-
Notifications
You must be signed in to change notification settings - Fork 164
/
image_augmentation.py
49 lines (37 loc) · 1.66 KB
/
image_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import cv2
import numpy
from umeyama import umeyama
random_transform_args = {
'rotation_range': 10,
'zoom_range': 0.05,
'shift_range': 0.05,
'random_flip': 0.4,
}
def random_transform(image, rotation_range, zoom_range, shift_range, random_flip):
h, w = image.shape[0:2]
rotation = numpy.random.uniform(-rotation_range, rotation_range)
scale = numpy.random.uniform(1 - zoom_range, 1 + zoom_range)
tx = numpy.random.uniform(-shift_range, shift_range) * w
ty = numpy.random.uniform(-shift_range, shift_range) * h
mat = cv2.getRotationMatrix2D((w // 2, h // 2), rotation, scale)
mat[:, 2] += (tx, ty)
result = cv2.warpAffine(image, mat, (w, h), borderMode=cv2.BORDER_REPLICATE)
if numpy.random.random() < random_flip:
result = result[:, ::-1]
return result
# get pair of random warped images from aligened face image
def random_warp(image):
assert image.shape == (256, 256, 3)
range_ = numpy.linspace(128 - 80, 128 + 80, 5)
mapx = numpy.broadcast_to(range_, (5, 5))
mapy = mapx.T
mapx = mapx + numpy.random.normal(size=(5, 5), scale=5)
mapy = mapy + numpy.random.normal(size=(5, 5), scale=5)
interp_mapx = cv2.resize(mapx, (80, 80))[8:72, 8:72].astype('float32')
interp_mapy = cv2.resize(mapy, (80, 80))[8:72, 8:72].astype('float32')
warped_image = cv2.remap(image, interp_mapx, interp_mapy, cv2.INTER_LINEAR)
src_points = numpy.stack([mapx.ravel(), mapy.ravel()], axis=-1)
dst_points = numpy.mgrid[0:65:16, 0:65:16].T.reshape(-1, 2)
mat = umeyama(src_points, dst_points, True)[0:2]
target_image = cv2.warpAffine(image, mat, (64, 64))
return warped_image, target_image