-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathOBS_SAT.cpp
532 lines (498 loc) · 17.3 KB
/
OBS_SAT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#include "OBS_SAT.h"
void solution::PQxyz2PQllh() {
ecef2pos(pos,posllh);
Eigen::Matrix3d P;
Eigen::Matrix3d Q = Eigen::Matrix3d::Zero();
P << qr[0], qr[3], qr[5],
qr[3], qr[1], qr[4],
qr[5], qr[4], qr[2];
/*if (state == 2) {
}*/
covenu(posllh, P, Q);
posllh[0] *= 180 / PI;
posllh[1] *= 180 / PI;
for (int i = 0; i < 3; i++)
qrenu[i] = Q(i, i);
qrenu[3] = Q(0, 1);
qrenu[4] = Q(1, 2);
qrenu[5] = Q(0, 2);
return;
}
OBS_SAT::OBS_SAT(int satindex, int satindexR, const OBS_RINEX &obsrinex, char mode) {
base_flag = 0;
rover_flag = 0;
BR_unused_flag = 0;
BR_fde_mask = 0;
int GNSS_Fnum_B;
int GNSS_Fnum_R;
//double Cspeed = 299792458.0;
vector<double> GNSS_fre_B;
vector<double> GNSS_fre_R;
vector<int > GNSS_satID_B;
vector<int > GNSS_satID_R;
vector<int > GNSS_flags_B;
vector<int > GNSS_flags_R;
vector<double > GNSS_measurements_B;
vector<double > GNSS_measurements_R;
BRtime = obsrinex.GPStime_R;
if (mode == 'G') {
constellation = 'G';
GNSS_Fnum_B = obsrinex.GPS_Fnum_B;
GNSS_Fnum_R = obsrinex.GPS_Fnum_R;
GNSS_fre_B = obsrinex.GPS_fre_B;
GNSS_fre_R = obsrinex.GPS_fre_R;
GNSS_satID_B = obsrinex.GPS_satID_B;
GNSS_satID_R = obsrinex.GPS_satID_R;
GNSS_flags_B = obsrinex.GPS_flags_B;
GNSS_flags_R = obsrinex.GPS_flags_R;
GNSS_measurements_B = obsrinex.GPS_measurements_B;
GNSS_measurements_R = obsrinex.GPS_measurements_R;
}
else {
constellation = 'C';
GNSS_Fnum_B = obsrinex.BDS_Fnum_B;
GNSS_Fnum_R = obsrinex.BDS_Fnum_R;
GNSS_fre_B = obsrinex.BDS_fre_B;
GNSS_fre_R = obsrinex.BDS_fre_R;
GNSS_satID_B = obsrinex.BDS_satID_B;
GNSS_satID_R = obsrinex.BDS_satID_R;
GNSS_flags_B = obsrinex.BDS_flags_B;
GNSS_flags_R = obsrinex.BDS_flags_R;
GNSS_measurements_B = obsrinex.BDS_measurements_B;
GNSS_measurements_R = obsrinex.BDS_measurements_R;
}
if (satindex >= 0) {
base = Station_OBS(GNSS_Fnum_B, satindex, GNSS_measurements_B, GNSS_flags_B, GNSS_fre_B, obsrinex.GPStime_B);
base_flag = 1;//说明当前星对base可见
}
if (satindexR >= 0) {
rover = Station_OBS(GNSS_Fnum_R, satindexR, GNSS_measurements_R, GNSS_flags_R, GNSS_fre_R, obsrinex.GPStime_R);
rover_flag = 1;
}
}
void OBS_SAT::displayOBS_SAT() {
cout << endl << "Base:" << endl;
base.displayOBS_station();
cout << endl << "Rover:" << endl;
rover.displayOBS_station();
cout << endl;
}
void OBS_SAT::displayOBS_SAT_Pos(int mode) {
if (mode == 1) {
cout << "****Base Sat info:" << endl;
base.displaySAT_station();
cout << "****Rover Sat info:" << endl;
rover.displaySAT_station();
cout << endl << "****SAT SVH FLAG:" << endl;
cout << SAT_SVH << " ";
cout << endl;
}
else if (mode == 2) {
int unused_flag = rover.get_unusedflag();
vector<double > r_azel_los = rover.get_razellos();
cout << endl << "Unused flag:" << endl;
cout << unused_flag;
cout << endl << "distance between user and sat:" << endl;
cout << setprecision(17) << r_azel_los[0] << endl;
cout << endl << "azimuth,elevation:" << endl;
for (int i = 1; i < 3; i++)
cout << setprecision(17) << r_azel_los[i] << " ";
cout << endl << "unit Los:" << endl;
for (int i = 3; i < 6; i++)
cout << setprecision(17) << r_azel_los[i] << " ";
cout << endl;
}
return;
}
void OBS_SAT::detslp_ll(char * slip, char * half, double tt) {
//只考虑单频
*half = (base.Sget_LLI(0) & 2) ? 0 : (rover.Sget_LLI(0) & 2) ? 0 : 1;// 这个应该是指示是否半周有效
if (base.Sget_L(0) == 0.0 || rover.Sget_L(0) == 0.0)
return;
int rcvpreviousLLI, basepreviousLLI,roverslip,baseslip;
rcvpreviousLLI = getbitu(slip, 0, 2);
basepreviousLLI = getbitu(slip, 2, 2);
if (tt >= 0.0) {
baseslip = base.Sget_LLI(0);
roverslip = rover.Sget_LLI(0);
}
else {
baseslip = basepreviousLLI;
roverslip = rcvpreviousLLI;
}
if (((basepreviousLLI & 2) && !(base.Sget_LLI(0) & 2)) || (!(basepreviousLLI & 2) && (base.Sget_LLI(0) & 2))) {
baseslip |= 1;
}// slip 低4位 是一个标志,只统计是否发生周跳,不管是整周还是半周。不关心。
if (((rcvpreviousLLI & 2) && !(rover.Sget_LLI(0) & 2)) || (!(rcvpreviousLLI & 2) && (rover.Sget_LLI(0) & 2))) {
roverslip |= 1;
}// slip 低4位 是一个标志,只统计是否发生周跳,不管是整周还是半周。不关
setbitu(slip, 0, 2, rover.Sget_LLI(0));// 更新rtk->ssat 状态
setbitu(slip, 2, 2, base.Sget_LLI(0));// 更新rtk->ssat 状态
*slip|= (char)baseslip;//rtk->ssat[sat-1].slip[f] 包含了rover 和 base的,所以这里要或
*slip|= (char)roverslip;
return;
}
void OBS_SAT::orBRLLI(int b, int r) {
//目前只考虑单频
if (base_flag) {
int B_originalLLI = base.Sget_LLI(0);
int B_currentLLI = B_originalLLI | b;
base.Sset_LLI(0, B_currentLLI);
}
if (rover_flag) {
int R_originalLLI = rover.Sget_LLI(0);
int R_currentLLI = R_originalLLI | r;
rover.Sset_LLI(0, R_currentLLI);
}
return;
}
void OBS_SAT::setpvbdst(const vector<double > &pvb, const vector<double > & bdb, double varb,
const vector<double > &pvr, const vector<double > & bdr, double varr,
int svh, double tgd, int bflag, int rflag) {
if (bflag) {
base.Ssetpvbd(pvb, bdb, varb);
}
if (rflag) {
rover.Ssetpvbd(pvr, bdr, varr);
}
SAT_SVH = svh;
TGD = tgd;
return;
}
void OBS_SAT::Ls_update_razellos(const vector<double > &sysclk_bias, const vector<double> &receiver_pos_ecef,
const vector<double> &receiver_pos_llh, int &count, const vector<double > &ION_CORR) {
rover.update_razellos(sysclk_bias, receiver_pos_ecef, receiver_pos_llh,count,ION_CORR,SAT_SVH,constellation,TGD);
return;
}
void OBS_SAT::Ls_updateDres(const vector<double> &receiver_pos_ecef, const Eigen::Matrix3d &E, const Eigen::VectorXd &Ls_x, int &count) {
rover.updateDres(receiver_pos_ecef,E,Ls_x,count);
return;
}
int OBS_SAT::BRzdres(char mode, const vector<double > & posecef, const vector<double > & posllh) {
if (numiterator >= debug_stop) {
int aaa = 1;
}
if (SAT_SVH < 0 || SAT_SVH == 1) {
BR_unused_flag = 1;
return 0;
}
int state = 0;
if (mode == 'B') {
state = base.zdres(posecef, posllh);
}
else if (mode == 'R') {
state = rover.zdres(posecef, posllh);
}
else {
cout << "no such zdres mode" << endl;
return 0;
}
if(!state ) //base或者rover有一个站计算零差不成功,都不能参与最后的rtk(P+L)解算。
BR_unused_flag = 1;
return state;
}
void OBS_SAT::calsdresvar(double bl) {
double a, b, c, d;
double el = rover.get_razellos()[2];
double sinel = sin(el);
int timeb, timer;
double secb, secr;
rover.gettime(&timer, &secr);
base.gettime(&timeb, &secb);
double dt = timer-timeb+secr-secb;
c = opterr[3] * bl / 1E4;
d = Cspeed * sclkstab*dt;
double factL = 1.0,factP = opteratio[0];
a = factL * opterr[1];
b = factL * opterr[2];
L_svar = 2.0*(a*a + b * b / sinel / sinel + c * c) + d * d;
a = factP * opterr[1];
b = factP * opterr[2];
P_svar = 2.0*(a*a + b * b / sinel / sinel + c * c) + d * d;
return;
}
Station_OBS::Station_OBS(const int GNSS_Fnum, const int satindex, const vector<double > & GNSS_measurements, const vector<int > & GNSS_flags, const vector<double > & GNSS_fre, gtime_t timerinex) {
unused_flag = 0;
fde_mask = 0;
r_azel_los = vector<double>(6, 0);
time = timerinex;
SAT_POS_VEL = vector<double>(6, 0);
SATCLK_BIAS_DRIFT = vector<double >(2, 0);
for (int i = 0; i < GNSS_Fnum; i++) {
P.push_back(GNSS_measurements[(satindex*GNSS_Fnum + i) * 4 + 0]);
L.push_back(GNSS_measurements[(satindex*GNSS_Fnum + i) * 4 + 1]);
D.push_back(GNSS_measurements[(satindex*GNSS_Fnum + i) * 4 + 2]);
S.push_back(GNSS_measurements[(satindex*GNSS_Fnum + i) * 4 + 3]);
qualP.push_back(GNSS_flags[(satindex*GNSS_Fnum + i) * 3 + 0]);
qualL.push_back(GNSS_flags[(satindex*GNSS_Fnum + i) * 3 + 1]);
LLI.push_back(GNSS_flags[(satindex*GNSS_Fnum + i) * 3 + 2]);
lambda.push_back(Cspeed / GNSS_fre[i] / 1e6);
}
P_zres = 0;//零差
L_zres = 0;
D_zres = 0;
P_zvar = 0;
}
int Station_OBS::zdres(const vector<double > & posecef, const vector<double > & posllh) {
if (posecef.empty() || norm_vector(posecef, 0, 3) <= 0.0)
return 0;
geodist(posecef, SAT_POS_VEL);
satazel(posllh);
/*if (unused_flag == 1)
return 0;*/
unused_flag = 0;
if (r_azel_los[0] < 0 || r_azel_los[2] < elmin_mask)//
unused_flag = 1;
if (unused_flag || fde_mask)
return 0;
double r = r_azel_los[0];
r -= Cspeed * SATCLK_BIAS_DRIFT[0];
vector<double > zazel = { 0.0,90.0*D2R };
double zhd = tropmodel(posllh, zazel, 0.0);
vector<double > azel = { r_azel_los[1],r_azel_los[2] };
double zhd_mapf = tropmapf(time, posllh, azel);
r += zhd * zhd_mapf;
//此处没有做antmodel
//只考虑了单频的情况,后续再扩展iono-free linear combination
if (lambda[0] == 0.0 || L[0] == 0.0 || P[0] == 0.0) {
unused_flag = 1;
return 0;
}
L_zres = L[0] * lambda[0] - r;
P_zres = P[0] - r;
return 1;
}
void Station_OBS::displayOBS_station() {
for (int i = 0; i < P.size(); i++)
cout << setprecision(12) << P[i] << " " << qualP[i] << " "
<< setprecision(10) << L[i] << " " << LLI[i] << " " << qualL[i]
<< setprecision(8) << " " << D[i] << " " << setprecision(4) << S[i] << " ";
}
void Station_OBS::displaySAT_station() {
cout << endl << "Position:" << endl;
for (int i = 0; i < 3; i++)
cout << setprecision(17) << SAT_POS_VEL[i] << " ";
cout << endl << "Velocity:" << endl;
for (int i = 3; i < 6; i++)
cout << setprecision(17) << SAT_POS_VEL[i] << " ";
cout << endl << "Clock Bias:" << endl;
cout << setprecision(17) << SATCLK_BIAS_DRIFT[0] << " ";
cout << endl << "Clock drift:" << endl;
cout << setprecision(17) << SATCLK_BIAS_DRIFT[1] << " ";
cout << endl << "VAR:" << endl;
cout << setprecision(17) << SATPOS_VAR << " ";
}
//即使是L1信号,也要dcb调整一下
// 单频接收机,不播发频率差异,用群波延时校正,实际上就是群波延时校正卫星钟差?
double Station_OBS::cal_P(double *P, string mode, const vector<int> &fre,char constllation,double TGD) {
if (mode == "single") {
*P = Sget_P(fre[0]);
if (fabs(*P) < 1e-14)//有可能当前频点不存在观测量
return 0;
double l1, lc;
l1 = Sget_lambda(0);
lc = Sget_lambda(fre[0]);
double gamma = (lc / l1)*(lc / l1);
if (constllation == 'G') // RTKLIB没有校正北斗TGD 应该改过来,且取负值
*P = *P - TGD * Cspeed;
else if (constllation == 'C')
*P = *P + TGD * Cspeed;
return gamma;
}
return 0.0;
}
void Station_OBS::update_razellos(const vector<double > &sysclk_bias, const vector<double> &receiver_pos_ecef,
const vector<double> &receiver_pos_llh, int &count, const vector<double > &ION_CORR, double sat_svh, char constellation,double TGD) {
/*sysclk_bias 是估计出来的接收机钟差*/
geodist(receiver_pos_ecef, SAT_POS_VEL);
satazel(receiver_pos_llh);
unused_flag = 0;
//这里有一个反复横跳的过程。。
// 有一个星很靠近cutoff,LS迭代中前次低于cutoff被舍弃了,后次高于curoff又回来了,但是前次被清零后一直没有回复。
// 所以出现和RTKIIB 不一致的情况。理论上应该恢复
if (r_azel_los[0] <= 0 || r_azel_los[2] < elmin_mask || sat_svh == 1 || sat_svh < 0)//
unused_flag = 1;
if (unused_flag || fde_mask)
return;
count++;
double P;
double Fre_rate = cal_P(&P, "single", vector<int>(1, 0),constellation,TGD);
if (fabs(P) < 1e-14) {
unused_flag = 1;
return;
}
double vmeas = ERR_CBIAS * ERR_CBIAS;//沿用RTKLIB的方法
double dion = ion_BRDC(receiver_pos_llh, ION_CORR);
double vion = (dion*dion)*(ERR_BRDCI*ERR_BRDCI);
if (constellation == 'G')
dion *= Fre_rate;//单频时ION模型频率调整
else {
double lr;
lr = Sget_lambda(0);
dion = dion * lr*lr / lam_carr[0] / lam_carr[0];
}
vector<double > azel(2, 0);
azel[0] = r_azel_los[1];
azel[1] = r_azel_los[2];
double dtrop = tropmodel(receiver_pos_llh,azel,REL_HUMI);
double vtrop = pow(ERR_SAAS / (sin(r_azel_los[2]) + 0.1), 2);
P_zres = P - (r_azel_los[0] + sysclk_bias[0] - Cspeed * SATCLK_BIAS_DRIFT[0] + dion + dtrop);//SATCLK_BIAS_DRIFT 是卫星钟差,P在原始观测量基础上补偿了TGD
P_zvar = SATPOS_VAR + vmeas + vion + vtrop + varerr(r_azel_los[2]);
if (constellation == 'C')
P_zres -= sysclk_bias[1];
return;
}
void Station_OBS::Ssetpvbd(const vector<double > &pv, const vector<double > & bd, double var) {
SAT_POS_VEL[0] = pv[0];
SAT_POS_VEL[1] = pv[1];
SAT_POS_VEL[2] = pv[2];
SATCLK_BIAS_DRIFT[0] = bd[0];
SAT_POS_VEL[3] = pv[3];
SAT_POS_VEL[4] = pv[4];
SAT_POS_VEL[5] = pv[5];
SATCLK_BIAS_DRIFT[1] = bd[1];
SATPOS_VAR = var;
return;
}
void Station_OBS::geodist(const vector<double> &receiver_pos_ecef,const vector<double> & SAT_POS_VEL) {
double rr = norm_vector(SAT_POS_VEL, 0, 3);
if (rr < RE_WGS84) {
r_azel_los[0] = -1.0;
}
else {
for (int i = 0; i < 3; i++)
r_azel_los[3 + i] = SAT_POS_VEL[i] - receiver_pos_ecef[i];
double r = norm_vector(r_azel_los, 3, 3);
divide_vector(r_azel_los, 3, 3, r);
r_azel_los[0] = r + 7.2921151467E-5*(SAT_POS_VEL[0] * receiver_pos_ecef[1] - SAT_POS_VEL[1] * receiver_pos_ecef[0]) / Cspeed;
}
return;
}
void Station_OBS::satazel(const vector<double> &receiver_pos_llh) {
double az = 0.0, el = PI / 2.0;
vector<double > e(r_azel_los.end() - 3, r_azel_los.end());
vector<double > enu(3, 0);
if (receiver_pos_llh[2] > -RE_WGS84) {
ecef2enu(receiver_pos_llh, e, enu);
az = dot(enu, 0, enu, 0, 2) < 1e-12 ? 0.0 : atan2(enu[0], enu[1]);
if (az < 0.0)
az += 2 * PI;
el = asin(enu[2]);
}
r_azel_los[1] = az;
r_azel_los[2] = el;
return;
}
double Station_OBS::ion_BRDC(const vector<double> &pos, const vector<double> & ION_CORR) {
const double ion_default[] = { /* 2004/1/1 */
0.1118E-07,-0.7451E-08,-0.5961E-07, 0.1192E-06,
0.1167E+06,-0.2294E+06,-0.1311E+06, 0.1049E+07
};
vector<double> ion(8, 0);
double tt, f, psi, phi, lam, amp, per, x;
int week;
if (pos[2] < -1E3 || r_azel_los[2] <= 0) return 0.0;
if (ION_CORR.empty() || norm_vector(ION_CORR, 0, 8) <= 0.0) {
for (int i = 0; i < 8; i++)
ion[i] = ion_default[i];
}
else {
ion = ION_CORR;
}
psi = 0.0137 / (r_azel_los[2] / PI + 0.11) - 0.022;
/* subionospheric latitude/longitude (semi-circle) */
phi = pos[0] / PI + psi * cos(r_azel_los[1]);
if (phi > 0.416) phi = 0.416;
else if (phi < -0.416) phi = -0.416;
lam = pos[1] / PI + psi * sin(r_azel_los[1]) / cos(phi*PI);
/* geomagnetic latitude (semi-circle) */
phi += 0.064*cos((lam - 1.617)*PI);
/* local time (s) */
tt = 43200.0*lam + time2gpst(time, &week);
tt -= floor(tt / 86400.0)*86400.0; /* 0<=tt<86400 */
/* slant factor */
f = 1.0 + 16.0*pow(0.53 - r_azel_los[2] / PI, 3.0);
/* ionospheric delay */
amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3]));
per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7]));
amp = amp < 0.0 ? 0.0 : amp;
per = per < 72000.0 ? 72000.0 : per;
x = 2.0*PI*(tt - 50400.0) / per;
return Cspeed * f*(fabs(x) < 1.57 ? 5E-9 + amp*(1.0 + x * x*(-0.5 + x * x / 24.0)) : 5E-9);
}
double Station_OBS::tropmodel(const vector<double> &pos,const vector<double > &azel, double humi) {
const double temp0 = 15.0; /* temparature at sea level */
double hgt, pres, temp, e, z, trph, trpw;
if (pos[2] < -100.0 || 1E4 < pos[2] || azel[1] <= 0) return 0.0;
/* standard atmosphere */
hgt = pos[2] < 0.0 ? 0.0 : pos[2];
pres = 1013.25*pow(1.0 - 2.2557E-5*hgt, 5.2568);
temp = temp0 - 6.5E-3*hgt + 273.16;
e = 6.108*humi*exp((17.15*temp - 4684.0) / (temp - 38.45));
/* saastamoninen model */
z = PI / 2.0 - azel[1];
trph = 0.0022768*pres / (1.0 - 0.00266*cos(2.0*pos[0]) - 0.00028*hgt / 1E3) / cos(z);
trpw = 0.002277*(1255.0 / temp + 0.05)*e / cos(z);
return trph + trpw;
}
void Station_OBS::updateDres(const vector<double> &receiver_pos_ecef, const Eigen::Matrix3d &E, const Eigen::VectorXd &Ls_x,
int &count) {
if (unused_flag || fde_mask)
return;
double l, doppler;
doppler = D[0];
l = lambda[0];
if (doppler == 0.0 || l == 0 || norm_vector(SAT_POS_VEL, 3, 3) <= 0.0) {
unused_flag = 1;
return;
}
double cosel = cos(r_azel_los[2]);
Eigen::Vector3d a, e;
a << sin(r_azel_los[1])*cosel, cos(r_azel_los[1])*cosel, sin(r_azel_los[2]);
e = E.transpose() * a;// enu->xyz
vector<double > vs(3, 0);
for (int j = 0; j < 3; j++) {
r_azel_los[3 + j] = e(j);
vs[j] = SAT_POS_VEL[j + 3] - Ls_x(j);
}
double x1 = dot(vs, 0, r_azel_los, 3, 3);
double x2 = OMGE / Cspeed * (SAT_POS_VEL[4] * receiver_pos_ecef[0] + SAT_POS_VEL[1] * Ls_x(0) -
SAT_POS_VEL[3] * receiver_pos_ecef[1] - SAT_POS_VEL[0] * Ls_x(1));
double rate = dot(vs, 0, r_azel_los, 3, 3) + OMGE / Cspeed * (SAT_POS_VEL[4] * receiver_pos_ecef[0] + SAT_POS_VEL[1] * Ls_x(0) -
SAT_POS_VEL[3] * receiver_pos_ecef[1] - SAT_POS_VEL[0] * Ls_x(1));
D_zres = -l * doppler - (rate + Ls_x(3) - Cspeed * SATCLK_BIAS_DRIFT[1]);
count++;
return;
}
void Station_OBS::Sset_LLI(int Fi, int value) {
if (Fi >= LLI.size()) {
cout << "LLI index out of range" << endl;
return;
}
LLI[Fi] = value;
return;
}
void OBS_SAT::calP_sres() {
double Pb = base.Sget_P(0);
double Pr = rover.Sget_P(0);
if (fabs(Pb) > 1e-15 && fabs(Pr) > 1e-15)
P_sres = Pr - Pb;
else
P_sres = 0;
}
void OBS_SAT::calL_sres() {
double Lb = base.Sget_L(0);
double Lr = rover.Sget_L(0);
if (fabs(Lb) > 1e-15 && fabs(Lr) > 1e-15)
L_sres = Lr - Lb;
else
L_sres = 0;
}
void OBS_SAT::calD_sres() {
double Db = base.Sget_D(0);
double Dr = rover.Sget_D(0);
if (fabs(Db) > 1e-15 && fabs(Dr) > 1e-15)
D_sres = Dr - Db;
else
D_sres = 0;
}