBERERERySJSXTmzatUqR8YhIiIiYjVv3jy2bNlC7ty5WbJkiUPbcPXo0YOXX36ZtWvXcvnyZbdtbXU/x48f5+jRo3h6etKiRQtnh+NS+vbty2uvvcbhw4dZuXKl283jiYqKYs+ePQA0atTIydG4hz59+vDSSy9x6NAh1q5d+8Br4ocffgBg4MCB+Pv7Z0SIIiIiIiKSBaQ6OaM/5EVERCSjLFiwAIBBgwZRsWJFh+5VpkwZgoKC2LNnDwsXLqR///4O3c8ZVqxYAUDDhg3JkSOHk6NxLTly5OCJJ55gwoQJ/PDDD26XnNm8eTOGYVCmTBnNEkqlgIAAHn/8cSZPnszkyZPv+3fOyZMnWbhwIQDPPvtsRoUoIiIiIiJZQJramomIiIg4WnJyMosXLwagS5cuGbJnZm9tppZm92e2Nvvnn38IDw93cjRpY7Y0U9VM2pitzf78808uX758z+MmT56MYRi0bt3a4YliERERERHJWpScEREREZeydetWLly4QM6cOWnatGmG7GkmZ4KDg4mNjc2QPTNKcnKytXJGyZm7q169Oo0bNyYxMZEpU6Y4O5w02bhxI6B5M2lVt25datSoQXx8PDNmzLjrMTdv3uTHH38E4Pnnn8/I8EREREREJAtQckZERERcitlCqH379nh7e2fInrVq1aJ48eLcuHHDmsjILHbv3s3FixcJCAigQYMGzg7HZZk33ydNmkRSUpKTo0md5ORkJWfSyWKxWKtnzOqY/5o7dy7nz5+nUKFC9OjRI6NDFBERERGRTE7JGREREXEpZnImo1qaQcqNWvPma2ZrbWYmm1q0aJFhyS539Mgjj5A3b15Onz7NokWLnB1Oquzbt4+oqCgCAgKoVq2as8NxO/369cPf35+wsDA2bdp0x+MTJkwAYPDgwbp2RERERETE7pScEREREZdx7tw5QkNDsVgsdOrUKUP3NlubzZ8/320qJ1JD82ZSx8/Pj6eeegqAH374wcnRpI45b6Z+/fp4eXk5ORr3kytXLh599FEgpXrmVgcOHGDVqlV4eHhYK2xERERERETsSckZERERcRlmxUK9evUoWLBghu7dvHlzcuXKRWRk5F1fRe+O4uPjWbt2LQBt2rRxcjSub/DgwUDK7KFLly45OZoHM5MzammWfmbi5ffffycqKsr6/okTJwIpFXwlSpRwSmwiIiIiIpK5KTkjIiIiLsMZLc1M3t7e1n1nzpyZ4fs7wqZNm4iJiaFAgQJqe5UKFStWpHr16iQlJTF37lxnh/NAmjdjuyZNmlC5cmViYmKs131sbCzTpk0D4LnnnnNidCIiIiIikpkpOSMiIiIuIT4+nmXLlgHOSc4ADBw4EEgZCr9//36nxGBPt7Y0s1gsTo7GPZhtrmbPnu3kSO7v4sWLHDp0CICGDRs6ORr3ZbFYrBVTZmuz33//natXr1KqVCk6dOjgzPBERERERCQTU3JGREREXMLatWu5ceMGhQoVolatWk6JoW3btnTr1o3ExEReeOEFDMNwShz2onkzaWcmZ5YvX87ly5edHM29mVUzVapUIXfu3E6Oxr0NGDAAHx8fQkNDCQ0Ntc4ceuaZZ/D09HRydCIiIiIiklkpOSMiIiIuwWxp1rlzZzw8nPcryrhx4/D19WX58uXMmTPHaXHY6tq1a2zZsgXQvJm0qFixIkFBQSQmJrp0azNz3kyjRo2cHIn7y5cvHw8//DAAI0aMYPPmzXh7ezNo0CAnRyYiIiIiIpmZkjMiIiLiEpw5b+ZWZcuW5dVXXwXg5ZdfJiYmxqnxpNfq1atJTk6mQoUKGmieRo888ggAf/75p8P3MgyDgwcPMnPmTK5du5bq88zkjObN2MeQIUMAWL9+PQAPP/wwBQsWdGZIIiIiIiKSySk5IyIiIk536NAhjhw5gre3N+3atXN2OIwcOZLixYtz8uRJPvvsM2eHky5qaZZ+ZmuzZcuWcfXqVbuvHx0dzbx58xg6dChlypShUqVK9OvXjz59+qSqlV5CQgJbt24FlJyxl5YtW1K2bFnr/59//nknRiMiIiIiIlmBWyZnxo4dS7169ciRIwcFChSgZ8+eHDx48LZjDMNg1KhRFClSBH9/f1q2bMnevXtvOyY+Pp7hw4eTL18+smfPTvfu3Tlz5kxGfigiIiLCv1UzzZs3J0eOHE6OBrJnz87nn38OwMcff8yJEyecG1A6KDmTfpUrV6Zq1aokJCTYpbWZYRiEhYXx2Wef0aZNG/LkyUOPHj2YMGECJ06cwMfHBy8vL5YsWcI///zzwPV27dpFbGwsefLkoUKFCjbHJ+Dh4cHgwYMBqFSpEs2bN3dyRCIiIiIiktm5ZXJmzZo1/O9//2PTpk0sW7aMxMRE2rdvz40bN6zHfPrpp3z55Zd8++23bN26lUKFCtGuXTuuX79uPebFF19kzpw5zJo1i/Xr1xMdHU3Xrl1JSkpyxoclIiKSZS1YsACArl27OjmSfz366KO0atWKuLg4XnnlFWeHkyZnzpzhwIEDeHh40LJlS2eH45bM6pnZs2ene40rV64wbNgwBg8eTO3atXn99ddZuXIlCQkJlC5dmqFDhzJ//nwuXbrEG2+8AaT8fvqgVnq3zptx5nymzObFF19k9OjR/Pbbb1gsFmeHIyIiIiIimZyXswNIjyVLltz2/6lTp1KgQAG2b99O8+bNMQyD8ePH8/bbb1uHe/78888ULFiQmTNn8uyzz3Lt2jWmTJnC9OnTra8onTFjBsWLF2f58uV06NDhjn3j4+OJj4+3/j8qKgpIaS2RkJDgqA9XxOHM56+exyKuLzNer1FRUaxduxaA9u3bu9TH9vnnn1O/fn3+/vtvlixZQps2bZwdUqoEBwcDUKdOHQICAlzqc+ouevbsyahRo1i6dCkXLlwgV65caV5j6NChzJo1CwA/Pz9atmxJ+/bt6dChA+XKlbstAfDaa68xffp0Tp06xf/93/8xevToe65rzkWpX7++vrZ25OnpyciRI4HM9T1WUi8z/owVycx0zYq4D12vktWk9rnulsmZ/zKHp+bJkweA48ePExERQfv27a3H+Pr60qJFC0JCQnj22WfZvn07CQkJtx1TpEgRqlWrRkhIyF2TM2PHjr3rH8pLly4lW7Zs9v6wRDLcsmXLnB2CiMPs3r2bxYsXk5yc/MBjs2XLxpNPPpmum7EZJTNdryEhISQmJlKkSBEOHz7M4cOHnR3SbTp27MjChQsZMmQI48ePx8vL9X99mjFj3I7B8wAAS+FJREFUBgAlSpRg0aJFTo7GfRUrVowzZ87w0Ucf0apVqzSde/r0aX7//XcAXn31VerVq4evry/APZ/nffv25eOPP+azzz6jePHiFClS5K5rr1q1CkhpxaWvr4j9ZaafsSJZga5ZEfeh61Wyigd1QzC5/t2FBzAMg5dffpmmTZtSrVo1ACIiIgAoWLDgbccWLFiQkydPWo/x8fEhd+7cdxxjnv9fI0eO5OWXX7b+PyoqiuLFi9O+fXty5sxpt49JJKMlJCSwbNky2rVrh7e3t7PDEbG7uLg4hg4dyrlz51J9jo+PD/PmzXO51jaZ8XqdM2cOAI888gidO3d2cjR3atSoEVWrVuXMmTMcO3aMF1980dkh3ZdhGNZh5s8880yakwryryeffJKPPvqII0eO8Nlnn6Xp3H79+mEYBt27d6dp06apumY7depEaGgoS5cuZd68ecydO/eO70Fnzpzh4sWLeHp68r///Y+AgIA0f1wicneZ8WesSGama1bEfeh6lazG7Lj1IG6fnBk2bBi7d++2tne41X//mDUM44E32e53jK+vr/UVj7fy9vbWNxbJFPRclsxqwoQJnDt3jmLFivHuu+/e99j4+Hhef/11goODmTp1Ks8++2wGRZk2meV6TU5OtrYr7datm0t+TAUKFGDs2LEMGTKEDz/8kP79+1OoUCFnh3VP+/btIzw8HD8/P5o3b+6Sn1N30adPHz766COWLVtGTEwMgYGBqTpv7969/PnnnwC89957nDlzJtXX7Lfffku1atVYsmQJixcvpkePHrc9vm3bNgBq1Khxx4uMRMQ+MsvPWJGsQtesiPvQ9SpZRWqf526dnBk+fDjz5s1j7dq1FCtWzPp+84ZJREQEhQsXtr4/MjLSWk1TqFAhbt68yZUrV277wzYyMpLGjRtn0EcgIiKOFhsby9ixYwF45513eOaZZx54TmJiIi+//DKvvPIKbdu2pWzZso4OM8sKDQ3l/PnzBAQE0Lx5c2eHc0+DBg1i4sSJbNu2jTfffJNp06ZlyL6GYXD8+HF27tzJzp072bFjB0eOHLlve77r168D0KxZM/z8/DIkzsyqatWqVKpUiQMHDjB//nyeeOKJVJ03evRoDMOgV69eVK9enTNnzqR6z/Lly/Pqq68yZswYRowYQbt27W5rnxsSEgKg31dFRERERETcnIezA0gPwzAYNmwYf//9NytXrqR06dK3PV66dGkKFSp0Wx/DmzdvsmbNGusfsnXq1MHb2/u2Y8LDwwkLC9MfuyIimcjEiROJiIigZMmSPPXUU6k6Z8SIEbRo0YIbN27w5JNPkpSU5OAos66FCxcC0K5dO3x8fJwczb15eHjw7bffAvDzzz+zadMmu+8RHx/Pjh07mDp1KiNGjKB58+bkypWLsmXL0qtXLz788EMWLFjAgQMHOHTo0D3fwsPDAXj44YftHmNWY7FYePTRRwGYPXt2qs7ZvXs3s2fPxmKxMGrUqHTt+9Zbb1G8eHFOnjzJxx9/fNtjZnKmUaNG6VpbREREREREXINbVs7873//Y+bMmcydO5ccOXJYZ8QEBgbi7++PxWLhxRdfZMyYMZQvX57y5cszZswYsmXLRt++fa3HPv3007zyyivkzZuXPHny8OqrrxIUFETbtm2d+eGJiIidxMTEWG9svv3226m++e/h4cG0adMICgpiw4YNfPnll7z22muODNXlpaY1aHqYyZkuXbrYfW17a9CgAQMHDmTatGkMHz6czZs34+Fhn9e5fPfdd7z00kskJCTc8ZiPjw/VqlWjZs2a1KxZkypVqjzwuRwQEEDNmjXtEltW9+ijj/Lhhx8SHBxMVFTUA+cMjh492npetWrV7vo1fZDs2bMzfvx4evXqxSeffMKAAQMoV64csbGxhIaGAqqcERERERERcXdumZyZMGECAC1btrzt/VOnTmXgwIEAvP7668TGxjJ06FCuXLlCgwYNWLp0KTly5LAeP27cOLy8vHjssceIjY2lTZs2TJs2DU9Pz4z6UERExIEmTJjA+fPnKV26tPXnQ2qVKlWK8ePHM3jwYN555x06depEtWrVHBOoi3v77beZMWMG06ZNs+tw+fPnz7N161YAOnfubLd1Henjjz/m77//Ztu2bfz0008MHjzY5jWvXbvG22+/TUJCArlz57YmYWrVqkXNmjWpVKmS+jI7UbVq1ahQoQKHDh1iwYIF1hf63M3OnTv5+++/sVgsvP/++zbt+9BDD9G+fXuWLl3KiBEjWLBgAdu3bycxMZHChQtTsmRJm9YXERERERER53LbtmZ3e7v1xpvZSiI8PJy4uDjWrFlzx001Pz8/vvnmGy5dukRMTAzz58+nePHiGfzRiIiII9y4cYNPPvkESJk1k56b24MGDaJLly7cvHmTAQMGcPPmTXuH6fJ++OEHxowZw6lTp3jooYfYv3+/3dZetGgRkNJq9NYZca6sYMGC1lZVI0eO5MqVKzav+d1333Ht2jWqVKnCxYsXWblyJV9++SX9+/cnKChIiRknS0trM/O50adPH6pUqWLzvt988w3e3t4sWrSI+fPn3zZvxhGVbCIiIiIiIpJx3DI5IyIi8iDfffcdFy5coEyZMvTv3z9da1gsFiZPnkyePHnYsWMH//d//2fnKF3bmjVrGD58OACFChXi2rVrdOnShcjISLus704tzW41bNgwKleuzMWLF60trNLrxo0bfPnll0DKnBF7tUkT+zKTM4sXL+b69et3PSY0NJS5c+fi4eHBe++9Z5d9K1SowKuvvgqkzMJasWIFoJZmIiIiIiIimYHuAIiISKYTHR3NZ599BsB7771nU+VB4cKF+eGHHwAYM2YMW7ZssUuMru7EiRM88sgjJCYm0qdPH3bv3k3ZsmU5fvw4PXv2JC4uzqb1b968ydKlSwH3S854e3vz1VdfAfD9999z7NixdK81adIkLl26RJkyZejdu7e9QhQ7q169OuXLlyc+Pp4FCxbc9RizaqZv375UqlTJbnu//fbbFC9enBMnTlivmUaNGtltfREREREREXEOJWdERCTT+fbbb7l48SLly5enX79+Nq/36KOP8vjjj5OUlMSAAQOIjY21Q5Su68aNG/To0YOLFy9Su3ZtpkyZQv78+Vm4cCG5c+dm48aNDBw4kOTk5HTvsX79eq5fv06BAgWoW7euHaPPGO3ataNdu3YkJCTw7rvvpmuNuLg4axJx5MiReHm55SjALOHW1mZ//vnnHY9v3bqV+fPn4+Hhke7nw71kz56dcePGWf/v4+ND7dq17bqHiIiIiIiIZDwlZ0REJFOJioqy3vB+99137XbD+9tvv6Vw4cIcPHiQkSNH2mVNV2TOcNu9ezcFChTgn3/+IVu2bABUrFiRv//+G29vb37//XebWjeZLc06derktq28zJlGM2fOJDQ0NM3nT5s2jfDwcIoVK8aAAQPsHZ7Y2SOPPAKkzEqKjo6+7TGzauaJJ56gQoUKdt/74Ycfpl27dkDKjCZfX1+77yEiIiLy/9q77/Ccr/+P4687OyFC1Kgde++arVlKJUXVFrFXrZb6GmltKTVKbEJI0daoTVFq1xalFVVixZ6xMz6/P3zdv/oaNe6R8XxcV65L7s/5nPM6muPudb9zzgcAYFuJ89MQAACeIzg4WNeuXVO+fPnUtGlTi/Xr7e2tkJAQSdL48eO1adMmi/WdkAwbNkyLFi2Ss7OzlixZoqxZsz5xvUqVKpoxY4Ykafjw4QoNDX2tcRLr82b+qUSJEmrWrJkkqW/fvq90b0xMjL7++mtJUp8+feTi4mLxfLCs4sWLK1euXLp//77551eSdu3apdWrV8vR0dHiu2YeM5lMmj59uurWrWux59kAAAAAAOyL4gwAIMm4efOmxowZI+nRs2YsfUxU7dq11bFjR0lSq1atdPPmTYv2b29Lly41f/A7efJkVaxY8ZntAgICNGDAAElShw4d9Ouvv77SOH///bciIiLk5OSkmjVrvlFmexs2bJicnZ21fv16rV+//qXvmz9/vk6dOqX06dOrXbt2VkwIS/nn0WYLFy40vz5w4EBJUsuWLZU7d26rjZ8jRw4tXbpUtWrVstoYAAAAAADboTgDAEgyxo8fr+vXr6tAgQJWe7j66NGjlTNnTp0+fVqfffaZVcawh8OHD8vf31+S1LVr138tGAwZMkSNGzdWTEyM6tevr6NHj770WI93Hbz77rvy8vJ6/dAJgI+Pj7p06SJJ+s9//vNSz+GJi4vTiBEjJEm9evWSu7u7VTPCch4XZ1avXq07d+5o586d+vnnn+Xk5KTAwEA7pwMAAAAAJCYUZwAAScKNGzc0duxYSY92zTg6OlplnJQpUyo0NFQmk0mzZ8/W7t27rTKOLV29elUfffSRbt++rapVq5r/Hl/EwcFBoaGhKl++vG7cuKE6dero8uXLL7zn0qVLWrdunebOnStJ8vX1tUh+exswYIA8PT114MAB/fDDD//afvHixTp27JjSpEmjzp072yAhLKVEiRLKmTOn7t27p9WrV5t3zbRq1Uo5c+a0czoAAAAAQGJCcQYAkCR8++23unnzpgoVKmT+7XZree+998y7TB7vgEisYmJi1KhRI508eVI+Pj5auHChnJ2dX+peNzc3LVu2TD4+Pjpx4oTq1aun+/fvKz4+XsePH9fChQs1YMAA1alTR5kyZVKGDBn0wQcfaN++fZKSTnEmXbp0+s9//iPpUaHmwYMHz21rGIaGDx8uSerRo4c8PT1tkhGWYTKZ9Mknn0h6VARev369nJyczMf8AQAAAADwsijOAAASvevXr2vcuHGSHj3/wVq7Zv6pX79+MplMWrZsmX7//Xerj2ctvXr10saNG5UiRQotW7ZMadOmfaX706VLp1WrVsnLy0s7duxQoUKF5OXlpTx58qhRo0YaMWKEVq9erfPnz8tkMilv3rxq3Lix5syZo3z58llpVrbXs2dPZcyYUSdPntS0adOe227lypU6dOiQUqZMqW7dutkwISzlcfH38VF+bdu2VY4cOeyYCAAAAACQGFGcAQAkemPHjtWtW7dUpEgRNWjQwCZj5s+f3/wb9Il198yUKVMUHBwsSQoLC1ORIkVeq58CBQpoyZIlcnJy0okTJ3T79m25ubnpnXfeUfv27TV58mTt2LFDt27dUkREhL7//nu1bNnSklOxuxQpUmjQoEGSpKFDh+rWrVtPtfnnrpkuXbrI29vblhFhIaVKlTIXY5ydndW/f3/7BgIAAAAAJEoUZwAAidrVq1f17bffSpIGDRokBwfbvbU9Psrohx9+0LFjx2w27psyDEMjR440P8h+8ODBql+//hv1Wa1aNW3btk3z58/XkSNHFB0drd27d2v69Onq3Lmzypcvr5QpU1oifoLVtm1b5c2bV1euXNE333zz1PVffvlFu3btkpubmz7//HM7JIQlmEwm87GGHTt2VLZs2eycCAAAAACQGFGcAQBYxJ07d9SoUaNnfihtLdHR0erRo4du376tYsWKqV69ejYbW5KKFSsmX19fGYahr7/+2qZjv674+Hj16tVLffv2lST17t1bX375pUX6Llu2rJo2baqCBQvKycnJIn0mJk5OTgoKCpL0aDfX+fPnn7j+eNdM+/btlSFDBpvng+UEBgZq9erVGjt2rL2jAAAAAAASKYozAACL+O6777Rw4UL16dNHP//8s1XHio+PV1hYmPLly6d58+ZJevTBty13zTz2ePdMWFiYTp06ZfPxX8XDhw/l7+9vfj7P6NGj9c0338hkMtk5WdJRv359lStXTnfv3tWQIUPMr2/fvl2//vqrnJ2d9cUXX9gxISzBxcVFtWvXlrOzs72jAAAAAAASKYozAACLmD17tvnPbdq00fXr160yzt69e/Xuu++qZcuWOn/+vHLlyqUVK1aoTp06Vhnv35QrV07Vq1dXbGysRo0aZZcML+P27dvy8/PT/Pnz5eTkpLCwMPXq1cvesZIck8mkkSNHSpJmzJihiIgISf+/ayYgIEBZs2a1Wz4AAAAAAJAwUJwBALyxP//8U7t27ZKjo6Ny5sypqKgodevWzaJjXLp0Se3atVOZMmW0c+dOpUiRQkFBQTpy5Ih8fX0tOtarCgwMlCSFhIQ8dZRVQnD58mVVq1ZN69atk4eHh1asWKEWLVrYO1aSValSJfn6+iouLk4DBgzQvn37tGbNGjk4OJiPkwMAAAAAAMkbxRkAwBt7vGumTp06mjdvnhwcHDRv3jwtWrTojfuOiYnRuHHjlCdPHoWEhMgwDLVo0ULHjh1T37595erq+sZjvKnKlSurQoUKevDggcaMGWPvOE+IjIzUu+++qz179iht2rTauHGjatWqZe9YSV5QUJAcHBy0ePFitWnTRpLUtGlT5cqVy87JAAAAAABAQkBxBgDwRmJjYxUWFiZJat26tcqVK2feHdCpUydduHDhtftev369ihUrps8//1y3bt1SqVKltH37doWFhSlTpkwWyW8JJpPJvHtm6tSpunLlip0TPXLo0CFVqFBBx44dU7Zs2bRt2zaVLVvW3rGShcKFCysgIEDSo/8OktS/f397RgIAAAAAAAkIxRkAwBtZu3atLly4oHTp0pmf+zJw4EAVK1ZMV69eVYcOHWQYxiv1GRcXp549e6pmzZr6888/lS5dOs2YMUO7du1ShQoVrDGNN1arVi2VLFlSd+7c0fjx4+0dR1u3blWlSpV0/vx5FS5cWDt27FD+/PntHStZGTx4sNzc3CRJH3/8sQoWLGjnRAAAAAAAIKFwsncAAEhorl27Zv5N93+TK1euZP9w78dHmrVo0ULOzs6SJBcXF82dO1fvvPOOVqxYodDQULVu3fql+ouOjlbTpk21atUqSVL37t01ePBgpU6d2ir5LcVkMmnAgAFq0KCBgoOD1bt3b3l5edk8R3h4uL7++mv9+OOPio+PV8WKFbVixQqlSZPG5lmSu6xZs2rUqFGaOnWqhg8fbu84AAAAAAAgAaE4AwD/EBMTowoVKigiIuKl2js6OmrRokWqV6+edYMlUFeuXNGKFSsk6aniS9GiRTVkyBD17dtXPXr0UNWqVZUjR44X9nf69Gn5+fnp0KFDcnNzU1hYmD755BNrxbe4evXqqWDBgvrjjz80adIkmx5jtXXrVgUFBWnNmjXm15o0aaJZs2bJ3d3dZjnwpG7duqlbt272jgEAAAAAABIYjjUDgH+YO3euIiIi5OHhoYIFC77wK0eOHIqLi1Pz5s21b98+e0e3i3nz5ikmJkalSpVSkSJFnrreu3dvVahQQdHR0WrdurXi4+Of29fu3btVpkwZHTp0SBkyZNDmzZsTVWFGkhwcHMwFmXHjxunOnTtWHc8wDK1cuVLvvvuuKlWqpDVr1sjBwUFNmjTRwYMHtWDBAgozAAAAAAAACRDFGQD4r4cPH2ro0KGSpGHDhunIkSMv/Prrr7/0wQcf6O7du/Lz89OZM2fsPAPbe3yk2fOOLHN0dNScOXPk4eGhX3/9VcHBwc9st2jRIlWuXFkXL15UkSJFzIWaxKhx48bKmTOnrly5ounTp1tljLi4OM2fP1/FihWTn5+ftm/fLhcXF3Xs2FHHjh3TggULVKxYMauMDQAAAAAAgDdHcQYA/is0NFSnTp1SxowZ1alTp39t7+TkpB9//FGFCxfW+fPn5evrq+joaBskTRgOHDig8PBwubi4qGnTps9tlzt3bo0ePVqS1LdvXx09etR8zTAMBQUFqWHDhrp//77q1Kmj7du3K1u2bFbPby1OTk7q16+fJGn06NG6f/++RfufO3euunTpolatWun333+Xp6en+vTpo8jISE2dOlW5cuWy6HgAAAAAAACwPIozACDpwYMH5gd29+3b96WPgkqVKpVWrVqljBkz6tChQ2rcuLFiY2OtGTXBeLxrpl69evL29n5h206dOqlmzZq6f/++WrZsqdjYWD18+FCtW7c2HwPWo0cPLVu2TJ6enlbPbm0tW7ZUlixZFBUVpdDQUIv1u2bNGrVr104XL15UunTpNHz4cJ0+fVojR47U22+/bbFxAAAAAAAAYF0UZwBA0qxZs3T69GllypRJHTp0eKV7s2XLphUrVsjd3V1r1qxRz549ZRiGlZImDA8ePNC8efMkPf9Is38ymUwKCQmRl5eX9uzZo759+6pGjRqaM2eOHB0dNXnyZH377bdydHS0dnSbcHFxUZ8+fSRJI0eOVExMzBv3GR8fb96RU716df3111/q37+/UqdO/cZ9AwAAAAAAwLYozgBI9h48eKARI0ZIkvr16/daD1AvXbq05s2bJ5PJpEmTJmnChAmWjpmgrFixQteuXVPmzJlVo0aNl7onS5YsmjhxoiRpzJgx2rJli3nnUefOna0Z1y7atWun9OnTKzIyUgsWLHjj/n788UeFh4crVapUCggIkIeHhwVSAgAAAAAAwB4ozgBI9mbOnKmzZ88qc+bMateu3Wv3U79+fY0aNUqS9Nlnn2nFihWWipjgPD7SrGXLlq+026V58+Zq0KCBJClHjhzasWOHPvjgA6tktDd3d3f16tVLkjRixAjFxcW9dl8xMTEKDAyUJH3++edKlSqVRTICAAAAAADAPijOAEjW7t+/b941M2DAALm5ub1Rf7169VKHDh1kGIaaNm2qAwcOWCJmghIVFaW1a9dKklq1avVK95pMJoWFhWnBggXau3evChUqZIWECUfnzp2VJk0aRUREKDg4+LX7CQkJ0d9//6306dOre/fuFkwIAAAAAAAAe6A4AyBZmz59uqKiopQ1a1a1adPmjfszmUyaOHGiatSooTt37sjX11dnz561QNKEIywsTPHx8apYsaLy5s37yve7u7urSZMmSps2rRXSJSyenp4KCgqS9Kj4FxkZ+cp93L17V4MHD5Ykffnll0qZMqUlIwIAAAAAAMAOKM4ASLbu3btn/uA8MDBQrq6uFunX2dlZCxcuVKFChRQVFSVfX19FR0dbpG97MwzDfKRZ69at7ZwmcWjfvr0qVaqku3fvqmPHjjIM45XunzBhgi5cuKAcOXKoQ4cOVkoJAAAAAAAAW6I4AyDZmjp1qi5cuKDs2bO/8vFc/8bLy0srV65U+vTpFR4ebvH+7eW3335TRESEPDw81KhRI3vHSRQcHBw0ffp0ubq6at26dfruu+9e+t7r169r5MiRkqQhQ4bIxcXFWjEBAAAAAABgQxRnACRLd+/eNX/oHRgYaJUPvXPkyKEVK1bI0dFRS5Ys0aFDhyw+hq093jXzySefyNPT085pEo98+fLpq6++kiT17NlTly5deqn7Ro0apRs3bqhw4cJq1qyZNSMCAAAAAADAhijOAEiWpkyZoosXL8rHx0cBAQFWG6dMmTL6+OOPJUkTJ0602ji2cPfuXX3//feSONLsdXzxxRcqWrSorl27pp49e/5r+6ioKI0fP16SNGLECDk6Olo5IQAAAAAAAGyF4gyAZOfOnTvmXTNffvmlnJ2drTpe165dJUnfffedrl+/btWxrGnJkiWKjo6Wj4+PKlWqZO84iY6zs7NmzpwpBwcHLViwQKtWrXph+6FDh+revXuqUKGCfH19bZQSAAAAAAAAtkBxBkCyM2nSJF2+fFm5cuWSv7+/1cd77733VLRoUd27d0+zZs2y+njW8vhIs1atWsnBgbeP1/HOO++Yd8107txZ0dHRz2x3/PhxzZw5U5L09ddfy2Qy2SoiAAAAAAAAbIBP1wAkK9HR0Ro1apQk6auvvpKTk5PVxzSZTOrWrZukR4WhuLg4q49paZGRkdq4caNMJpNVj4FLDoYMGSIfHx+dOXNG/fv3f2abr776SrGxsapdu7bee+89GycEAAAAAACAtVGcAZCsTJw4UVevXlWePHls+oD1Zs2aKU2aNDp58qTWrFljs3EtZc6cOZKkatWqKXv27HZOk7ilSJFC06ZNk/SoWLdjx44nrh88eFALFiyQ9OhZMwAAAAAAAEh6KM4ASDZu3bql0aNHS5IGDhxok10zj3l4eKht27aSpODgYJuNawnx8fEKDQ2VJLVu3dq+YZKIGjVqKCAgQIZhqF27dnrw4IH52uPdNE2bNlXx4sXtlBAAAAAAAADWRHEGQLIRHBysa9euKX/+/GrSpInNx+/cubNMJpPWrVuniIgIm4//qgzD0Nq1a1WmTBlFRkYqVapUql+/vr1jJRljxoxR+vTp9eeffyooKEiStGXLFq1Zs0ZOTk4aMmSInRMCAAAAAADAWmz3a+NAErRz50799ttvL9W2YsWKKlOmjJUT4Xnu3r2rsWPHSnr0PA9HR0ebZ8iZM6d8fX21YsUKTZo0SRMmTLB5hpe1detWDRgwQFu3bpUkpUyZUhMnTpSHh4edkyUdadOm1YQJE9SkSRONGDFCDRs2VL9+/SRJ7du3V+7cue2cEAAAAAAAANZCcQZ4TUuXLn2lXQQODg5atmyZfH19rZgKzzNv3jxdu3ZNOXPmVKNGjeyWo1u3blqxYoVCQ0M1fPhweXp62i3Ls+zbt0+BgYFau3atJMnV1VWffvqp+vbtq3Tp0tk5XdLTqFEjfffdd1q5cqVq1qypqKgoubu768svv7R3NAAAAAAAAFgRxRngNRw+fFj+/v6SpEqVKilr1qwvbH/q1Clt27ZNTZo00datW1WiRAlbxMR/GYZhfs7Lp59+apddM49Vr15d+fLlU0REhObOnatPP/3Ubln+6Y8//tBXX32lxYsXS5KcnJzUtm1bBQYGKkuWLHZOl3SZTCZNmTJFmzdvVlRUlCSpR48eevvtt+2cDAAAAAAAANZEcQZ4RVevXtVHH32k27dvq1q1alq7dq2cnZ1feE9MTIw+/PBDbdiwQb6+vtq9e7cyZ85so8TYvHmzfv/9d3l4eKhNmzZ2zeLg4KCuXbuqW7dumjhxorp06SKTyWS3PBERERoxYoS+++47xcfHy2QyqXnz5ho0aJBy5cplt1zJSZYsWfT111/r008/VerUqdWnTx97RwIAAAAAAICVOdg7AJCYxMbGqlGjRjp58qR8fHz0448//mthRpKcnZ21cOFCFSxYUFFRUfLz89Pt27dtkBiSzLtmWrZsqdSpU9s3jKSAgAB5enrq6NGj2rBhg10y7N27V5988okKFCiguXPnKj4+XvXr19ehQ4cUFhZGYcbGOnXqpJCQEK1Zs0Zp0qSxdxwAAAAAAABYGcUZ4BX06tVLGzduVIoUKbRs2TKlTZv2pe9NnTq1Vq5cqXTp0unAgQNq1qyZ4uLirJgW0qMj5ZYuXSrp0fNeEgJPT08FBARIkiZOnGizcQ3D0MaNG1WjRg298847Wrx4sQzD0EcffaTdu3dryZIlKly4sM3y4P85ODioTZs2KleunL2jAAAAAAAAwAYozgAvadasWZowYYIkKSwsTEWKFHnlPnx8fLR8+XK5ublpxYoV6tWrl6Vj4n9MmTJF8fHxql69ugoWLGjvOGZdu3aVJK1YsUInT5606ljx8fH66aefVK5cOVWvXl0bNmyQo6Oj/P39dfjwYS1btkzvvPOOVTMAAAAAAAAA+H8UZ4CXsGPHDnXq1EmSNHjwYNWvX/+1+ypXrpzmzp0rSRo/frwmTZpkkYyJybFjx1S7dm2NGDFC9+/ft9o49+7d04wZMyRJ3bt3t9o4ryNfvnyqWbOmDMPQ5MmTrTJGTEyMQkNDVahQIX388cfavXu33Nzc1LVrVx0/flxz585VoUKFrDI2AAAAAAAAgOejOAP8izNnzujjjz9WTEyMGjRooMDAwDfus2HDhhoxYoSkR0WD1atXv3GficWDBw/UqFEjrV27VgMGDFDBggW1dOlSGYZh8bHmz5+va9euKUeOHKpTp47F+39Tj3fPhISE6O7duxbt+9SpU8qXL59at26to0ePysvLS/3799epU6cUHBysHDlyWHQ8AAAAAAAAAC+P4gzwAvfu3VP9+vV18eJFFS1aVKGhoXJwsMyy6du3r9q0aaP4+Hg1btxY4eHhFuk3oQsMDFR4eLjSpk2rzJkz6+TJk6pfv75q1qypP/74w2LjGIZhPoaua9eucnR0tFjflvLhhx/Kx8dH169f1/z58y3a98iRI3Xy5EllyJBBI0eO1OnTpzV8+HClT5/eouMAAAAAAAAAeHUUZ4DnMAxDbdu21b59+/TWW29p2bJlSpkypcX6N5lMmjJliqpVq6bbt2/L19dXUVFRFus/Ifrll180evRoSdLs2bMVERGhAQMGyNXVVRs2bFDRokX12Wef6caNG2881tatW3Xo0CF5eHioTZs2b9yfNTg6OqpLly6SpIkTJ1ps91B0dLTCwsIkSfPmzVOfPn2UKlUqi/QNAAAAAAAA4M1RnAGeY9SoUVqwYIGcnJy0aNEiqxwD5eLiokWLFil//vw6e/as/Pz8dOfOHYuPkxBcu3ZNAQEBkqSOHTvKz89PKVKk0LBhw/THH3+oXr16iouL07fffqu8efNq5syZiouLe+3xHu+a8ff3V5o0aSwyB2to06aN3N3dFR4erm3btlmkz/nz5+v27dvKmzevqlWrZpE+AQAAAAAAAFgOxRngGVatWqV+/fpJevQhf+XKla02Vpo0abRq1SqlS5dO+/fvV/v27a02lr0YhqGOHTvq3Llzyps3r8aMGfPE9Zw5c+qnn37SunXrVKBAAV2+fFnt27dXmTJltH379lce7/Tp01q6dKmk/3+uS0Ll7e2tFi1aSJKCg4PfuD/DMDRlyhRJj4pgJpPpjfsEAAAAAAAAYFkUZ4D/ceLECTVr1sxcUOjcubPVx8yZM6eWLl0qBwcHLViwQGvWrLH6mLY0Z84cLVq0SE5OTpo/f75SpEjxzHY1atRQeHi4xo0bp1SpUmn//v169913zUehvawpU6YoLi5O1apVU+HChS0xBat6XEBasmSJzp0790Z97d69W+Hh4XJ1dVWrVq0skA4AAAAAAACApVGcAf7h4cOHatKkiW7duqWKFSuaj8ayhQoVKqhnz56SpC5duuju3bs2G9ua/v77b3Xr1k2SNGTIEJUqVeqF7Z2dndWzZ0/99ddf5uLCF198oS+//PKlnsly7949zZgxQ5LM4yZ0RYsWVaVKlRQXF6epU6e+UV+Pd800btxY3t7elogHAAAAAAAAwMIoziBBi4mJ0ebNm3X9+nWbjDdgwADt2bNHadKk0YIFC+Ti4mKTcR8bPHiwsmbNqsjISA0ZMsSmY1tDbGys/P39dfv2bVWqVEl9+vR56XvTp0+v2bNnKygoSJI0bNgw9ezZU/Hx8S+8b8GCBbp69aqyZ88uPz+/N8pvS48LSVOnTtXt27dfq49r167phx9+kCSb7PgCAAAAAAAA8HooziDBMgxDzZo1U5UqVZQuXTpVqlRJI0eO1OHDh19qB8WrWrNmjfn4rNmzZytr1qwWH+PfpEyZUpMmTZIkjRkzRr///rvNM1jS8OHDtXPnTnl5eWnu3LlydHR85T769u1r/juZMGGC2rZtq9jY2Ge2NQzDvNupa9eurzWevdSrV0+5c+fWlStXnnomz8uaM2eO7t+/r2LFiqls2bIWTggAAAAAAADAUijOIMEKDg7WokWLJElxcXHaunWr+vbtqyJFiihHjhzq3LmzVq5caZHjv86fP6+AgABJjz7Ur1u37hv3+br8/PxUv359xcbGqmPHjv+6UySh+u233zR06FBJ0uTJk5U9e/bX7qtLly7m4k5oaKiaNGmiBw8ePNVu27ZtCg8Pl7u7u9q0afPa49mDk5OThg8fLkkaPXq0Ll68+Er3G4ZhPhKtc+fOMplMFs8IAAAAAAAAwDIoziBB2rVrl3r37i3p0W6JEydOaOLEiapdu7bc3Nx0+vRpTZ06VX5+fkqbNq0+/PBDzZo167UKGXFxcWrRooUuX76sYsWK6ZtvvrH0dF7ZhAkTlDJlSu3cudP8/JTEJDo6Ws2bN1dcXJyaNWumZs2avXGf/v7+WrhwoVxcXLR48WLVrVv3qcLc410z/v7+ifJ5Kw0bNtQ777yj27dvmwtbL2vTpk06duyYUqZMaZG/bwAAAAAAAADWQ3EGCc61a9fUqFEjxcTE6JNPPlHXrl3l4+OjTz/9VKtXr9bVq1e1cuVKde7cWdmyZdP9+/e1Zs0atW3bVrVq1dKlS5deabyRI0dq48aNSpEihX744Qe5ublZaWYvL0uWLOZdFP/5z3904cIFOyd6Nd27d9eJEyeULVs285FkllC/fn2tXLlSHh4e+vnnn1WrVi3dvHlTknTmzBn99NNPkh7tfkqMTCaTRo4cKUmaNm2ajh8//tL3Pt414+/vL09PT6vkAwAAAAAAAGAZFGeQoMTHxysgIECnT59W7ty5NXPmzKeOZ/Lw8FCdOnU0efJkRUZG6vDhwxo6dKjc3d21fv16lShRQlu2bHmp8bZv366vvvpKkjRx4kTly5fP4nN6XZ9++qlKlSqlmzdv6rPPPrN3nJe2aNEihYaGymQyKSwsTKlTp7Zo/zVq1NC6devk5eWlrVu3qlq1arpy5YqmTJmiuLg4Va1aVUWKFLHomLZUtWpV1a5dW7GxsQoMDHype86fP28uTHXq1Mma8QAAAAAAAABYAMUZJCijR4/WypUr5erqqoULF8rLy+uF7U0mkwoVKqTAwEDt2bNHBQoUUFRUlKpVq6agoKAXHnN2/fp1NWvWTHFxcWrevLn5mTMJhaOjo6ZPny4HBwd9//33+vnnn+0d6V+dOXNGHTp0kCT17dtXlSpVsso4FStW1KZNm5QuXTrt379flSpVMh//1q1bN6uMaUtBQUEymUz64YcftGfPnn9tP2vWLMXGxqpChQoqWrSoDRICAAAAAAAAeBMUZ5BgbN26Vf3795f06NkhxYsXf6X7CxUqpN27d8vf319xcXHq37+/fH19deXKlafaGoahdu3amXfoTJkyJUE+QL1kyZLq3r27pEcPef/fZ6wkJLdu3ZKfn5+uX7+uUqVKadCgQVYd7/EOqSxZsujPP//UlStXlD17dvn5+Vl1XFsoVqyYWrRoIenRsXaGYTy3bVxcnKZPny6JXTMAAAAAAABAYkFxBgnCpUuX1KRJE/Mulvbt279WPylTptScOXM0c+ZMubm5ac2aNSpRooS2b9/+RLupU6dqyZIlcnZ21vfff5+gn9ExZMgQZcmSRSdPntSwYcPsHeeZYmJi1KhRI4WHhytDhgxauHChXFxcrD5u/vz5tXXrVuXKlUvSo10zTk5OVh/XFoYOHSoXFxdt2rRJ69ate267NWvW6PTp0/L29lbDhg1tmBAAAAAAAADA66I4A7t7XJCJiopS/vz5NXXq1DfaxWIymdS2bVvt2rVLefPm1dmzZ1W5cmWNHj1ahmHo0KFD5me4jBo1SqVKlbLUVKzC09NTEydOlCR98803Onz4sJ0TPckwDHXp0kU///yzPDw8tHLlSvn4+Nhs/Bw5cmj37t1asmSJevbsabNxrS179uzq2rWrpEe7Z553RN/UqVMlSa1bt5abm5vN8gEAAAAAAAB4fRRnYHfDhw/Xhg0b5O7urkWLFillypQW6bdo0aLau3eveUfOF198obp166px48Z68OCB6tSpox49elhkLGurW7eu6tWrp9jYWHXq1OmFz9KxtaCgIM2cOVMODg5asGCBSpcubfMM3t7eql+/vhwdHW0+tjX1799fXl5eCg8P1/z585+6HhkZqdWrV0uSOnbsaOt4AAAAAAAAAF4TxRnY1S+//GJ+NsmUKVNUqFAhi/bv6emp+fPna+rUqXJ1ddWKFSt09OhRZcqUSbNnz06Qz5l5ngkTJihlypTavn27QkJC7B1HkjR//nwNGDBAkjR+/Hh99NFHdk6UtKRNm1Z9+/aVJAUGBur+/ftPXJ8xY4YMw9D777+vPHny2CMiAAAAAAAAgNdAcQZ2ExUVpWbNmskwDLVt21YBAQFWGcdkMqljx47auXOncufOLTc3N82bN0/p0qWzynjWkjVrVvMzZ/r06aOLFy/aNc/mzZvVunVrSdLnn39uPoILltW9e3dlzpxZp06d0pQpU8yvP3z4UDNnzpQkde7c2V7xAAAAAAAAALwGijOwi9jYWDVt2lSXLl1S0aJFFRwcbPUxS5QooT///FPnzp1TlSpVrD6eNXTt2lUlS5bUjRs3LHokW1xc3Cu1//PPP1WvXj09fPhQDRo00DfffGOxLHiSh4eHBg8eLEkaNmyYbt68KUlaunSpLl26pLffflt+fn72jAgAAAAAAADgFVGcgc2dO3dODRo00JYtW5QyZUotXLhQ7u7uNhnbyclJ3t7eNhnLGhwdHTV9+nQ5Ojrqhx9+0MKFC9+4z0mTJsnDw0Pdu3dX3759tXHjRj18+PC57S9evKgPP/xQN27cUPny5RUWFiYHB/4psaaAgAAVKFBA165d08iRIyXJvIumffv2cnZ2tmc8AAAAAAAAAK+IT1RhM3FxcZo4caIKFCig5cuXy9HRUbNnz1bevHntHS1RKVWqlPr16yfp0XFWFy5ceO2+duzYoZ49e8owDJ0+fVpjx45V9erV5e3trbp162rKlCmKjIw0t79z5458fX0VGRmpXLlyadmyZTYrrCVnTk5OCgoKkiR9++23+uWXX/Trr7/KwcFB7dq1s3M6AAAAAAAAAK/Kyd4BkDwcPHhQHTp00J49eyRJZcuW1fTp01W0aFE7J0ucvvzyS61atUoHDhxQ+/bttXz5cplMplfq48qVK2rcuLFiY2PVoEED5ciRQ5cuXdK6det08eJFLV++XMuXL5ck5cuXT7Vr19bRo0e1d+9epU2bVmvWrEl0z+1JzD766CNVrFhR27dvV7169SRJfn5+ypo1q32DAQAAAAAAAHhl7JyBVd25c0e9e/dW6dKltWfPHqVKlUqTJ0/W9u3bKcy8ARcXF82dO1cuLi5auXKlZs+e/Ur3x8fHy9/fX2fPnlXevHk1ffp0vffeewoJCVFUVJT279+v4cOH67333pOjo6MiIiL07bffau3atXJ1ddXy5cuVJ08eK80Oz2IymcxHmt2+fVuS1KlTJ3tGAgAAAAAAAPCaKM7AalatWqWCBQtqzJgxiouLU6NGjXT06FF17txZjo6O9o6X6BUuXFjDhg2TJPXo0eOJ48f+TVBQkNauXSs3NzctWrRInp6e5msODg4qUaKE+vfvry1btujq1atatGiR2rVrp5IlS+rHH39UhQoVLD0dvISKFSuqbt26kiQfHx/VrFnTzokAAAAAAAAAvA6ONYPFRUVFqUePHlq0aJEkKXv27Jo8ebI+/PBDOydLej7//HMtX75c27ZtU6tWrbRx40Y5OLy45rpp0yZ99dVXkqTJkyerSJEiiomJeW57Ly8vNWjQQA0aNLBodrye8ePHKy4uTp06dfrX/9YAAAAAAAAAEiY+2YNFxcfHq2rVqlq0aJEcHR31xRdf6MiRIxRmrMTR0VGhoaFKkSKFNm/erAkTJryw/YULF9S0aVPFx8erVatWat26tY2SwlKyZ8+uFStWqE6dOvaOAgAAAAAAAOA1UZyBRTk4OGjw4MEqU6aM9u3bp1GjRilFihT2jpWk5cqVS6NHj5Yk9evXT0ePHn1mu7i4ODVt2lQXL15U4cKFNWnSJFvGBAAAAAAAAAD8F8UZWFzjxo21Y8cOFStWzN5Rko2OHTvqgw8+0P379+Xv7//MY8oGDRqkX3/9VSlSpNDChQvl4eFhh6QAAAAAAAAAAIozsDiTySRHR0d7x0hWTCaTQkJClDp1au3du1dBQUFPXF+7dq2GDRsmSZo+fbry589vj5gAAAAAAAAAAFGcAZKMzJkzm48qGzp0qPbt2ydJOnPmjFq0aCFJ6tSpk5o1a2a3jAAAAAAAAAAAijNAktK0aVN98sknio2NVcuWLRUdHa0mTZro6tWrKlGihMaNG2fviAAAAAAAAACQ7FGcAZIQk8mkKVOmKEOGDPrjjz9UvHhx7dixQ6lSpdLChQvl5uZm74gAAAAAAAAAkOxRnAGSmLfeekszZsyQJJ04cUKSNHv2bOXKlcuesQAAAAAAAAAA/5UoizNbtmyRn5+fMmXKJJPJpKVLlz5x3TAMDRo0SJkyZZK7u7uqVKmiI0eOPNHmwYMH6tatm9566y2lSJFCH330kc6ePWvDWQDW4+fnp3bt2kmSPvvsM3388cd2TgQAAAAAAAAAeCxRFmfu3LmjYsWKaeLEic+8PmrUKI0dO1YTJ07Unj17lDFjRtWoUUPR0dHmNj179tRPP/2k77//Xtu2bdPt27fl6+uruLg4W00DsKqpU6fqwIEDGjNmjL2jAAAAAAAAAAD+wcneAV5H7dq1Vbt27WdeMwxD3377rQYMGGDeLTBnzhxlyJBB8+fPV8eOHXXz5k2FhIQoLCxM77//viTpu+++U9asWbVhwwZ98MEHNpsLYC2Ojo4qXry4vWMAAAAAAAAAAP5HoizOvMjJkyd14cIF1axZ0/yaq6urKleurB07dqhjx47at2+fYmJinmiTKVMmFS5cWDt27HhucebBgwd68OCB+ftbt25JkmJiYhQTE2OlGQHW9/jnl59jIOFjvQKJC2sWSDxYr0DiwpoFEg/WK5Kbl/1ZT3LFmQsXLkiSMmTI8MTrGTJk0KlTp8xtXFxclCZNmqfaPL7/WYKCgjR48OCnXl+3bp08PDzeNDpgd+vXr7d3BAAvifUKJC6sWSDxYL0CiQtrFkg8WK9ILu7evftS7ZJcceYxk8n0xPeGYTz12v/6tzb9+vXT559/bv7+1q1bypo1q2rWrKlUqVK9WWDAjmJiYrR+/XrVqFFDzs7O9o4D4AVYr0DiwpoFEg/WK5C4sGaBxIP1iuTm8Ylb/ybJFWcyZswo6dHumLffftv8+qVLl8y7aTJmzKiHDx/q+vXrT+yeuXTpkipUqPDcvl1dXeXq6vrU687OzvzDgiSBn2Ug8WC9AokLaxZIPFivQOLCmgUSD9YrkouX/Tl3sHIOm/Px8VHGjBmf2Cb38OFDbd682Vx4KVWqlJydnZ9oc/78eR0+fPiFxRkAAAAAAAAAAIA3lSh3zty+fVvHjx83f3/y5EkdPHhQ3t7eypYtm3r27KkRI0YoT548ypMnj0aMGCEPDw81a9ZMkuTl5aW2bduqV69eSps2rby9vdW7d28VKVJE77//vr2mBQAAAAAAAAAAkoFEWZzZu3evqlatav7+8XNgAgICFBoaqj59+ujevXvq0qWLrl+/rrJly2rdunXy9PQ03zNu3Dg5OTmpUaNGunfvnqpXr67Q0FA5OjrafD4AAAAAAAAAACD5SJTFmSpVqsgwjOdeN5lMGjRokAYNGvTcNm5ubgoODlZwcLAVEgIAAAAAAAAAADxbknvmDAAAAAAAAAAAQEJGcQYAAAAAAAAAAMCGKM4AAAAAAAAAAADYEMUZAAAAAAAAAAAAG6I4AwAAAAAAAAAAYEMUZwAAAAAAAAAAAGyI4gwAAAAAAAAAAIANUZwBAAAAAAAAAACwIYozAAAAAAAAAAAANkRxBgAAAAAAAAAAwIYozgAAAAAAAAAAANgQxRkAAAAAAAAAAAAbojgDAAAAAAAAAABgQ072DpCYGYYhSbp165adkwBvJiYmRnfv3tWtW7fk7Oxs7zgAXoD1CiQurFkg8WC9AokLaxZIPFivSG4e1wse1w+eh+LMG4iOjpYkZc2a1c5JAAAAAAAAAABAQhEdHS0vL6/nXjcZ/1a+wXPFx8crKipKnp6eMplM9o4DvLZbt24pa9asOnPmjFKlSmXvOABegPUKJC6sWSDxYL0CiQtrFkg8WK9IbgzDUHR0tDJlyiQHh+c/WYadM2/AwcFBWbJksXcMwGJSpUrFmySQSLBegcSFNQskHqxXIHFhzQKJB+sVycmLdsw89vyyDQAAAAAAAAAAACyO4gwAAAAAAAAAAIANUZwBIFdXVw0cOFCurq72jgLgX7BegcSFNQskHqxXIHFhzQKJB+sVeDaTYRiGvUMAAAAAAAAAAAAkF+ycAQAAAAAAAAAAsCGKMwAAAAAAAAAAADZEcQYAAAAAAAAAAMCGKM4AAAAAAAAAAADYEMUZIInYsmWL/Pz8lClTJplMJi1duvSJ6xcvXlSrVq2UKVMmeXh4qFatWvrrr7+eaFOlShWZTKYnvpo0afJEm+vXr8vf319eXl7y8vKSv7+/bty4YeXZAUmLLdZrZGSk2rZtKx8fH7m7uytXrlwaOHCgHj58aIspAkmKrd5jH3vw4IGKFy8uk8mkgwcPWmlWQNJky/W6atUqlS1bVu7u7nrrrbf08ccfW3NqQJJkqzV77Ngx1a1bV2+99ZZSpUqlihUratOmTdaeHpCkWGK9StLOnTtVrVo1pUiRQqlTp1aVKlV0794983U+d0JyQnEGSCLu3LmjYsWKaeLEiU9dMwxD9erV04kTJ7Rs2TIdOHBA2bNn1/vvv687d+480bZ9+/Y6f/68+WvatGlPXG/WrJkOHjyotWvXau3atTp48KD8/f2tOjcgqbHFej169Kji4+M1bdo0HTlyROPGjdPUqVPVv39/q88PSGps9R77WJ8+fZQpUyarzAVI6my1XhcvXix/f3+1bt1a4eHh2r59u5o1a2bVuQFJka3WbJ06dRQbG6uNGzdq3759Kl68uHx9fXXhwgWrzg9ISiyxXnfu3KlatWqpZs2a2r17t/bs2aOuXbvKweH/P6LmcyckKwaAJEeS8dNPP5m/j4iIMCQZhw8fNr8WGxtreHt7GzNmzDC/VrlyZaNHjx7P7fePP/4wJBm//fab+bWdO3cakoyjR49adA5AcmGt9foso0aNMnx8fN40MpCsWXvNrl692sifP79x5MgRQ5Jx4MABC6YHkhdrrdeYmBgjc+bMxsyZM60RG0i2rLVmL1++bEgytmzZYn7t1q1bhiRjw4YNFp0DkFy87notW7asERgY+Nx++dwJyQ07Z4Bk4MGDB5IkNzc382uOjo5ycXHRtm3bnmg7b948vfXWWypUqJB69+6t6Oho87WdO3fKy8tLZcuWNb9Wrlw5eXl5aceOHVaeBZA8WGq9PsvNmzfl7e1t+dBAMmbJNXvx4kW1b99eYWFh8vDwsH54IJmx1Hrdv3+/zp07JwcHB5UoUUJvv/22ateurSNHjthmIkAyYak1mzZtWhUoUEBz587VnTt3FBsbq2nTpilDhgwqVaqUbSYDJHEvs14vXbqkXbt2KX369KpQoYIyZMigypUrP7Ge+dwJyQ3FGSAZyJ8/v7Jnz65+/frp+vXrevjwob7++mtduHBB58+fN7dr3ry5FixYoF9//VVffvmlFi9e/MTZ2RcuXFD69Omf6j99+vRsBwcsxFLr9X/9/fffCg4OVqdOnWwxDSDZsNSaNQxDrVq1UqdOnVS6dGl7TAVI8iy1Xk+cOCFJGjRokAIDA7Vy5UqlSZNGlStX1rVr12w+LyCpstSaNZlMWr9+vQ4cOCBPT0+5ublp3LhxWrt2rVKnTm2HmQFJz8us13++f7Zv315r165VyZIlVb16dfOzafjcCcmNk70DALA+Z2dnLV68WG3btpW3t7ccHR31/vvvq3bt2k+0a9++vfnPhQsXVp48eVS6dGnt379fJUuWlPTof2z/l2EYz3wdwKuz5Hp9LCoqSrVq1VLDhg3Vrl07m8wDSC4stWaDg4N169Yt9evXz9ZTAJINS63X+Ph4SdKAAQPUoEEDSdLs2bOVJUsWLVy4UB07drTdpIAkzFJr1jAMdenSRenTp9fWrVvl7u6umTNnytfXV3v27NHbb79t66kBSc7LrNfH758dO3ZU69atJUklSpTQL7/8olmzZikoKEgSnzsheWHnDJBMlCpVSgcPHtSNGzd0/vx5rV27VlevXpWPj89z7ylZsqScnZ3Nv8GQMWNGXbx48al2ly9fVoYMGayWHUhuLLFeH4uKilLVqlVVvnx5TZ8+3drRgWTJEmt248aN+u233+Tq6ionJyflzp1bklS6dGkFBATYZB5AcmCJ9fr4g9yCBQua27i6uipnzpw6ffq0dScAJDOWeo9duXKlvv/+e1WsWFElS5bU5MmT5e7urjlz5thqKkCS92/r9Vnvn5JUoEAB8/snnzshuaE4AyQzXl5eSpcunf766y/t3btXdevWfW7bI0eOKCYmxvwGWr58ed28eVO7d+82t9m1a5du3rypChUqWD07kNy8yXqVpHPnzqlKlSoqWbKkZs+eLQcH3vYBa3qTNTthwgSFh4fr4MGDOnjwoFavXi1J+uGHHzR8+HCb5AeSkzdZr6VKlZKrq6siIiLMbWJiYhQZGans2bNbPTuQHL3Jmr17964kPfX/wg4ODubf5AdgOc9brzly5FCmTJmeeP+UpGPHjpnfP/ncCckNx5oBScTt27d1/Phx8/cnT57UwYMH5e3trWzZsmnhwoVKly6dsmXLpt9//109evRQvXr1VLNmTUmPnkcxb948ffjhh3rrrbf0xx9/qFevXipRooQqVqwo6dFvM9SqVUvt27fXtGnTJEkdOnSQr6+v8uXLZ/tJA4mULdZrVFSUqlSpomzZsmn06NG6fPmyebyMGTPadsJAImeLNZstW7YnxkyZMqUkKVeuXMqSJYuNZgokfrZYr6lSpVKnTp00cOBAZc2aVdmzZ9c333wjSWrYsKHtJw0kYrZYs+XLl1eaNGkUEBCgr776Su7u7poxY4ZOnjypOnXq2GXeQGL0puvVZDLpiy++0MCBA1WsWDEVL15cc+bM0dGjR7Vo0SJJfO6EZMgAkCRs2rTJkPTUV0BAgGEYhjF+/HgjS5YshrOzs5EtWzYjMDDQePDggfn+06dPG5UqVTK8vb0NFxcXI1euXEb37t2Nq1evPjHO1atXjebNmxuenp6Gp6en0bx5c+P69es2nCmQ+Nlivc6ePfuZY/DWD7w6W73H/tPJkycNScaBAwesPDsgabHVen348KHRq1cvI3369Ianp6fx/vvvG4cPH7blVIEkwVZrds+ePUbNmjUNb29vw9PT0yhXrpyxevVqW04VSPTedL0+FhQUZGTJksXw8PAwypcvb2zduvWJ63zuhOTEZBiGYdXqDwAAAAAAAAAAAMw4fB4AAAAAAAAAAMCGKM4AAAAAAAAAAADYEMUZAAAAAAAAAAAAG6I4AwAAAAAAAAAAYEMUZwAAAAAAAAAAAGyI4gwAAAAAAAAAAIANUZwBAAAAAAAAAACwIYozAAAAAAAAAAAANkRxBgAAAAAAAAAAwIYozgAAAABIcurUqSOTySQHBwdt27btpe7Ztm2bHBwcZDKZ5Ovra+WEAAAAAJIzk2EYhr1DAAAAAIAlnT17VoUKFdKtW7eUL18+HTx4UG5ubs9t/+DBAxUrVkwRERFKlSqVjhw5oixZstgwMQAAAIDkhJ0zAAAAAJKcLFmyaOTIkZKkiIgIDR48+IXthwwZooiICEnSqFGjKMwAAAAAsCp2zgAAAABIkgzDUNWqVbV582Y5OTlp9+7dKlGixFPtwsPDVbp0acXGxqpKlSrauHGjTCaTHRIDAAAASC4ozgAAAABIso4fP66iRYvq3r17Kl68uPbs2SMnJyfz9bi4OJUtW1b79u2Tu7u7fv/9d+XKlcuOiQEAAAAkBxxrBgAAACDJyp07t4YMGSJJOnjwoL755psnro8dO1b79u2TJA0dOvSJwszZs2fVr18/lSxZUmnSpJGbm5uyZcumxo0ba9OmTS8c9/r165o9e7ZatGihggULKmXKlHJxcVHGjBn1wQcfaPr06Xr48OFz74+MjJTJZJLJZFJoaKgkacmSJfrwww+VKVMmOTk5qUqVKq/xNwIAAAAgIWDnDAAAAIAkLS4uTuXLl9eePXvk6uqq8PBw5cuXT3///beKFCmie/fu6Z133tHOnTvl6OgoSQoJCVG3bt1079695/bbtm1bTZ069YmdOI/lyJFDp06demGuEiVKaPXq1cqYMeNT1yIjI+Xj4yNJmjVrljZt2qSwsLAn2lSuXFm//vrrv00fAAAAQAJEcQYAAABAkvf777+rVKlSiomJUcWKFbVlyxa9//772rRpk5ydnbV//34VLlxY0qNiSNu2bSVJhQsXVseOHVWiRAl5eHjo5MmTCgkJ0erVqyVJn3/+ucaMGfPUeFmzZlXmzJnl6+urEiVKKEOGDHr48KFOnjyp7777TmvXrpX0/ALLP4szRYsW1aFDh/Tee++pc+fOyps3r27cuKHIyEhzTgAAAACJC8UZAAAAAMnCwIEDzUecVa9eXb/88ov59UGDBkmSzpw5o/z58+vu3bsKCAjQzJkzn7kzZsCAARoxYoQcHBz0559/Km/evE9c/+uvv5QnT57nZpk9e7batGkjSdqwYYOqV6/+xPV/FmckqWXLlgoNDZXJZHr1iQMAAABIcCjOAAAAAEgWHj58qJIlS+rIkSPm1woXLqx9+/bJxcVFktS7d2+NGTNGmTJl0t9//y03N7dn9hUbG6scOXLo3LlzGjBggIYNG/bKeUqWLKkDBw6oa9euCg4OfuLaP4szqVOn1unTp+Xp6fnKYwAAAABImBzsHQAAAAAAbMHFxUWzZs0yP1fG0dFRISEh5sKMJC1btkyS5Ofn99zCjCQ5OTmpfPnykqSdO3e+cFzDMHThwgUdO3ZMhw8fNn9lypRJkhQeHv7C+/38/CjMAAAAAEnM0/vzAQAAACCJKlOmjLJkyaJTp04pS5YsKlOmjPnazZs3dfz4cUnStGnTNG3atJfq88KFC898fdWqVZoyZYq2bNmi6Ojo595/5cqVF/ZftGjRl8oBAAAAIPGgOAMAAAAAki5duvRa9929e/eJ7w3DUPv27RUSEvJS99+7d++F19OkSfNauQAAAAAkXBRnAAAAAEBSXFyc+c89e/ZU27ZtX+q+fx6LJkmzZs0yF2aKFy+unj17qmzZssqcObM8PDzMx6q1bNlSYWFh+rfHgD5uDwAAACDpoDgDAAAAAJLSpk1r/vPdu3dVuHDh1+pnxowZkqRcuXJpx44dcnd3f2a769evv1b/AAAAABI/B3sHAAAAAICEIF26dMqcObMkacOGDf+6o+V5jhw5IkmqW7fucwszhmFo//79rxcUAAAAQKJHcQYAAAAA/uujjz6SJJ04cUKLFi16rT5iY2MlPf0smn9avny5oqKiXqt/AAAAAIkfxRkAAAAA+K8vvvhCrq6ukqROnTpp7969L2y/evVqHTp06InX8uTJI0lasWLFM48u+/vvv9WlSxcLJQYAAACQGFGcAQAAAID/8vHx0dSpUyVJ165dU8WKFdWuXTstXbpU+/fv1+7du7VkyRL17dtXuXPnVp06dXT69Okn+mjZsqUk6dy5c6pQoYJmz56t3bt3a8uWLRo0aJBKlSqla9euqWTJkjafHwAAAICEwcneAQAAAAAgIWnVqpXc3d3VoUMH3bp1SyEhIQoJCXlmWwcHB6VIkeKJ13r06KH169dr3bp1Onr0qNq0afPEdXd3d82dO1erVq3iuTMAAABAMsXOGQAAAAD4H40bN1ZkZKS+/vprValSRenTp5ezs7M8PDyUM2dO+fn5aezYsYqMjFTVqlWfuNfZ2VmrVq3ShAkTVLp0aXl4eMjd3V25c+dWp06dtH//fjVs2NBOMwMAAACQEJgMwzDsHQIAAAAAAAAAACC5YOcMAAAAAAAAAACADVGcAQAAAAAAAAAAsCGKMwAAAAAAAAAAADZEcQYAAAAAAAAAAMCGKM4AAAAAAAAAAADYEMUZAAAAAAAAAAAAG6I4AwAAAAAAAAAAYEMUZwAAAAAAAAAAAGyI4gwAAAAAAAAAAIANUZwBAAAAAAAAAACwIYozAAAAAAAAAAAANkRxBgAAAAAAAAAAwIYozgAAAAAAAAAAANgQxRkAAAAAAAAAAAAb+j+dTihCMldCxwAAAABJRU5ErkJggg==", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#| eval: false\n", + "# Plot predictions\n", + "fig, ax = plt.subplots(1, 1, figsize = (20, 7))\n", + "Y_hat_df = forecasts.reset_index(drop=False).drop(columns=['unique_id','ds'])\n", + "plot_df = pd.concat([Y_test_df, Y_hat_df], axis=1)\n", + "plot_df = pd.concat([Y_train_df, plot_df])\n", + "\n", + "plot_df = plot_df[plot_df.unique_id=='Airline1'].drop('unique_id', axis=1)\n", + "plt.plot(plot_df['ds'], plot_df['y'], c='black', label='True')\n", + "plt.plot(plot_df['ds'], plot_df['iTransformer'], c='blue', label='Forecast')\n", + "ax.set_title('AirPassengers Forecast', fontsize=22)\n", + "ax.set_ylabel('Monthly Passengers', fontsize=20)\n", + "ax.set_xlabel('Year', fontsize=20)\n", + "ax.legend(prop={'size': 15})\n", + "ax.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import pytorch_lightning as pl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from neuralforecast import NeuralForecast\n", + "from neuralforecast.utils import AirPassengersPanel, AirPassengersStatic\n", + "from neuralforecast.losses.pytorch import MSE" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:198: Attribute 'loss' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['loss'])`.\n", + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/utilities/parsing.py:198: Attribute 'valid_loss' is an instance of `nn.Module` and is already saved during checkpointing. It is recommended to ignore them using `self.save_hyperparameters(ignore=['valid_loss'])`.\n", + "Seed set to 1\n", + "GPU available: True (mps), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "\n", + " | Name | Type | Params\n", + "---------------------------------------------------------\n", + "0 | padder | ConstantPad1d | 0 \n", + "1 | loss | MSE | 0 \n", + "2 | valid_loss | MAE | 0 \n", + "3 | scaler | TemporalNorm | 0 \n", + "4 | enc_embedding | DataEmbedding_inverted | 3.2 K \n", + "5 | encoder | TransEncoder | 135 K \n", + "6 | projector | Linear | 1.5 K \n", + "---------------------------------------------------------\n", + "140 K Trainable params\n", + "0 Non-trainable params\n", + "140 K Total params\n", + "0.562 Total estimated model params size (MB)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f118cbdd019d4bb0990b028bc6e8ddeb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Sanity Checking: | | 0/? [00:00]. Skipping setting a default `ModelSummary` callback.\n", + "GPU available: True (mps), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "/Users/marcopeix/miniconda3/envs/neuralforecast/lib/python3.10/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:441: The 'predict_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=10` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7d07116f871b4263a25d7874684e167a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Predicting: | | 0/? [00:00=AirPassengersPanel['ds'].values[-12]].reset_index(drop=True) # 12 test\n", + "\n", + "model = iTransformer(h=12,\n", + " input_size=24,\n", + " n_series=1,\n", + " hidden_size=128,\n", + " n_heads=2,\n", + " e_layers=2,\n", + " d_layers=1,\n", + " d_ff=4,\n", + " factor=1,\n", + " dropout=0.1,\n", + " use_norm=True,\n", + " loss=MSE(),\n", + " valid_loss=MAE(),\n", + " early_stop_patience_steps=3,\n", + " batch_size=32)\n", + "\n", + "fcst = NeuralForecast(models=[model], freq='M')\n", + "fcst.fit(df=Y_train_df, val_size=12)\n", + "forecasts = fcst.predict(futr_df=Y_test_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "python3", + "language": "python", + "name": "python3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/neuralforecast/_modidx.py b/neuralforecast/_modidx.py index 933d3af02..0f795ee19 100644 --- a/neuralforecast/_modidx.py +++ b/neuralforecast/_modidx.py @@ -120,7 +120,12 @@ 'neuralforecast.auto.AutoVanillaTransformer.__init__': ( 'models.html#autovanillatransformer.__init__', 'neuralforecast/auto.py'), 'neuralforecast.auto.AutoVanillaTransformer.get_default_config': ( 'models.html#autovanillatransformer.get_default_config', - 'neuralforecast/auto.py')}, + 'neuralforecast/auto.py'), + 'neuralforecast.auto.AutoiTransformer': ('models.html#autoitransformer', 'neuralforecast/auto.py'), + 'neuralforecast.auto.AutoiTransformer.__init__': ( 'models.html#autoitransformer.__init__', + 'neuralforecast/auto.py'), + 'neuralforecast.auto.AutoiTransformer.get_default_config': ( 'models.html#autoitransformer.get_default_config', + 'neuralforecast/auto.py')}, 'neuralforecast.core': { 'neuralforecast.core.NeuralForecast': ('core.html#neuralforecast', 'neuralforecast/core.py'), 'neuralforecast.core.NeuralForecast.__init__': ( 'core.html#neuralforecast.__init__', 'neuralforecast/core.py'), @@ -674,6 +679,32 @@ 'neuralforecast/models/informer.py'), 'neuralforecast.models.informer.ProbMask.mask': ( 'models.informer.html#probmask.mask', 'neuralforecast/models/informer.py')}, + 'neuralforecast.models.itransformer': { 'neuralforecast.models.itransformer.DataEmbedding_inverted': ( 'models.itransformer.html#dataembedding_inverted', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.DataEmbedding_inverted.__init__': ( 'models.itransformer.html#dataembedding_inverted.__init__', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.DataEmbedding_inverted.forward': ( 'models.itransformer.html#dataembedding_inverted.forward', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.FullAttention': ( 'models.itransformer.html#fullattention', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.FullAttention.__init__': ( 'models.itransformer.html#fullattention.__init__', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.FullAttention.forward': ( 'models.itransformer.html#fullattention.forward', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.TriangularCausalMask': ( 'models.itransformer.html#triangularcausalmask', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.TriangularCausalMask.__init__': ( 'models.itransformer.html#triangularcausalmask.__init__', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.TriangularCausalMask.mask': ( 'models.itransformer.html#triangularcausalmask.mask', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.iTransformer': ( 'models.itransformer.html#itransformer', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.iTransformer.__init__': ( 'models.itransformer.html#itransformer.__init__', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.iTransformer.forecast': ( 'models.itransformer.html#itransformer.forecast', + 'neuralforecast/models/itransformer.py'), + 'neuralforecast.models.itransformer.iTransformer.forward': ( 'models.itransformer.html#itransformer.forward', + 'neuralforecast/models/itransformer.py')}, 'neuralforecast.models.lstm': { 'neuralforecast.models.lstm.LSTM': ('models.lstm.html#lstm', 'neuralforecast/models/lstm.py'), 'neuralforecast.models.lstm.LSTM.__init__': ( 'models.lstm.html#lstm.__init__', 'neuralforecast/models/lstm.py'), diff --git a/neuralforecast/auto.py b/neuralforecast/auto.py index cbfef705b..20932619a 100644 --- a/neuralforecast/auto.py +++ b/neuralforecast/auto.py @@ -3,8 +3,8 @@ # %% auto 0 __all__ = ['AutoRNN', 'AutoLSTM', 'AutoGRU', 'AutoTCN', 'AutoDeepAR', 'AutoDilatedRNN', 'AutoMLP', 'AutoNBEATS', 'AutoNBEATSx', 'AutoNHITS', 'AutoDLinear', 'AutoNLinear', 'AutoTFT', 'AutoVanillaTransformer', 'AutoInformer', - 'AutoAutoformer', 'AutoFEDformer', 'AutoPatchTST', 'AutoTimesNet', 'AutoStemGNN', 'AutoHINT', 'AutoTSMixer', - 'AutoTSMixerx', 'AutoMLPMultivariate'] + 'AutoAutoformer', 'AutoFEDformer', 'AutoPatchTST', 'AutoiTransformer', 'AutoTimesNet', 'AutoStemGNN', + 'AutoHINT', 'AutoTSMixer', 'AutoTSMixerx', 'AutoMLPMultivariate'] # %% ../nbs/models.ipynb 2 from os import cpu_count @@ -37,6 +37,7 @@ from .models.fedformer import FEDformer from .models.patchtst import PatchTST from .models.timesnet import TimesNet +from .models.itransformer import iTransformer from .models.stemgnn import StemGNN from .models.hint import HINT @@ -1297,7 +1298,92 @@ def get_default_config(cls, h, backend, n_series=None): return config -# %% ../nbs/models.ipynb 88 +# %% ../nbs/models.ipynb 87 +class AutoiTransformer(BaseAuto): + + default_config = { + "input_size_multiplier": [1, 2, 3, 4, 5], + "h": None, + "n_series": None, + "hidden_size": tune.choice([64, 128, 256]), + "n_heads": tune.choice([4, 8]), + "learning_rate": tune.loguniform(1e-4, 1e-1), + "scaler_type": tune.choice([None, "robust", "standard"]), + "max_steps": tune.choice([500, 1000, 2000]), + "batch_size": tune.choice([32, 64, 128, 256]), + "loss": None, + "random_seed": tune.randint(1, 20), + } + + def __init__( + self, + h, + n_series, + loss=MAE(), + valid_loss=None, + config=None, + search_alg=BasicVariantGenerator(random_state=1), + num_samples=10, + refit_with_val=False, + cpus=cpu_count(), + gpus=torch.cuda.device_count(), + verbose=False, + alias=None, + backend="ray", + callbacks=None, + ): + + # Define search space, input/output sizes + if config is None: + config = self.get_default_config(h=h, backend=backend, n_series=n_series) + + # Always use n_series from parameters, raise exception with Optuna because we can't enforce it + if backend == "ray": + config["n_series"] = n_series + elif backend == "optuna": + mock_trial = MockTrial() + if ( + "n_series" in config(mock_trial) + and config(mock_trial)["n_series"] != n_series + ) or ("n_series" not in config(mock_trial)): + raise Exception(f"config needs 'n_series': {n_series}") + + super(AutoiTransformer, self).__init__( + cls_model=iTransformer, + h=h, + loss=loss, + valid_loss=valid_loss, + config=config, + search_alg=search_alg, + num_samples=num_samples, + refit_with_val=refit_with_val, + cpus=cpus, + gpus=gpus, + verbose=verbose, + alias=alias, + backend=backend, + callbacks=callbacks, + ) + + @classmethod + def get_default_config(cls, h, backend, n_series): + config = cls.default_config.copy() + config["input_size"] = tune.choice( + [h * x for x in config["input_size_multiplier"]] + ) + + # Rolling windows with step_size=1 or step_size=h + # See `BaseWindows` and `BaseRNN`'s create_windows + config["step_size"] = tune.choice([1, h]) + del config["input_size_multiplier"] + if backend == "optuna": + # Always use n_series from parameters + config["n_series"] = n_series + config = cls._ray_config_to_optuna(config) + + return config + +# %% ../nbs/models.ipynb 92 class AutoTimesNet(BaseAuto): default_config = { @@ -1365,7 +1451,7 @@ def get_default_config(cls, h, backend, n_series=None): return config -# %% ../nbs/models.ipynb 93 +# %% ../nbs/models.ipynb 97 class AutoStemGNN(BaseAuto): default_config = { @@ -1450,7 +1536,7 @@ def get_default_config(cls, h, backend, n_series): return config -# %% ../nbs/models.ipynb 97 +# %% ../nbs/models.ipynb 101 class AutoHINT(BaseAuto): def __init__( @@ -1515,7 +1601,7 @@ def _fit_model(self, cls_model, config, dataset, val_size, test_size): def get_default_config(cls, h, backend, n_series=None): raise Exception("AutoHINT has no default configuration.") -# %% ../nbs/models.ipynb 102 +# %% ../nbs/models.ipynb 106 class AutoTSMixer(BaseAuto): default_config = { @@ -1601,7 +1687,7 @@ def get_default_config(cls, h, backend, n_series): return config -# %% ../nbs/models.ipynb 106 +# %% ../nbs/models.ipynb 110 class AutoTSMixerx(BaseAuto): default_config = { @@ -1687,7 +1773,7 @@ def get_default_config(cls, h, backend, n_series): return config -# %% ../nbs/models.ipynb 110 +# %% ../nbs/models.ipynb 114 class AutoMLPMultivariate(BaseAuto): default_config = { diff --git a/neuralforecast/core.py b/neuralforecast/core.py index 5e6061c04..cefc05463 100644 --- a/neuralforecast/core.py +++ b/neuralforecast/core.py @@ -52,6 +52,7 @@ TSMixer, TSMixerx, MLPMultivariate, + iTransformer, ) # %% ../nbs/core.ipynb 5 @@ -156,6 +157,8 @@ def _insample_times( "autotsmixerx": TSMixerx, "mlpmultivariate": MLPMultivariate, "automlpmultivariate": MLPMultivariate, + "itransformer": iTransformer, + "autoitransformer": iTransformer, } # %% ../nbs/core.ipynb 8 diff --git a/neuralforecast/models/__init__.py b/neuralforecast/models/__init__.py index bd3fae666..4ce374098 100644 --- a/neuralforecast/models/__init__.py +++ b/neuralforecast/models/__init__.py @@ -2,6 +2,7 @@ 'MLP', 'NHITS', 'NBEATS', 'NBEATSx', 'DLinear', 'NLinear', 'TFT', 'VanillaTransformer', 'Informer', 'Autoformer', 'PatchTST', 'FEDformer', 'StemGNN', 'HINT', 'TimesNet', 'TimeLLM', 'TSMixer', 'TSMixerx', 'MLPMultivariate', + 'iTransformer' ] from .rnn import RNN @@ -28,4 +29,5 @@ from .timellm import TimeLLM from .tsmixer import TSMixer from .tsmixerx import TSMixerx -from .mlpmultivariate import MLPMultivariate \ No newline at end of file +from .mlpmultivariate import MLPMultivariate +from .itransformer import iTransformer diff --git a/neuralforecast/models/itransformer.py b/neuralforecast/models/itransformer.py new file mode 100644 index 000000000..25b7c69f9 --- /dev/null +++ b/neuralforecast/models/itransformer.py @@ -0,0 +1,293 @@ +# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.itransformer.ipynb. + +# %% auto 0 +__all__ = ['iTransformer'] + +# %% ../../nbs/models.itransformer.ipynb 6 +import torch +import torch.nn as nn +import torch.nn.functional as F + +import numpy as np + +from typing import Optional +from math import sqrt + +from ..losses.pytorch import MAE +from ..common._base_multivariate import BaseMultivariate + +from neuralforecast.common._modules import ( + TransEncoder, + TransEncoderLayer, + AttentionLayer, +) + +# %% ../../nbs/models.itransformer.ipynb 9 +class TriangularCausalMask: + def __init__(self, B, L, device="cpu"): + mask_shape = [B, 1, L, L] + with torch.no_grad(): + self._mask = torch.triu( + torch.ones(mask_shape, dtype=torch.bool), diagonal=1 + ).to(device) + + @property + def mask(self): + return self._mask + + +class FullAttention(nn.Module): + def __init__( + self, + mask_flag=True, + factor=5, + scale=None, + attention_dropout=0.1, + output_attention=False, + ): + super(FullAttention, self).__init__() + self.scale = scale + self.mask_flag = mask_flag + self.output_attention = output_attention + self.dropout = nn.Dropout(attention_dropout) + + def forward(self, queries, keys, values, attn_mask, tau=None, delta=None): + B, L, H, E = queries.shape + _, S, _, D = values.shape + scale = self.scale or 1.0 / sqrt(E) + + scores = torch.einsum("blhe,bshe->bhls", queries, keys) + + if self.mask_flag: + if attn_mask is None: + attn_mask = TriangularCausalMask(B, L, device=queries.device) + + scores.masked_fill_(attn_mask.mask, -np.inf) + + A = self.dropout(torch.softmax(scale * scores, dim=-1)) + V = torch.einsum("bhls,bshd->blhd", A, values) + + if self.output_attention: + return (V.contiguous(), A) + else: + return (V.contiguous(), None) + +# %% ../../nbs/models.itransformer.ipynb 11 +class DataEmbedding_inverted(nn.Module): + def __init__(self, c_in, hidden_size, dropout=0.1): + super(DataEmbedding_inverted, self).__init__() + self.value_embedding = nn.Linear(c_in, hidden_size) + self.dropout = nn.Dropout(p=dropout) + + def forward(self, x, x_mark): + x = x.permute(0, 2, 1) + # x: [Batch Variate Time] + if x_mark is None: + x = self.value_embedding(x) + else: + # the potential to take covariates (e.g. timestamps) as tokens + x = self.value_embedding(torch.cat([x, x_mark.permute(0, 2, 1)], 1)) + # x: [Batch Variate hidden_size] + return self.dropout(x) + +# %% ../../nbs/models.itransformer.ipynb 13 +class iTransformer(BaseMultivariate): + """iTransformer + + **Parameters:**
+ `h`: int, Forecast horizon.
+ `input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
+ `n_series`: int, number of time-series.
+ `futr_exog_list`: str list, future exogenous columns.
+ `hist_exog_list`: str list, historic exogenous columns.
+ `stat_exog_list`: str list, static exogenous columns.
+ `hidden_size`: int, dimension of the model.
+ `n_heads`: int, number of heads.
+ `e_layers`: int, number of encoder layers.
+ `d_layers`: int, number of decoder layers.
+ `d_ff`: int, dimension of fully-connected layer.
+ `factor`: int, attention factor.
+ `dropout`: float, dropout rate.
+ `use_norm`: bool, whether to normalize or not.
+ `loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
+ `valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
+ `max_steps`: int=1000, maximum number of training steps.
+ `learning_rate`: float=1e-3, Learning rate between (0, 1).
+ `num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
+ `early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
+ `val_check_steps`: int=100, Number of training steps between every validation loss check.
+ `batch_size`: int=32, number of different series in each batch.
+ `step_size`: int=1, step size between each window of temporal data.
+ `scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
+ `random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
+ `num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
+ `drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
+ `alias`: str, optional, Custom name of the model.
+ `optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
+ `optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
+ `**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
+ + **References**
+ - [Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, Mingsheng Long. "iTransformer: Inverted Transformers Are Effective for Time Series Forecasting"](https://arxiv.org/abs/2310.06625) + """ + + # Class attributes + SAMPLING_TYPE = "multivariate" + + def __init__( + self, + h, + input_size, + n_series, + futr_exog_list=None, + hist_exog_list=None, + stat_exog_list=None, + hidden_size: int = 512, + n_heads: int = 8, + e_layers: int = 2, + d_layers: int = 1, + d_ff: int = 2048, + factor: int = 1, + dropout: float = 0.1, + use_norm: bool = True, + loss=MAE(), + valid_loss=None, + max_steps: int = 1000, + learning_rate: float = 1e-3, + num_lr_decays: int = -1, + early_stop_patience_steps: int = -1, + val_check_steps: int = 100, + batch_size: int = 32, + step_size: int = 1, + scaler_type: str = "identity", + random_seed: int = 1, + num_workers_loader: int = 0, + drop_last_loader: bool = False, + optimizer=None, + optimizer_kwargs=None, + **trainer_kwargs + ): + + super(iTransformer, self).__init__( + h=h, + input_size=input_size, + n_series=n_series, + stat_exog_list=None, + futr_exog_list=None, + hist_exog_list=None, + loss=loss, + valid_loss=valid_loss, + max_steps=max_steps, + learning_rate=learning_rate, + num_lr_decays=num_lr_decays, + early_stop_patience_steps=early_stop_patience_steps, + val_check_steps=val_check_steps, + batch_size=batch_size, + step_size=step_size, + scaler_type=scaler_type, + random_seed=random_seed, + num_workers_loader=num_workers_loader, + drop_last_loader=drop_last_loader, + optimizer=optimizer, + optimizer_kwargs=optimizer_kwargs, + **trainer_kwargs + ) + + # Asserts + if stat_exog_list is not None: + raise Exception("iTransformer does not support static exogenous variables") + if futr_exog_list is not None: + raise Exception("iTransformer does not support future exogenous variables") + if hist_exog_list is not None: + raise Exception( + "iTransformer does not support historical exogenous variables" + ) + + self.enc_in = n_series + self.dec_in = n_series + self.c_out = n_series + self.hidden_size = hidden_size + self.n_heads = n_heads + self.e_layers = e_layers + self.d_layers = d_layers + self.d_ff = d_ff + self.factor = factor + self.dropout = dropout + self.use_norm = use_norm + + # Architecture + self.enc_embedding = DataEmbedding_inverted( + input_size, self.hidden_size, self.dropout + ) + + self.encoder = TransEncoder( + [ + TransEncoderLayer( + AttentionLayer( + FullAttention( + False, self.factor, attention_dropout=self.dropout + ), + self.hidden_size, + self.n_heads, + ), + self.hidden_size, + self.d_ff, + dropout=self.dropout, + activation=F.gelu, + ) + for l in range(self.e_layers) + ], + norm_layer=torch.nn.LayerNorm(self.hidden_size), + ) + + self.projector = nn.Linear(self.hidden_size, h, bias=True) + + def forecast(self, x_enc): + if self.use_norm: + # Normalization from Non-stationary Transformer + means = x_enc.mean(1, keepdim=True).detach() + x_enc = x_enc - means + stdev = torch.sqrt( + torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5 + ) + x_enc /= stdev + + _, _, N = x_enc.shape # B L N + # B: batch_size; E: hidden_size; + # L: input_size; S: horizon(h); + # N: number of variate (tokens), can also includes covariates + + # Embedding + # B L N -> B N E (B L N -> B L E in the vanilla Transformer) + enc_out = self.enc_embedding( + x_enc, None + ) # covariates (e.g timestamp) can be also embedded as tokens + + # B N E -> B N E (B L E -> B L E in the vanilla Transformer) + # the dimensions of embedded time series has been inverted, and then processed by native attn, layernorm and ffn modules + enc_out, attns = self.encoder(enc_out, attn_mask=None) + + # B N E -> B N S -> B S N + dec_out = self.projector(enc_out).permute(0, 2, 1)[ + :, :, :N + ] # filter the covariates + + if self.use_norm: + # De-Normalization from Non-stationary Transformer + dec_out = dec_out * (stdev[:, 0, :].unsqueeze(1).repeat(1, self.h, 1)) + dec_out = dec_out + (means[:, 0, :].unsqueeze(1).repeat(1, self.h, 1)) + + return dec_out + + def forward(self, windows_batch): + insample_y = windows_batch["insample_y"] + + y_pred = self.forecast(insample_y) + y_pred = y_pred[:, -self.h :, :] + y_pred = self.loss.domain_map(y_pred) + + # domain_map might have squeezed the last dimension in case n_series == 1 + if y_pred.ndim == 2: + return y_pred.unsqueeze(-1) + else: + return y_pred