-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_live.py
183 lines (139 loc) · 5.35 KB
/
predict_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from robotpose.prediction.analysis import JointDistance
from robotpose import Predictor, JSONCoupling, LiveCamera, Dataset, Intrinsics
import numpy as np
from robotpose.utils import color_array
import cv2
from tqdm import tqdm
import logging
LENGTH = 3
ALLOWED_DEVIANCE = 0.2
MAX_PBAR = int(ALLOWED_DEVIANCE * 1000)
# class Live():
# def __init__(self, base_intrin_str, parent_ds, angs, ds_factor) -> None:
# base_intrin = Intrinsics(base_intrin_str)
# ds = Dataset(parent_ds)
# self.cam = LiveCamera(base_intrin.width, base_intrin.height)
# self.link = JSONCoupling()
# self.pred = Predictor(ds.camera_pose[0],ds_factor,False,None,angs,base_intrin=base_intrin_str,model_ds=parent_ds)
# self.cam.start()
# self.claims = np.zeros((LENGTH,6))
# self.predictions = np.zeros((LENGTH,6))
# self.create_pbars()
# def stop(self):
# self.cam.stop()
# def run(self):
# logging.info("Ready")
# # off = -0.05
# while True:
# claimed = self.link.get_pose()
# # claimed[0] += off
# # off += 0.05
# color, depth = self.cam.get()
# cv2.imshow("Depth",color_array(depth))
# cv2.imshow("Color",color)
# cv2.waitKey(1)
# calculated = self.pred.run(color, depth)
# self.link.reset()
# self.shift_in(claimed, calculated)
# self.update_error()
# self.update_pbars()
# self.displayState()
# def shift_in(self, claim, prediction):
# self.claims[1:] = self.claims[:-1]
# self.predictions[1:] = self.predictions[:-1]
# self.claims[0] = claim
# self.predictions[0] = prediction
# def create_pbars(self):
# titles = [x for x in 'SLURBT']
# self.pbars = [tqdm(desc=titles[pos],unit='mRad',position=pos,leave=False, total=MAX_PBAR) for pos in range(len(titles))]
# def update_error(self):
# self.diff = np.abs(self.claims - self.predictions)
# self.out_of_range = self.diff > ALLOWED_DEVIANCE
# # print((self.diff[0] * 180 / np.pi).astype(int))
# def update_pbars(self):
# for idx in range(len(self.pbars)):
# self.pbars[idx].colour = 'red' if self.out_of_range[0,idx] else 'green'
# self.pbars[idx].n = np.clip(int(self.diff[0,idx] * 1000),0,MAX_PBAR-1)
# self.pbars[idx].refresh()
# @property
# def state(self):
# return np.sum(np.prod(self.out_of_range,0)) > 0
# def displayState(self):
# a = np.zeros((500,500,3),np.uint8)
# if self.state:
# a[...,2] = 255
# else:
# a[...,1] = 255
# cv2.imshow("State",a)
# cv2.waitKey(1)
LENGTH = 3
ALLOWED_DEVIANCE = 0.1
MAX_PBAR = int(ALLOWED_DEVIANCE * 1000)
class Live():
def __init__(self, base_intrin_str, parent_ds, angs, ds_factor) -> None:
base_intrin = Intrinsics(base_intrin_str)
ds = Dataset(parent_ds)
self.cam = LiveCamera(base_intrin.width, base_intrin.height)
self.link = JSONCoupling()
self.pred = Predictor(ds.camera_pose[0],ds_factor,False,None,angs,base_intrin=base_intrin_str,model_ds=parent_ds)
self.jd = JointDistance()
self.cam.start()
self.claims = np.zeros((LENGTH,6))
self.predictions = np.zeros((LENGTH,6))
self.running_claims = []
self.running_predictions = []
self.create_pbar()
def stop(self):
self.cam.stop()
def run(self):
logging.info("Ready")
while True:
claimed = self.link.get_pose()
color, depth = self.cam.get()
cv2.imshow("Depth",color_array(depth))
cv2.imshow("Color",color)
cv2.waitKey(1)
calculated = self.pred.run(color, depth)
self.link.reset()
self.shift_in(claimed, calculated)
self.update_error()
self.update_pbar()
self.displayState()
self.save()
def shift_in(self, claim, prediction):
self.claims[1:] = self.claims[:-1]
self.predictions[1:] = self.predictions[:-1]
self.claims[0] = claim
self.predictions[0] = prediction
self.running_claims.append(claim)
self.running_predictions.append(prediction)
def create_pbar(self):
self.pbar = tqdm(desc='TCP',unit='mm',leave=False, total=MAX_PBAR)
def update_error(self):
self.diff = self.jd.single(self.predictions,self.claims)
self.out_of_range = self.diff > ALLOWED_DEVIANCE
def update_pbar(self):
self.pbar.colour = 'red' if self.out_of_range[0] else 'green'
self.pbar.n = np.clip(int(self.diff[0] * 1000),0,MAX_PBAR-1)
self.pbar.refresh()
def save(self):
c = np.array(self.running_claims)
p = np.array(self.running_predictions)
a = np.zeros((2,*c.shape))
a[0] = c
a[1] = p
np.save('live_preds.npy',a)
@property
def state(self):
return np.sum(self.out_of_range,0) == LENGTH
def displayState(self):
a = np.zeros((500,500,3),np.uint8)
if self.state:
a[...,2] = 255
else:
a[...,1] = 255
cv2.imshow("State",a)
cv2.waitKey(1)
if __name__ == "__main__":
a = Live('1280_720_color','set91','SLU',8)
a.run()