-
Notifications
You must be signed in to change notification settings - Fork 4
/
train.py
752 lines (654 loc) · 32.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary for training Tensorflow models on the YouTube-8M dataset."""
import json
import os
import time
import eval_util
import export_model
import losses
import frame_level_models
import video_level_models
import readers
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow import app
from tensorflow import flags
from tensorflow import gfile
from tensorflow import logging
from tensorflow.python.client import device_lib
import utils
FLAGS = flags.FLAGS
if __name__ == "__main__":
##################################################################################################################
#By Dalong:这里都是一些宏定义的变量。里面都有详细的英文注释。然后就几个可能会有疑惑点的地方加以说明: #
#1、train_data_pattern:训练数据的路径。当要训练Frame_level的数据的时候,要设置数据读入的进程数。这个要和66行的 #
# "frame_features"相对应 #
#2、log_device_placement:追踪操作与tensor被分配到哪个GPU设备上了。 #
# #
#3、start_new_model:设置为False,则从之前的训练的model里载入参数,继续训练。如果设置为True,则重新开始训练模型 # #
#4、整个代码我们只需要关心的就是这几个宏定义被合适的设置,在下面我有详细的注释说明 # #
#在公司服务器上要设置cluster和task的参数(我个人不太确定,但我会15号晚确认) #
#
##################################################################################################################
# Dataset flags.
flags.DEFINE_string("train_dir", "/tmp/yt8m_model/",
"The directory to save the model files in.")
###################################################################################
#By Dalong:设置训练数据路径
#
###################################################################################
flags.DEFINE_string(
"train_data_pattern", "",
"File glob for the training dataset. If the files refer to Frame Level "
"features (i.e. tensorflow.SequenceExample), then set --reader_type "
"format. The (Sequence)Examples are expected to have 'rgb' byte array "
"sequence feature as well as a 'labels' int64 context feature.")
#############################################################################################
#By Dalong:训练的是什么数据的特征的名称,根据@NiyunZhou 提供的数据格式,这里的feature_name有:
#'mean_rgb'(video_level_data的图像特征),'rgb'(frame_level的图像特征),'mean_audio'(video_level的音频特征)
#,'audio'(frame_level的音频特征)四种选择
#############################################################################################
flags.DEFINE_string("feature_names", "mean_rgb", "Name of the feature "
"to use for training.")
###################################################################################
#By Dalong:feature_sizes,根据@NiyunZhou 提供的数据格式,这里的feature_size有
#1024(mean_rgb),128(mean_audio),1024(rgb),128(audio)
###################################################################################
flags.DEFINE_string("feature_sizes", "1024", "Length of the feature vectors.")
######################################################################
#By Dalong:当你要训练frame_level的特征的时候,打开这个开关。设置为True
#
#######################################################################
# Model flags.
flags.DEFINE_bool(
"frame_features", False,
"If set, then --train_data_pattern must be frame-level features. "
"Otherwise, --train_data_pattern must be aggregated video-level "
"features. The model must also be set appropriately (i.e. to read 3D "
"batches VS 4D batches.")
################################################################################
#By Dalong:这就是要选择的模型。在video_level_models.py和frame_level_models.py
#中定义的几个model的名称
###############################################################################
flags.DEFINE_string(
"model", "LogisticModel",
"Which architecture to use for the model. Models are defined "
"in models.py.")
###############################################################################
#By Dalong:当你要重新开始训练模型的时候,把他设置为True,如果你要接着之前训练的
#阶段性结果继续训练,那就关掉这个开关。设置为False
###############################################################################
flags.DEFINE_bool(
"start_new_model", False,
"If set, this will not resume from a checkpoint and will instead create a"
" new model instance.")
# Training flags.
#########################################################################
#By Dalong:batch_size ,就不解释了
########################################################################
flags.DEFINE_integer("batch_size", 1024,
"How many examples to process per batch for training.")
########################################################################
#By Dalong:损失函数的选择。具体的可选项,请查看losses.py文件进行查看。官方定义了
#了三个损失函数。分别是'SoftmaxLoss','HingeLoss',''CrossEntropyLoss
########################################################################
flags.DEFINE_string("label_loss", "CrossEntropyLoss",
"Which loss function to use for training the model.")
###########################################################################
#By Dalong:以下参数为常规模型参数
###########################################################################
flags.DEFINE_float(
"regularization_penalty", 1.0,
"How much weight to give to the regularization loss (the label loss has "
"a weight of 1).")
flags.DEFINE_float("base_learning_rate", 0.01,
"Which learning rate to start with.")
flags.DEFINE_float("learning_rate_decay", 0.95,
"Learning rate decay factor to be applied every "
"learning_rate_decay_examples.")
flags.DEFINE_float("learning_rate_decay_examples", 4000000,
"Multiply current learning rate by learning_rate_decay "
"every learning_rate_decay_examples.")
flags.DEFINE_integer("num_epochs", 5,
"How many passes to make over the dataset before "
"halting training.")
flags.DEFINE_integer("max_steps", None,
"The maximum number of iterations of the training loop.")
flags.DEFINE_integer("export_model_steps", 1000,
"The period, in number of steps, with which the model "
"is exported for batch prediction.")
# Other flags.
flags.DEFINE_integer("num_readers", 8,
"How many threads to use for reading input files.")
flags.DEFINE_string("optimizer", "AdamOptimizer",
"What optimizer class to use.")
flags.DEFINE_float("clip_gradient_norm", 1.0, "Norm to clip gradients to.")
flags.DEFINE_bool(
"log_device_placement", False,
"Whether to write the device on which every op will run into the "
"logs on startup.")
#########################################################################################
#By Dalong:
#函数功能:
#这个函数功能就是一个检查函数。用来搜索你提供的类名称(flag_value)
#(比如 LogisticModel这个类名称)是否存在。搜索的候选文件就是你提供的文件列表(modules)
#不存在则报错。category是你提供的报错信息
#########################################################################################
def validate_class_name(flag_value, category, modules, expected_superclass):
"""Checks that the given string matches a class of the expected type.
Args:
flag_value: A string naming the class to instantiate.
category: A string used further describe the class in error messages
(e.g. 'model', 'reader', 'loss').
modules: A list of modules to search for the given class.
expected_superclass: A class that the given class should inherit from.
Raises:
FlagsError: If the given class could not be found or if the first class
found with that name doesn't inherit from the expected superclass.
Returns:
True if a class was found that matches the given constraints.
"""
candidates = [getattr(module, flag_value, None) for module in modules]
for candidate in candidates:
if not candidate:
continue
if not issubclass(candidate, expected_superclass):
raise flags.FlagsError("%s '%s' doesn't inherit from %s." %
(category, flag_value,
expected_superclass.__name__))
return True
raise flags.FlagsError("Unable to find %s '%s'." % (category, flag_value))
###############################################################################
#By Dalong:
#函数功能:这个函数用于读取batch_size大小的数据。返回数据的格式是
#(feature,label)这样的格式或者(feature,label,number of frames per video)这样
#的格式。
#参数说明:
#reader:读取数据的读取器。对应不同格式的数据,有不同的读取器。这个在下面的函数
#get_reader()中生成对应读取器。我们需要正确的设置宏定义参数
#data_pattern:就是数据文件的路径
#By Dalong:我个人的问题:
#1、读取到的数据是batch_size吧?
#2、返回后者的数据格式的应该是video_level_feature
###############################################################################
def get_input_data_tensors(reader,
data_pattern,
batch_size=1000,
num_epochs=None,
num_readers=1):
"""Creates the section of the graph which reads the training data.
Args:
reader: A class which parses the training data.
data_pattern: A 'glob' style path to the data files.
batch_size: How many examples to process at a time.
num_epochs: How many passes to make over the training data. Set to 'None'
to run indefinitely.
num_readers: How many I/O threads to use.
Returns:
A tuple containing the features tensor, labels tensor, and optionally a
tensor containing the number of frames per video. The exact dimensions
depend on the reader being used.
Raises:
IOError: If no files matching the given pattern were found.
"""
logging.info("Using batch size of " + str(batch_size) + " for training.")
with tf.name_scope("train_input"):
files = gfile.Glob(data_pattern)
if not files:
raise IOError("Unable to find training files. data_pattern='" +
data_pattern + "'.")
logging.info("Number of training files: %s.", str(len(files)))
filename_queue = tf.train.string_input_producer(
files, num_epochs=num_epochs, shuffle=True)
training_data = [
reader.prepare_reader(filename_queue) for _ in range(num_readers)
]
return tf.train.shuffle_batch_join(
training_data,
batch_size=batch_size,
capacity=batch_size * 5,
min_after_dequeue=batch_size,
allow_smaller_final_batch=True,
enqueue_many=True)
##############################################################
#By Dalong:
#函数功能:
#在你所提供的文件列表(modules)中,寻找某个类(name)的函数
#这个函数可以不用管
##############################################################
def find_class_by_name(name, modules):
"""Searches the provided modules for the named class and returns it."""
modules = [getattr(module, name, None) for module in modules]
return next(a for a in modules if a)
###############################################################
#By Dalong:
#函数功能:创建Tensorflow graph
##############################################################
def build_graph(reader,
model,
train_data_pattern,
label_loss_fn=losses.CrossEntropyLoss(),
batch_size=1000,
base_learning_rate=0.01,
learning_rate_decay_examples=1000000,
learning_rate_decay=0.95,
optimizer_class=tf.train.AdamOptimizer,
clip_gradient_norm=1.0,
regularization_penalty=1,
num_readers=1,
num_epochs=None):
"""Creates the Tensorflow graph.
This will only be called once in the life of
a training model, because after the graph is created the model will be
restored from a meta graph file rather than being recreated.
Args:
reader: The data file reader. It should inherit from BaseReader.
model: The core model (e.g. logistic or neural net). It should inherit
from BaseModel.
train_data_pattern: glob path to the training data files.
label_loss_fn: What kind of loss to apply to the model. It should inherit
from BaseLoss.
batch_size: How many examples to process at a time.
base_learning_rate: What learning rate to initialize the optimizer with.
optimizer_class: Which optimization algorithm to use.
clip_gradient_norm: Magnitude of the gradient to clip to.
regularization_penalty: How much weight to give the regularization loss
compared to the label loss.
num_readers: How many threads to use for I/O operations.
num_epochs: How many passes to make over the data. 'None' means an
unlimited number of passes.
"""
global_step = tf.Variable(0, trainable=False, name="global_step")
local_device_protos = device_lib.list_local_devices()
gpus = [x.name for x in local_device_protos if x.device_type == 'GPU']
num_gpus = len(gpus)
if num_gpus > 0:
logging.info("Using the following GPUs to train: " + str(gpus))
num_towers = num_gpus
device_string = '/gpu:%d'
else:
logging.info("No GPUs found. Training on CPU.")
num_towers = 1
device_string = '/cpu:%d'
learning_rate = tf.train.exponential_decay(
base_learning_rate,
global_step * batch_size * num_towers,
learning_rate_decay_examples,
learning_rate_decay,
staircase=True)
tf.summary.scalar('learning_rate', learning_rate)
optimizer = optimizer_class(learning_rate)
unused_video_id, model_input_raw, labels_batch, num_frames = (
get_input_data_tensors(
reader,
train_data_pattern,
batch_size=batch_size * num_towers,
num_readers=num_readers,
num_epochs=num_epochs))
tf.summary.histogram("model/input_raw", model_input_raw)
feature_dim = len(model_input_raw.get_shape()) - 1
model_input = tf.nn.l2_normalize(model_input_raw, feature_dim)
tower_inputs = tf.split(model_input, num_towers)
tower_labels = tf.split(labels_batch, num_towers)
tower_num_frames = tf.split(num_frames, num_towers)
tower_gradients = []
tower_predictions = []
tower_label_losses = []
tower_reg_losses = []
for i in range(num_towers):
# For some reason these 'with' statements can't be combined onto the same
# line. They have to be nested.
with tf.device(device_string % i):
with (tf.variable_scope(("tower"), reuse=True if i > 0 else None)):
with (slim.arg_scope([slim.model_variable, slim.variable], device="/cpu:0" if num_gpus!=1 else "/gpu:0")):
result = model.create_model(
tower_inputs[i],
num_frames=tower_num_frames[i],
vocab_size=reader.num_classes,
labels=tower_labels[i])
for variable in slim.get_model_variables():
tf.summary.histogram(variable.op.name, variable)
predictions = result["predictions"]
tower_predictions.append(predictions)
if "loss" in result.keys():
label_loss = result["loss"]
else:
label_loss = label_loss_fn.calculate_loss(predictions, tower_labels[i])
if "regularization_loss" in result.keys():
reg_loss = result["regularization_loss"]
else:
reg_loss = tf.constant(0.0)
reg_losses = tf.losses.get_regularization_losses()
if reg_losses:
reg_loss += tf.add_n(reg_losses)
tower_reg_losses.append(reg_loss)
# Adds update_ops (e.g., moving average updates in batch normalization) as
# a dependency to the train_op.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if "update_ops" in result.keys():
update_ops += result["update_ops"]
if update_ops:
with tf.control_dependencies(update_ops):
barrier = tf.no_op(name="gradient_barrier")
with tf.control_dependencies([barrier]):
label_loss = tf.identity(label_loss)
tower_label_losses.append(label_loss)
# Incorporate the L2 weight penalties etc.
final_loss = regularization_penalty * reg_loss + label_loss
gradients = optimizer.compute_gradients(final_loss,
colocate_gradients_with_ops=False)
tower_gradients.append(gradients)
label_loss = tf.reduce_mean(tf.stack(tower_label_losses))
tf.summary.scalar("label_loss", label_loss)
if regularization_penalty != 0:
reg_loss = tf.reduce_mean(tf.stack(tower_reg_losses))
tf.summary.scalar("reg_loss", reg_loss)
merged_gradients = utils.combine_gradients(tower_gradients)
if clip_gradient_norm > 0:
with tf.name_scope('clip_grads'):
merged_gradients = utils.clip_gradient_norms(merged_gradients, clip_gradient_norm)
train_op = optimizer.apply_gradients(merged_gradients, global_step=global_step)
tf.add_to_collection("global_step", global_step)
tf.add_to_collection("loss", label_loss)
tf.add_to_collection("predictions", tf.concat(tower_predictions, 0))
tf.add_to_collection("input_batch_raw", model_input_raw)
tf.add_to_collection("input_batch", model_input)
tf.add_to_collection("num_frames", num_frames)
tf.add_to_collection("labels", tf.cast(labels_batch, tf.float32))
tf.add_to_collection("train_op", train_op)
###################################################
#By Dalong:训练Tensorflow graph
#这个cluster、task的参数,是从系统环境中自动载入
#我测试了商汤的服务器,这两个参数是None,貌似意味着我们
#不能采用集群来进行训练?我们自己应该可以设置这个参数
#来采用多GPU进行训练。我会在群里确认
###################################################
class Trainer(object):
"""A Trainer to train a Tensorflow graph."""
def __init__(self, cluster, task, train_dir, model, reader, model_exporter,
log_device_placement=True, max_steps=None,
export_model_steps=1000):
""""Creates a Trainer.
Args:
cluster: A tf.train.ClusterSpec if the execution is distributed.
None otherwise.
task: A TaskSpec describing the job type and the task index.
"""
self.cluster = cluster
self.task = task
self.is_master = (task.type == "master" and task.index == 0)
self.train_dir = train_dir
self.config = tf.ConfigProto(
allow_soft_placement=True,log_device_placement=log_device_placement)
self.model = model
self.reader = reader
self.model_exporter = model_exporter
self.max_steps = max_steps
self.max_steps_reached = False
self.export_model_steps = export_model_steps
self.last_model_export_step = 0
# if self.is_master and self.task.index > 0:
# raise StandardError("%s: Only one replica of master expected",
# task_as_string(self.task))
def run(self, start_new_model=False):
"""Performs training on the currently defined Tensorflow graph.
Returns:
A tuple of the training Hit@1 and the training PERR.
"""
if self.is_master and start_new_model:
self.remove_training_directory(self.train_dir)
target, device_fn = self.start_server_if_distributed()
meta_filename = self.get_meta_filename(start_new_model, self.train_dir)
with tf.Graph().as_default() as graph:
if meta_filename:
saver = self.recover_model(meta_filename)
with tf.device(device_fn):
if not meta_filename:
saver = self.build_model(self.model, self.reader)
global_step = tf.get_collection("global_step")[0]
loss = tf.get_collection("loss")[0]
predictions = tf.get_collection("predictions")[0]
labels = tf.get_collection("labels")[0]
train_op = tf.get_collection("train_op")[0]
init_op = tf.global_variables_initializer()
sv = tf.train.Supervisor(
graph,
logdir=self.train_dir,
init_op=init_op,
is_chief=self.is_master,
global_step=global_step,
save_model_secs=15 * 60,
save_summaries_secs=120,
saver=saver)
logging.info("%s: Starting managed session.", task_as_string(self.task))
with sv.managed_session(target, config=self.config) as sess:
try:
logging.info("%s: Entering training loop.", task_as_string(self.task))
while (not sv.should_stop()) and (not self.max_steps_reached):
batch_start_time = time.time()
_, global_step_val, loss_val, predictions_val, labels_val = sess.run(
[train_op, global_step, loss, predictions, labels])
seconds_per_batch = time.time() - batch_start_time
examples_per_second = labels_val.shape[0] / seconds_per_batch
if self.max_steps and self.max_steps <= global_step_val:
self.max_steps_reached = True
if self.is_master and global_step_val % 10 == 0 and self.train_dir:
eval_start_time = time.time()
hit_at_one = eval_util.calculate_hit_at_one(predictions_val, labels_val)
perr = eval_util.calculate_precision_at_equal_recall_rate(predictions_val,
labels_val)
gap = eval_util.calculate_gap(predictions_val, labels_val)
eval_end_time = time.time()
eval_time = eval_end_time - eval_start_time
logging.info("training step " + str(global_step_val) + " | Loss: " + ("%.2f" % loss_val) +
" Examples/sec: " + ("%.2f" % examples_per_second) + " | Hit@1: " +
("%.2f" % hit_at_one) + " PERR: " + ("%.2f" % perr) +
" GAP: " + ("%.2f" % gap))
sv.summary_writer.add_summary(
utils.MakeSummary("model/Training_Hit@1", hit_at_one),
global_step_val)
sv.summary_writer.add_summary(
utils.MakeSummary("model/Training_Perr", perr), global_step_val)
sv.summary_writer.add_summary(
utils.MakeSummary("model/Training_GAP", gap), global_step_val)
sv.summary_writer.add_summary(
utils.MakeSummary("global_step/Examples/Second",
examples_per_second), global_step_val)
sv.summary_writer.flush()
# Exporting the model every x steps
time_to_export = ((self.last_model_export_step == 0) or
(global_step_val - self.last_model_export_step
>= self.export_model_steps))
if self.is_master and time_to_export:
self.export_model(global_step_val, sv.saver, sv.save_path, sess)
self.last_model_export_step = global_step_val
else:
logging.info("training step " + str(global_step_val) + " | Loss: " +
("%.2f" % loss_val) + " Examples/sec: " + ("%.2f" % examples_per_second))
except tf.errors.OutOfRangeError:
logging.info("%s: Done training -- epoch limit reached.",
task_as_string(self.task))
logging.info("%s: Exited training loop.", task_as_string(self.task))
sv.Stop()
def export_model(self, global_step_val, saver, save_path, session):
# If the model has already been exported at this step, return.
if global_step_val == self.last_model_export_step:
return
last_checkpoint = saver.save(session, save_path, global_step_val)
model_dir = "{0}/export/step_{1}".format(self.train_dir, global_step_val)
logging.info("%s: Exporting the model at step %s to %s.",
task_as_string(self.task), global_step_val, model_dir)
self.model_exporter.export_model(
model_dir=model_dir,
global_step_val=global_step_val,
last_checkpoint=last_checkpoint)
def start_server_if_distributed(self):
"""Starts a server if the execution is distributed."""
if self.cluster:
logging.info("%s: Starting trainer within cluster %s.",
task_as_string(self.task), self.cluster.as_dict())
server = start_server(self.cluster, self.task)
target = server.target
device_fn = tf.train.replica_device_setter(
ps_device="/job:ps",
worker_device="/job:%s/task:%d" % (self.task.type, self.task.index),
cluster=self.cluster)
else:
target = ""
device_fn = ""
return (target, device_fn)
def remove_training_directory(self, train_dir):
"""Removes the training directory."""
try:
logging.info(
"%s: Removing existing train directory.",
task_as_string(self.task))
gfile.DeleteRecursively(train_dir)
except:
logging.error(
"%s: Failed to delete directory " + train_dir +
" when starting a new model. Please delete it manually and" +
" try again.", task_as_string(self.task))
def get_meta_filename(self, start_new_model, train_dir):
if start_new_model:
logging.info("%s: Flag 'start_new_model' is set. Building a new model.",
task_as_string(self.task))
return None
latest_checkpoint = tf.train.latest_checkpoint(train_dir)
if not latest_checkpoint:
logging.info("%s: No checkpoint file found. Building a new model.",
task_as_string(self.task))
return None
meta_filename = latest_checkpoint + ".meta"
if not gfile.Exists(meta_filename):
logging.info("%s: No meta graph file found. Building a new model.",
task_as_string(self.task))
return None
else:
return meta_filename
def recover_model(self, meta_filename):
logging.info("%s: Restoring from meta graph file %s",
task_as_string(self.task), meta_filename)
return tf.train.import_meta_graph(meta_filename)
def build_model(self, model, reader):
"""Find the model and build the graph."""
label_loss_fn = find_class_by_name(FLAGS.label_loss, [losses])()
optimizer_class = find_class_by_name(FLAGS.optimizer, [tf.train])
build_graph(reader=reader,
model=model,
optimizer_class=optimizer_class,
clip_gradient_norm=FLAGS.clip_gradient_norm,
train_data_pattern=FLAGS.train_data_pattern,
label_loss_fn=label_loss_fn,
base_learning_rate=FLAGS.base_learning_rate,
learning_rate_decay=FLAGS.learning_rate_decay,
learning_rate_decay_examples=FLAGS.learning_rate_decay_examples,
regularization_penalty=FLAGS.regularization_penalty,
num_readers=FLAGS.num_readers,
batch_size=FLAGS.batch_size,
num_epochs=FLAGS.num_epochs)
return tf.train.Saver(max_to_keep=0, keep_checkpoint_every_n_hours=0.25)
######################################################################
#By Dalong:通过最初的frame_features的宏定义值的设定
#来产生对应文件格式的读取器(reader)
#即:如果读取frame_feature,则生成对应的读取器
#如果读取video_level的特征,则有对应的读取器
######################################################################
def get_reader():
# Convert feature_names and feature_sizes to lists of values.
feature_names, feature_sizes = utils.GetListOfFeatureNamesAndSizes(
FLAGS.feature_names, FLAGS.feature_sizes)
if FLAGS.frame_features:
reader = readers.YT8MFrameFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
else:
reader = readers.YT8MAggregatedFeatureReader(
feature_names=feature_names, feature_sizes=feature_sizes)
return reader
############################################################
#By Dalong:接下来的代码似乎我们是不用管的,都是和集群相关
#的代码
#
############################################################
class ParameterServer(object):
"""A parameter server to serve variables in a distributed execution."""
def __init__(self, cluster, task):
"""Creates a ParameterServer.
Args:
cluster: A tf.train.ClusterSpec if the execution is distributed.
None otherwise.
task: A TaskSpec describing the job type and the task index.
"""
self.cluster = cluster
self.task = task
def run(self):
"""Starts the parameter server."""
logging.info("%s: Starting parameter server within cluster %s.",
task_as_string(self.task), self.cluster.as_dict())
server = start_server(self.cluster, self.task)
server.join()
def start_server(cluster, task):
"""Creates a Server.
Args:
cluster: A tf.train.ClusterSpec if the execution is distributed.
None otherwise.
task: A TaskSpec describing the job type and the task index.
"""
if not task.type:
raise ValueError("%s: The task type must be specified." %
task_as_string(task))
if task.index is None:
raise ValueError("%s: The task index must be specified." %
task_as_string(task))
# Create and start a server.
return tf.train.Server(
tf.train.ClusterSpec(cluster),
protocol="grpc",
job_name=task.type,
task_index=task.index)
def task_as_string(task):
return "/job:%s/task:%s" % (task.type, task.index)
def main(unused_argv):
# Load the environment.
env = json.loads(os.environ.get("TF_CONFIG", "{}"))
# Load the cluster data from the environment.
cluster_data = env.get("cluster", None)
cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
# Load the task data from the environment.
task_data = env.get("task", None) or {"type": "master", "index": 0}
task = type("TaskSpec", (object,), task_data)
# Logging the version.
logging.set_verbosity(tf.logging.INFO)
logging.info("%s: Tensorflow version: %s.",
task_as_string(task), tf.__version__)
# Dispatch to a master, a worker, or a parameter server.
if not cluster or task.type == "master" or task.type == "worker":
model = find_class_by_name(FLAGS.model,
[frame_level_models, video_level_models])()
reader = get_reader()
model_exporter = export_model.ModelExporter(
frame_features=FLAGS.frame_features,
model=model,
reader=reader)
Trainer(cluster, task, FLAGS.train_dir, model, reader, model_exporter,
FLAGS.log_device_placement, FLAGS.max_steps,
FLAGS.export_model_steps).run(start_new_model=FLAGS.start_new_model)
elif task.type == "ps":
ParameterServer(cluster, task).run()
else:
raise ValueError("%s: Invalid task_type: %s." %
(task_as_string(task), task.type))
if __name__ == "__main__":
app.run()